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Practical parallel rendering of detailed neuron simulations
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Figure 1: Four different renderings of a subset of the cortical circuit, from left to right: Full circuit view of 1000 neurons
with thickness dependent transparency, close-up of 2000 neurons with simulation data and activity dependent transparency, the
same view with additional thickness opacity modulation, 5000 neurons with transparency.

Abstract

Farallel rendering of large polygonal models with transparency is challenging due to the need for alpha-correct
blending and compositing, which is costly for very large models with high depth complexity and spatial overlap.
In this paper we compare the performance of raster-based rendering methods on mesh models of neurons using
two applications, one of which is specifically tailored to the neuroscience application domain, the other a general
purpose visualization tool with domain specific additions. The first implements both sort-first and sort-last and
uses a scene graph style traversal to cull objects, and dual depth peeling for order independent transparency,
whilst the other uses a simpler brute force data-parallel approach with sort last composition. The advantages and
trade offs of these approaches are discussed.

We present the optimized algorithms needed to achieve interactive frame rates for a non-trivial, real-world parallel
rendering scenario. We show that a generic data visualization application can provide competitive performance
when optimizing its rendering pipeline, with some loss of capability over an optimized domain-specific application.

Categories and Subject Descriptors (according to ACM CCS): 1.3.m [Computer Graphics]: Miscellaneous—Parallel

Rendering Computer Applications [J.3]: Life and Medical Sciences—Biology and genetics;

1. Introduction

Simulation-based research has become an effective tool for
scientific discovery in many areas. Supercomputers not only
follow Moore’s law per processors, but continually increase
the number of processors per system, causing a data explo-
sion above the industry trend. Furthermore, many of the sim-
ulation domains are inherently three-dimensional in nature,
which calls for interactive 3D applications for debugging,
analysis, discovery and communication of scientific results.

The mammalian brain is a densely packed structure. The
geometrical model of 5,000 cortical neurons, which occupy
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a few mm? of brain cortex, has in excess of 720 x 10° trian-
gles. Due to their geometrical properties they are challenging
to render, and transparency is needed to reduce visual clut-
ter, making visualizations of neuronal tissue simulations a
challenging problem for interactive parallel rendering.

We compare two different approaches to tackle these ren-
dering challenges: an optimized scenegraph-based applica-
tion versus ParaView with enhancements for the given prob-
lem. We present a quantitative analysis of how much inter-
activity can be gained for this problem by using a custom
tailored code compared to a readily available parallel ren-
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dering software. The custom tailored application, RTNeu-
ron, is based on OpenSceneGraph and Equalizer. It imple-
ments both sort-first and sort-last parallelization [MCEF94],
and any combination of them. Sort-first profits from the view
frustum culling technique presented in [HPS12], whereas
sort-last uses a novel spatial partitioning for mesh data with
fast, RGBA-only compositing detailed in Section 3.1.2.

We present rendering performance results for several cir-
cuit sizes, rendering modes, simulation data mapping and
different parallel rendering strategies, run on a medium-
sized GPU cluster. Our results show that parallel rendering
for real-world scenarios requires careful tuning of the ren-
dering pipeline. While ParaView provides competitive per-
formance with careful optimizations, a specialized applica-
tion performs similarly using a data model not optimized for
rendering, but designed to enable domain-specific function-
ality.

2. Related work

Parallel rendering concepts, algorithms and systems have
been well studied previously. Our work builds on the Para-
View visualization application [Hen07] and RTNeuron, an
optimized application using the OpenSceneGraph [RO*13]
and the Equalizer parallel rendering framework [EMP09].

ParaView is a widely used scalable parallel visualiza-
tion tool based on VTK [SMLO03a] that makes use of
IceT [MKPH11] for image compositing. Whilst it already
supports sort-last parallel rendering including transparency,
the default implementation of data distribution and com-
positing is unsuitable for the very large and complex models
used in this study. A number of improvements that have been
made to improve interactivity are discussed in Section 3.2.

In the area of parallel rendering, significant work has
been published for parallel compositing, load balanc-
ing, data distribution, architecture and general scalabil-
ity. From this work, a few generic frameworks emerged,
including Chromium [HHN*02], ClusterGL [NHMI11],
OpenSG [VBRRO02], VR Juggler and derivatives [BJH*01],
OpenGL Multipipe SDK [BREO5], Equalizer [EMP09] and
CGLX [DK11]. We use Equalizer as the basis for the opti-
mized application due to its flexibility in configuration, fea-
ture set and maturity.

To optimize the costly recomposition for sort-last render-
ing, a number of parallel compositing algorithms have been
proposed [MPHK94, LRN96, SML*03b, EP07, PGR*09,
MEP10]. Further compositing optimizations include im-
age compression [AP98, YYCOI, SKNO4] and screen-
space bounding regions [MPHK94, YYCO1]. Exploiting the
NUMA topology of hybrid GPU clusters has been shown to
improve performance of GPU-based applications [SMV11,
EBA*12]. We use direct-send sort-last compositing since
it trivially allows ordering all images during composition,
and since message contention [YWMOS] is not a bottleneck
in the cluster sizes used for our problem set. Furthermore,

we enable real-time RLE compression, application-provided
region of interest and NUMA-aware thread affinity, as de-
scribed in detail in [EBA*12].

3. Parallel rendering of neuronal tissue simulations

The models used in this study are of similar build to those
reported in [HWR*12], resembling a functional cortical col-
umn of the somatosensory cortex of a young rat. We use
digitized and postprocessed 3D neuron models and place
10,000 of them in a 3D volume of about 0.5 x 1.5 mm
(diameter x height) according to biological constraints. To
prepare the simulations, neuron arbor overlaps are identified,
and a portion of those locations are turned into functional
synapses. The neurons themselves are functionalized using
the multi-compartment Hodgkin-Huxley formalism follow-
ing methods described in [DBG*07, HHS* 11]. The typical
biophysical observable reported per compartment and time
step is the membrane voltage, which for post-mortem visu-
alization is dumped into a large list of scalars sorted by com-
partment per neuron, neuron number and time step, respec-
tively. Depending on the scientific question, also transmem-
brane current or spike times may get reported in addition to
or instead of the membrane voltage. The simulations of the
full model were run on a 4-rack BlueGene/P supercomputer
using the software NEURON [CH06, HESO0S].

Individual neurons are represented as a tree of conical
frustra (segments) encoding branching structure, diameter
and direction changes, called morphological skeletons. For
visualization, triangular surface meshes are created accord-
ing to [LHS™*12]. For out data set, the neurons average 4,200
segments or 140,000 triangles per neuron, totaling upwards
of 1.4 x 10° triangles for a 10,000 neuron column. Two sce-
narios are considered; one where a base set of several hun-
dred different meshes is reused at different locations and an-
other where all the meshes are unique.

Individual neurons are geometrically complex tree-shaped
objects with an uncommon aspect ratio: they have a very
large bounding volume compared to the space filled with ge-
ometry, which causes sub-pixel geometry and aliasing prob-
lems. Neurons are entwined and tightly packed in cortical
circuits, leading to abundant occlusion and visually very
cluttered scenes. These features call for elaborate visual
metaphors and visual analytics techniques for truly insight-
ful visualizations. There is not a single optimal way of rep-
resenting these datasets and we believe that real-time ren-
dering of the raw simulation results in full detail is needed
for initial exploration and as the foundation for finding more
appropriate visual designs with the help of neuroscientists.

Our current visualizations focus on the presentation of
simulation results mapped onto the detailed neuron surface,
but still providing capabilities to interactively change visual
attributes like color mapping, visibility and representation
style (e.g. soma (neuron center) only or whole neuron) for
individual neurons. To deal with occlusion and clutter we use
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selective transparency by modulating the opacity of neuronal
branches or by mapping simulation values to the geometry,
mimicking wet lab techniques such as voltage sensitive dyes.

The rendering of cortical circuits combines high geomet-
rical complexity with expensive transparency rendering. The
latter requires sorting geometry at the pixel level, which is a
tremendous computational load due to the high depth com-
plexity of our data sets. Parallel rendering become a neces-
sity to achieve interactive framerates and to enable rendering
of large circuits using sort-last decomposition.

3.1. RTNeuron: an optimized application

Our customized application, RTNeuron, is a GPU acceler-
ated rendering application based on OpenSceneGraph for
data management and Equalizer for parallel rendering. It fo-
cuses not only on fast rendering times, but also in fast load-
ing times with no offline preprocessing. It provides level of
detail (LOD) rendering, high quality anti-aliasing based on
jittered frusta and accumulation during still views, interac-
tive modification of the visual representation of neurons in a
per-neuron basis (full neuron vs. soma only, branch pruning
depending on the branch level, ...).

The application provides two different levels of detail for
neurons. The high LOD uses fully detailed meshes, while the
lower LOD uses raycast spheres and Phong-shaded pseudo-
cylinders. The pseudo-cylinders are rendered using a geom-
etry shader to convert lines into screen aligned quads and
per fragment shading to provide the cylindrical appearance.
Transparent rendering uses dual depth-peeling [BMOS].

The implementation puts a special emphasis on keeping
separate data structures for each neuron, so different shader
parameters and LOD selection can be applied to each indi-
vidual neuron. This has implications on the scenegraph lay-
out and view frustum culling, as described in Section 3.1.1.

3.1.1. Sort-first parallelization

For geometry intensive applications, scalable sort-first can
only be achieved by means of effective view frustum
culling (VFC) and accurate load balancing. Two reasons
make VFC hard in our case: First, we have densely packed
and entangled objects which are very concave (in the mathe-
matical sense). Second, we need to keep the rendering prim-
itives for each object independent, so different rendering pa-
rameters can be easily applied.

)

/

X \&f

1. Input skeletons and 2. Capsule skeletons 3. Visible capsules 4. Final rendering
primitives (meshes)
L Preprocessing IL Rendering |

Figure 2: Overview of view frustum culling in RTNeuron
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Figure 2 shows how VFC is performed in RTNeuron. The
key element of the algorithm is the capsule skeleton, a list
of capsules directly obtained from the morphological skele-
ton of the neuron. Each capsule bounds a piece of branch
and maps to a range in the primitive index list (which is
sorted to traverse each branch as orderly as possible). Vis-
ibility tests consist of frustum-capsule intersection tests, fol-
lowed by collapsing the primitive ranges of those visible to
find the polygons to render. The set of visible capsules can be
computed using a geometrical data partition such as an oc-
tree or a k-d tree, but given the regularity of the data structure
for each neuron (a plain array of capsules), it is also possi-
ble to solve each frustum-capsule intersection test in parallel
using the GPU. In this work both the GPU approach (imple-
mented using CUDA) and the octree based algorithm have
been evaluated. Results are presented only for the CUDA al-
gorithm as it performs consistently better in almost all cases.
The benefits of this approach are several. Once the capsules
have been tested for visibility, the rendering step is O(nm),
n being the number of capsule per neuron and m the number
of visible neurons. This minimizes the number of rendering
API calls, thanks to the orderly arrangement of capsules and
primitive lists and the collapsing of capsule ranges, while
keeping each object independent as required. The disadvan-
tage of using the CUDA culling is that the scenegraph be-
comes flat. As the number of objects in the scene grows this
can become a problem for culling, geometry dispatching and
depth peeling as discussed in section Section 4.1. The reader
is referred to [HPS12] for further details about the view frus-
tum culling algorithms.

3.1.2. Sort-last parallelization

Our sort-last decomposition is based on a k-d tree partition
using a point cloud approximation of the real circuit to min-
imize memory usage during setup. The point cloud can be
generated using the global position of the segment midpoints
from the morphological skeletons. Neurons are processed in
batches to keep memory usage bounded. This point cloud
produces a balanced partition for pseudo-cylinder models,
but is imbalanced for meshes. To improve it, each morpho-
logical point is weighted by the number of mesh vertices that
have it as it closest one.

The k-d tree construction is run by each processor inde-
pendently taking as inputs the processor count n and the
aforementioned point cloud C. No processor actually builds
the whole tree, but only the path from the root to its leaf. At
each subdivision step, the split plane position A is computed
based on the ratio of processors assigned to each subspace,
which translates into a quantile value of the point distribution
along the split axis. The quantile value can be computed ex-
actly in O(n) time using the SELECT algorithm [BFP*73],
but since C is already an approximation of the rendering
load, we instead find A by binning.

At the end of the algorithm each processor stores the list
of split planes and the final bounding box of the k-d tree leaf
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assigned to it. During rendering, the bounding box is used to
setup hardware clipping planes, and the plane list is used to
find the view dependent compositing order.

The algorithm carries an array of neuron identifiers along
C to map points to neurons and decide which models need
to be finally loaded in each processor. During loading, the
models are postprocessed in two ways depending on whether
unique or shared morphologies are used: For shared mor-
phologies, neurons are clipped reusing the mechanisms of
VEFC. The capsule skeletons are postprocessed to annotate
the capsules that are outside the tree leaf. The annotation is
used during the primitive range collapse to mask out these
capsules. For unique morphologies, the capsule skeletons
and the geometric primitives for all LODs are postprocessed
and clipped to the leaf bounding box.

In both cases, the final number of objects to be processed
per frame will be in the order of magnitude of the full circuit;
at least for a circuit size with the extent of a cortical col-
umn, because a large portion of the neurons is still present
in each k-d tree leaf. Nonetheless, with shared morpholo-
gies, the maximum amount of geometry to render by each
process is bounded and the depth complexity of the scene
reduced (which is important for transparency). With unique
morphologies, the actual size of the dataset is greatly re-
duced compared to sort-first for the same processor count.
For sufficiently small leaf volumes it will be even less than
for shared morphologies because the geometry cannot be
clipped in the latter case.

The final compositing step is handled by the Equalizer
backend. In Equalizer, the compositing phase is specified
declaratively in a configuration file. We used direct send,
which allows easily for an arbitrary compositing order at
runtime, needed for fast and correct compositing of trans-
parent renderings. Thanks to the k-d tree partition and given
the properties of direct-send compositing, there is no need
to exchange depth buffer information between the processes.
An additional optimization is the use of regions of interest to
limit the screen area to be read back and transmitted to that
where the k-d tree leaf projects. This is particularly useful
for full circuit views with high processor counts.

3.2. ParaView: integration in a standard tool

Whilst the ParaView visualization application handles large
polygonal meshes with ease, performance drops consider-
ably when transparent geometry is rendered and it proved to
be unsuitable for the models used here. The problems may
be summarized as follows:

e Independent per-vertex opacity is not supported. 1D color
tables may have arbitrary RGBA values, but 2D lookup ta-
bles with independent RGB and A components from dif-
ferent scalar arrays are not supported for meshes.

e Transparent blending is limited to depth peeling with a
fixed number of peels and not available on all hardware.

e Partitioning of data in parallel is handled automatically
when transparency is requested, but does not share spa-
tial decomposition information with polygonal data read-
ers/filters which may generate pre-partitioned data.

e The data partitioning step converts data to unstructured
grids and then back to polygonal meshes at render time.

The first issue prevents visualization of the kind desired,
the latter issues result in poor performance and excessive
memory consumption. To improve the capabilities and ren-
dering speed, a number of enhancements have been made
which are described as follows.

3.2.1. Partitioning

When geometry is rendered with transparency, ParaView in-
stantiates a distributed data filter which partitions data be-
tween processes such that each process owns a region that is
one leaf of a k-d tree. The compositing order, passed to IceT,
is generated by traversing the tree to generate the ordering
that ensures correct back-to-front compositing of individual
regions in the same way as Section 3.1.2.

This inbuilt data distribution suffers from limitations; the
redistribution is performed as a final stage before rendering,
which means that data produced by a reader or other filter
which changes over time, will trigger a re-execution of the
redistribution even when the geometry is in fact static. The
problem arises because the pipeline does not distinguish be-
tween static and dynamic geometries — an obvious solution is
to enhance the pipeline with this information to allow better
discrimination. However, to support time dependent scalars
with fixed decompositions, it is preferable to cache and reuse
this information at the reader end of the pipeline — an ar-
bitrary number of filters may be inserted between source
and sink making it hard to guarantee that caching is hon-
oured. ParaView provides a mechanism to pass parallel ex-
tent information down the pipeline when working with struc-
tured/uniform grid datasets, we have extended this feature to
work with polygonal datasets by providing a custom extent
translator object that stores the spatial bounds of each parti-
tion and the overall k-d tree by attaching them to each piece
of the neuron data passed through the processing chain. Only
operations which alter the parallel piece distribution can in-
validate this information and it is therefore easy to avoid ac-
cidental corruption. At the rendering end of the pipeline it is
only necessary to insert a simple check to see if a k-d tree
has been supplied with the data, and if so, skip the (auto-
matic) redistribution and pass the tree directly to the IceT
compositing engine.

Neuron data loading uses the same library as RTNeuron,
reading neuron meshes passing them as triangle lists to VTK
where they can be partitioned. For efficiency reasons, we use
the Zoltan [DBH*02] library for this purpose. It has been in-
tegrated into a vtkMeshPartitionFilter used to partition the
neurons using an optimized Recursive Coordinate Bisection
(RCB) method based on the algorithm described in [BB87].
This produces evenly distributed meshes across processes

(© The Eurographics Association 2013.



J.B. Hernando & J. Biddiscombe et al / Parallel rendering of neuron simulations 53

and the generated k-d tree can be used to identify the process
regions, as discussed previously. Our filter integration in the
Zoltan library preserves the data type of the VTK mesh and
thus saves unnecessary duplications of cells.

3.2.2. Painters

The rendering framework of ParaView uses specialized
painters, each of which performs a specific task and dele-
gates other tasks to other painters. The default painter chain
comprises the following major components (some omitted
for brevity): ScalarsToColors— ClipPlanes— Lighting—
Primitive. To add per-vertex opacity and per-vertex col-
ors, we replaced the ScalarsToColors painter with a
TwoScalarsToColors painter which accepts two arrays, map-
ping one through a color table and adding the other as the
transparency value (direct or via lookup table).

Correct blending is implemented using depth peeling or
back-to-front sorting. The high depth complexity of the
models and fixed number of peels in the ParaView im-
plementation, as well the option of using CPU only ma-
chines ruled in favour of a depth sorting approach. We
therefore implemented a DepthSort painter to generate a
camera distance based ordering (without copying or mod-
ifying cells) and a SortedPrimitive painter to render the
cells using the ordered array passed down to it, resulting in
the following pipeline: TwoScalarsToColors— DepthSort—
ClipPlanes— Lighting— SortedPrimitive.

Cells lying on process boundaries may overlap the bound-
ing boxes of the regions in which they reside. This may lead
to a wrong draw order causing artefacts, however the trian-
gles are extremely small compared to the full scene and are
not visible unless the camera is zoomed into a closeup view
of the overlap zone. Due to the fact that the meshes are well
formed non-intersecting surfaces, mutually overlapping tri-
angles are not present and the painter’s algorithm produces
correct images within the process bounds.

3.2.3. GPU Acceleration

The painter chain presented in the previous section enables
the generation of depth correct images, but does trigger a
modified state for each frame due to reordering of cells.
This prevents the use of a DisplayList painter to acceler-
ate the OpenGL rendering, causing the performance to be
orders of magnitude worse than possible. Recent work on
frameworks such as Piston [LSA12] makes it easier to com-
bine CPU/GPU processing within ParaView, and when com-
bined with Cuda-GL interoperability, offers the possibility
of reusing GPU objects directly in the rendering phase. By
performing the depth sorting of cells on the GPU and storing
the vertex and color arrays in place on the GPU for render-
ing, we can completely eliminate the per-frame CPU to GPU
data transfer, dramatically increasing performance over the
CPU sorting mode.

When GPU rendering is enabled, we remove the Depth-
Sort painter from the chain, and replace the SortedPrimi-
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tive painter with a new PistonPolygons painter. The piston-
based painter implements polygons sorting using the Thrust
library [BH11]. It pushes the VTK dataset (when modified)
to the GPU prior to rendering, creating vertex and color ar-
rays using Thrust device arrays. The render phase includes
the cell sorting algorithm, which generates an element ar-
ray of sorted IDs. This array, along with the vertices and
color-table-mapped RGBA values are then passed directly
to OpenGL for rendering.

4. Experiments

To evaluate the performance and scalability of the differ-
ent rendering approaches we have run several experiments
on a fat node cluster with the following technical specifica-
tion: dual six-core 3.47GHz processors (Intel Xeon X5690),
24GB of RAM and three NVidia GeForce GTX580 GPUs
(3GB RAM); 10Gbit/s ethernet and 40Gbit/s QDR Infini-
Band. The GPUs are attached each using a dedicated 16x
PCle 2.0 link, the InfiniBand on a dedicated 8x PCle 2.0 link
and the 10 Gbit/s Ethernet on a 4x PCle 2.0 link. For both ap-
plications we have used up to 6 cluster nodes (which equals
to 18 GPUs) and rendered 30 frames at a 1920 x 1200 screen
resolution. CPU only benchmarks were run on a Cray XK7
with 272 nodes of 2.1Ghz 16-core AMD Opteron chips. In
the software stack, the operating system is RHEL 6.3 with
an x86_64 2.6.32 Linux kernel. The OpenGL NVidia driver
version is 310.32, we have verified that this version does im-
prove performance considerably compared to versions 270
and 295. OpenSceneGraph 3.0.1 and the latest Equalizer and
Collage source codes (git tag EGPGV13) have been used.
The ParaView base version is 3.98 using mpich-3.0.2 on the
GPU cluster and Cray mpich2-5.6.1 on the XK7. The exper-
iments consist on the rendering of:

e Circuits with sizes: 1,000 (1K), 2,000 (2K) and occasion-
ally 5,000 (5K). The circuit sizes are 14.5x 10° triangles
/4.3%10° segments for 1K, 30x10° triangles / 8.7x10°
segments for 2K and 720x 109 triangles / 21x 10° seg-
ments for 5K.

e with shared neuronal morphologies or simulated unique
morphologies,

e rendered with opaque and transparent materials,

e using a full-circuit camera and a closeup camera,

e with and without simulation playback (RTNeuron only)

Figure 1 shows combinations of these variables. Not all
combinations have been tested for each application, the ex-
ceptions are given below.

4.1. Strong scaling
4.1.1. RTNeuron

The experiments have been performed using dynamic and
static sort-first as well as static sort-last. Dynamic sort-first
relies on Equalizer to adjust the viewports reactively based
on previous frame rendering times. Sort-first uses horizontal
stripes, as it provides better results than vertical stripes or
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2D tiles. Two variations of the camera positions have been
used: static and slowly moving. The latter triggers the VFC
code every frame, while the former computes the visibility
only once for the static decompositions. In these experiments
only shared morphologies have been used.

We have observed serious performance issues when us-
ing three GPUs with multi-threaded sort-first rendering (for
all driver versions tested), and therefore resorted to multi-
process execution (one per GPU), which performs as ex-
pected but at increased memory usage.

The results are presented in Figure 3. In general, sort-
first performs better than sort-last at the resolution chosen.
Transparency equalizes the results and close-ups are better
handled by sort-first as expected. Static sort-first partitions
perform on par to dynamic sort-first in many cases, but this
just a consequence of the viewpoints chosen.

Reasonable scalability is observed for full circuit view-
ports up to 3 nodes (9 GPUs). From then on, additional
GPUs provide only a slight improvement. Overlap between
tiles in sort-first and compositing overhead for sort-last par-
tially explain this, but even more important is fragmentation
of rendering dispatching. Due to object independence and
neuron’s shapes, with finer partitions more rendering calls
of fewer elements are issued for each neuron. With close
ups, the overhead of VFC and fragmentation becomes more
apparent (notice the difference between SSf+ and DSE for
2K). Scalability at interactive framerates for the opaque ren-
dering is challenging for all these reasons. These results are
consistent with previous findings [EBA*12].

In transparency there is a bottleneck associated with the
number of objects in the scene, which makes the rendering
for 2K more than twice as slow compared to 1K. The plots
also show how the cost of VFC is amortized by the passes
required by dual depth peeling. Some atypical results that
require further inspection are the performance of 2 nodes for
closeups with transparency and the high variance observed
in sort-last for 5 and 6 nodes for 1K opaque neurons, in spe-
cial for closeup views.

Experiments with simulation playback and the LOD
based on pseudo-cylinder were also performed. For sim-
ulation, the plots have very similar profiles. For pseudo-
cylinders, the reduced memory usage allows to use 5K neu-
ron circuits as well. The scalability in these cases is worse
because there is the same VFC overhead and number of
rendering calls whilst the polygon count per call is much
smaller. Also, sort-last outperforms sort-first in this cases.
These plots can be found in the additional material.

4.1.2. ParaView

For the ParaView implementation we performed fewer tests,
but they compare well to the equivalent cases for RTNeuron.
The two key factors for good performance are that the depth
sort operation is O(nlog, n) complexity (parallel merge sort)
and that data is loaded and partitioned as a single dataset per
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Figure 3: Strong Scaling: median and inter-quartile range
for RTNeuron frame times without simulation. Each colored
group shows the rendering times for I to 6 nodes (3-18
GPUs) for a different parallelization strategy (DS: direct-
send, DS*: direct-send still camera, DSF: load-balanced
sort-first, SSF: static sort-first, SSF*: static sort-first still
camera).

process, which results in large flat arrays for the mesh data
elements (vertices, scalars, attributes, ...). When passed to
the GPU, the triangles are rendered in a single draw opera-
tion which maximizes throughput, in contrast to RTNeuron
which keeps objects separate to allow per-object operations.
Performing the sort and clip operations entirely on the GPU
results in a higher degree of parallelization than would occur
on CPUs since the number of CPUs per node is small in this
case.
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Figure 4: ParaView timing for GPU, 1-6 nodes (top) and
CPU (bottom full, close) rendering. Data points marked x
are unavailable due to memory constraints.

Figure 4 shows times for 1K, 2K and 5K circuits rendered
on the GPU cluster (1-6 nodes) and on a CPU cluster. Due

to memory requirements of the load balancing stage some
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timings are not available (denoted by x). Both circuits scale
well to 18 GPUs achieving a render time of ~ 0.7s for 1K
neurons and ~ 1.2s for 2K neurons. The close-up views do
not show a significant speedup relative to full views as clip-
ping is a relatively cheap operation and takes place after sort-
ing. One possible optimization may be to clip first and thus
save time during the sort phase. Software rendering times on
CPUs are slower, however, there is almost no size limit to
the model that can be handled (given sufficient resources).
On the CPU, close up views show a slight slowdown relative
to full views as more pixels are being filled. When combined
with LOD rendering for interaction, the results show that it
is possible to work with very large models in full detail.

4.2. RTNeuron weak scaling

Weak scaling tests with unique morphologies have been run
using 1 to 18 GPUs with VFC performed every frame. The
circuit size has been chosen as a function of the GPU count
n, using 500 x n for opaque rendering and 400 X n for trans-
parency (which is more memory limited). Figure 5 shows
the frame times measured for different configurations. Ad-
ditionally, Figure 6 shows the minimum and maximum of
total neurons and triangles loaded by each process. The
plots show that the geometrical workload is fairly stable and
balanced, however the number of neurons increases as ex-
pected.

1501 —

100} = -

s0f

Frame time (ms)
'
'
]

Frame time (s)

orNwWRUON®
'
'
i

Full CloseUp
500/gpu unique opaque

Full CloseUp
400/gpu unique transparent

Figure 5: Weak scaling: Median rendering time for opaque
(500 neurons per GPU) and transparent (400 neurons per
GPU) meshes using unique geometries and a closeup view.

At similar geometrical workloads per GPU, having more
objects in the scene affects rendering speed for different rea-
sons in each case: In opaque renderings the problems are
the GPU-based VFC, which has to deal with an increasing
amount of smaller objects, and draw call fragmentation as
mentioned in Section 4.1.1. With transparency, VFC can be
amortized over the multiple peel passes; the main issue in-
stead is the increasing number of peel passes (the same poly-
gon count in less volume implies higher depth complexity).
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GPU count

Figure 6: Minimum and max-
imum neuron and triangles
counts assigned to each GPU
in the weak scaling tests from
Figure 5.
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5. Conclusions and future work

Despite the different approaches to the problem, the exper-
imental results show that the performance of both RTNeu-
ron and the ParaView solution is similar for transparent ren-
derings. In RTNeuron, domain specific features are easier to
implement, it is more memory conservative (using sort-last)
and slightly faster rendering times can be achieved in certain
cases as well. The trade-offs are that the ParaView-based tool
provides better scalability as the circuit size grows thanks to
its data layout, it can be used in-situ with CPU rendering and
total development costs are higher for RTNeuron.

In our workflows, parallel rendering proves to be a valu-
able tool to enable interactive framerates for transparent ren-
dering. For opaque rendering, performance scaling is less
important due to the relatively fast rendering speed, but it is
a critical enabler to render larger circuits using weak scaling.

We plan to optimize the scalability by addressing the bot-
tlenecks found in our extensive experiments. For RTNeu-
ron a long-standing feature is application-driven predictive
load balancing in Equalizer and VFC can be optimized by
pipelining the algorithm with the drawing. Dynamic load
balancing for sort-last will be explored to address the depth
complexity problem identified in Section 4.2. For ParaView
we plan to handle ghost cells on process boundaries to re-
move artefacts and to add support for some of the alternative
visualization options available in RTNeuron.
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