
Time-constrained Animation Rendering on Desktop Grids

Vibhor Aggarwal1,2,†, Kurt Debattista2, Thomas Bashford-Rogers2 and Alan Chalmers 2

1Accenture Technology Labs, India
2The Digital Lab, University of Warwick, United Kingdom

† vibhor.aggarwal@accenture.com

Abstract
The computationally intensive nature of high-fidelity rendering has led to a dependence on parallel infrastructures
for generating animations. However, such an infrastructure is expensive thereby restricting easy access to high-
fidelity animations to organisations which can afford such resources. A desktop grid formed by aggregating idle
resources in an institution is an inexpensive alternative, but it is inherently unreliable due to the non-dedicated
nature of the architecture. A naive approach to employing desktop grids for rendering animations could lead to
potential inconsistencies in the quality of the rendered animation as the available computational performance fluc-
tuates. Hence, fault-tolerant algorithms are required for efficiently utilising a desktop grid. This paper presents a
novel fault-tolerant rendering algorithm for generating high-fidelity animations in a user-defined time-constraint.
Time-constrained computation provides an elegant way of harnessing desktop grids as otherwise makespan can-
not be guaranteed. The algorithm uses multi-dimensional quasi-random sampling for load balancing, aimed at
achieving the best visual quality across the whole animation even in the presence of faults. The results show that
the presented algorithm is largely insensitive to temporal variations in computational power of a desktop grid,
making it suitable for employing in deadline-driven production environments.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Hardware Architecture—
Parallel processing; Computer Graphics [I.3.2]: Graphics Systems—Distributed/network graphics; Computer
Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Animation; Computer Graphics [I.3.7]: Three-
Dimensional Graphics and Realism—Ray tracing;

1. Introduction

The generation of high-fidelity animations is a time con-
suming process, employed frequently by modern media in-
dustry for creating eye-catching visuals [KFC∗10]. High-
fidelity rendering is typically carried out by solving the ren-
dering equation [Kaj86] using Monte-carlo estimation. This
requires multiple samples to be computed for each pixel to
obtain a converged solution, making the process computa-
tionally expensive. Parallel rendering infrastructure, known
as a render farm, is frequently employed to produce the an-
imations in a reasonable time. The cost of procuring and
maintaining such an infrastructure prohibits ubiquity. In con-
trast, a desktop grid leverages the computational power from
idle workstations in an institution at a minimal cost. How-
ever, these machines are non-dedicated and there is no guar-
antee that the tasks assigned to them would finish in time.
This is merely an opportunistic environment where the re-

sources process secondary tasks while the primary user is
away.

The variable nature of computing on desktop grids makes
it difficult to estimate the time span of a computation.
However, restricting the computation time makes the em-
ployment of desktop grids attractive. Furthermore, a fault-
tolerant algorithm designed with the intent of creating the
highest quality animation in a given time limit by efficiently
employing any idle computational power would be very at-
tractive for rendering on variable resources. This would, for
example, be valuable for an animator to leverage desktop
grids in a production environment to obtain the best possible
animation in a given amount of time from the available re-
sources; this may be used if a new idea needs to be tested for
which the expensive dedicate resources may not be currently
available.

The rendering of animations on desktop grids conforms
to the conventional view of them as a high-throughput re-

c© The Eurographics Association 2012.

Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs, T. Kuhlen, and F. Marton (Editors)

DOI: 10.2312/EGPGV/EGPGV12/149-158

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV12/149-158


Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

+ + + =

(a) Tile-based Sampling

+ + + =

(b) Quasi-random Sampling

Figure 1: Image subdivision techniques [ADD∗09]

source and therefore proper load balancing is important, as
it has a significant effect for long running computations.
Some frames of an animation may require more computa-
tional time than others due to the changes in scene and light-
ing complexity. Therefore, the computation needs to be load
balanced across the frames in addition to load balancing on
parallel resources when rendering towards a deadline. An
unbalanced load would lead to undesirable differences in the
visual quality of the different frames of the animation. This
can be avoided by progressively updating the whole solution.

The traditional approach of scheduling frames indepen-
dent of one another while rendering animations in parallel,
such as those presented in [ACD08] and [CSL06], is not
fault-tolerant. They would have to rely on conventional fault-
tolerance strategies such as redundancy and checkpointing,
which inhibit performance. In addition, animations are gen-
erally synthesised by either rendering a frame until it is
finished or by spending a fixed amount of time on each
frame, rather than imposing a time-constraint on the whole
computation. Therefore, traditional approaches require mod-
ification for effectively employing desktop grids for time-
constrained animation rendering.

Tile-based image subdivision is usually employed for par-
allel rendering [CDR02] so that multiple tiles can be inde-
pendently rendered in parallel, see Figure 1a. The image is
formed by combining each of the rendered tiles. Redundancy
could be employed for fault-tolerance to ensure all the tiles
are computed while rendering on a variable system. If a tile
fails to render due to a delay or fault, a duplicate copy of the
tile would be computed. However, this is not ideal when ren-
dering towards a deadline as it can add substantially to the
rendering time, thus hindering performance.

An improved strategy would be to subdivide into groups
of pixels, chosen quasi-randomly [ADD∗09, ADBR∗10]
over the complete image space instead of using tiles. This
enables a fair coverage of the whole image per job, see Fig-
ure 1b . If a job fails to complete, image reconstruction tech-
niques may be employed to fill in the missing data. The ad-
vantage of using a quasi-random sequence over a purely ran-
dom sequence is that it provides low discrepancy (fills the
space more uniformly). On the other hand a regular sam-
pling pattern would lead to undesirable structured noise in
the presence of faults when compared to quasi-random sam-
pling. The imposed time-constraint for the presented ap-
proach is less strict than that used for previous work, as the
aim is to render at a higher quality. Hence, the reliance on
reconstruction for algorithms presented in this paper is min-
imal.

This paper extends the idea of combining sparse sam-
pling and image reconstruction as a fault-tolerant mecha-
nism for rendering animations in a time-constrained fash-
ion on desktop grids. Two algorithms are presented and
compared, which show that by employing multi-dimensional
quasi-random sampling through space and time, the quality
of the whole animation can be progressively enhanced. Also,
this allows the system to become resistant to temporal vari-
ations in the computational power of the desktop grids and
changes in the computational complexity across the frames
of the animation.

This paper is organised as follows: Section 2 contains the
related work. Section 3 discusses the novel time-constrained
fault-tolerant animation rendering algorithms, and their im-
plementation is described in Section 4. A comparison be-

c© The Eurographics Association 2012.

150



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

tween the two algorithms is presented in Section 5. The pa-
per is concluded and future work is discussed in Section 6.

2. Related Work

2.1. Time-constrained Rendering

Rendering systems have often been subjected to time-
constraints due to the various possibilities of continually
adapting and refining the computation. Funkhouser and
Séquin [FS93] devised a greedy algorithm for choosing the
appropriate level of detail while maximising the visual qual-
ity such that the cost associated with rendering at that re-
finement was less than the constraint. Gobbetti and Bouvier
[GB99] enhanced this approach by using continuous level of
detail models. An importance metric was presented by Gao
et al. [GLH∗08] for distributed visualisation of large data
sets to determine the rendering order and the level of detail
for a block of data set based on view-dependent, application-
dependent and data-dependent criteria.

Reisman et al. [RGS00] used time-constraints for interac-
tive parallel ray tracing. They used a progressive sampling
strategy based on Delaunay triangulation while treating the
image plane as a continuous space. They refined their so-
lution until a given deadline and then reconstructed the im-
age from calculated samples using piecewise linear interpo-
lation. Debattista et al. [DSSC05] provided a framework for
controlling the pixel quality in a time-constrained setting for
generation of high-fidelity images without perceivable dif-
ference. They proposed a regular expression to specify the
pixel computations based on different components. Debat-
tista [Deb06] further enhanced the approach by using time-
constraints with a progressive selective rendering pipeline.

2.2. Parallel Rendering

A detailed survey of parallel rendering techniques especially
in the context of global illumination and ray tracing is pre-
sented by Chalmers et al. [CDR02]. Ray tracing algorithms
are relatively easy to parallelise if the entire scene descrip-
tion can be duplicated on each processor, as each processor
can be designated to independently work on a part of the
image-space. However, load balancing can be challenging.

Badouel and Priol [BP89] described a dynamic demand-
driven load balancing based on the master-worker paradigm
whereby each worker is assigned a 3×3 tile of pixels when
it becomes idle. Reisman et al. [RGS00] devised a dynamic
load balancing strategy for progressive ray tracing on dis-
tributed clusters exploiting temporal coherence for obtain-
ing interactive rates. The image was subdivided into regions
which were assigned to separate processors and during run-
time the regions were dynamically adjusted to rectify load
imbalances. Aggarwal et al. [ACD08] presented a two-pass
algorithm for rendering animations on a computational grid.
The first pass calculated the irradiance cache [WRC88] data

which was distributed in the second pass for rendering the
animation to eliminate visual artefacts and speed-up the pro-
cess. Yao et al. [YPZ10] presented a system for parallel an-
imation rendering on distributed resources, which took ad-
vantage of the spatial and temporal coherence between ani-
mation frames while scheduling parallel tasks.

Chong et al. [CSL06] presented a system for rendering
animations on a computational grid. Their focus was to de-
velop a lossless compression algorithm for transferring data
between the nodes. Gonzalez-Morcillo et al. [GMWV∗10]
used a multi-agent architecture for decentralised rendering
which employed importance maps to decide the workload
distribution. Many scientific visualisation algorithms have
been modified for parallel rendering using grid computing. A
survey of such techniques can be found in [BBC∗05,Mel08].
Research in this area has focused on reducing the impact of
such strategies by minimising redundant computations, for
example [GLH∗08, ZA10].

The approaches mentioned above were either not de-
signed for fault-tolerance or used traditional fault-tolerance
mechanisms and hence they are not suitable for time-
constrained computation on a desktop grid. Aggarwal et
al. [ADD∗09] presented a fault-tolerant approach for time-
constrained image rendering on a desktop grid which em-
ployed quasi-random sampling for job subdivision. This was
further enhanced for interactive rendering in [ADBR∗10].
However, a simple extension of this approach for render-
ing high-fidelity animations presented in Section 3.1 leads to
sub-optimal results as it is susceptible to temporal variations
in computational power of a desktop grid (see Section 5).

3. Fault-tolerant time-constrained animation rendering

This section presents two fault-tolerant algorithms for ren-
dering animations on variable resources in a user-specified
time interval.

3.1. Straightforward Approach

A straightforward approach for rendering an animation un-
der a time-constraint on a desktop grid would be to divide the
time-constraint equally for each frame of the animation. The
task then becomes to render all the frames with Equal Time-
constraint Per Frame (ETPF) approach in a manner similar to
the ones presented in [ADD∗09]. Each frame can be subdi-
vided into sets of quasi-random pixels and then rendered in
parallel using the master-worker paradigm and reconstruc-
tion may be used in case of missing pixels.

The ETPF approach has two major limitations. Firstly, it
would be susceptible to temporal variations in computational
power of the desktop grid. If the computational power of
the desktop grid varies significantly in the duration of the
total time-constraint imposed, then some frames would be
rendered at a higher quality than the others resulting in un-
even frame quality across the animation. Secondly, spending

c© The Eurographics Association 2012.

151



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

Job Queue

Unavailable

Worker Worker

Rendering

Worker Worker

Master

Communication

Desktop Grid

Scheduling

Results Arrays

Out-of-core

Storage

Results 

Processing

Figure 2: The overview of the time-constrained animation rendering system showing the interactions inside the master and
between the master and the desktop grid.

equal time for each frame would also result in non-uniform
visual quality since the computational complexity can vary
significantly across different frames of an animation. Hence,
to overcome these two limitations, a better load balancing
strategy is required for rendering animations under time-
constraints on variable resources.

3.2. Multi-dimensional Quasi-random Sampling
Approach

An enhanced strategy for rendering animations under time-
constraint on a desktop grid would be to use a Multi-
dimensional Quasi-random Sampling (MQS) approach for
subdividing the computations. This would entail that each
job would consist of rendering pixels which would be spread
not only on the image plane of a single frame, but they would
be quasi-randomly selected across multiple frames as well.
An animation can be considered as a volume of pixels which
can be sampled using a three-dimensional quasi-random se-
quence.

The two major limitations of the ETPF approach can be
overcome by quasi-randomly sampling in three dimensions.
The MQS approach would be more robust to temporal fluc-
tuations in computational power of a desktop grid in contrast
to the ETPF approach, as it does not need to decompose the
time-constraint for each frame and hence any pixel of the an-
imation may be scheduled at any given time. Also, it would
achieve better load balancing by scheduling pixels from mul-
tiple frames simultaneously and therefore tackling the issue
of variance in computational complexity across the anima-
tion. Furthermore, the MQS approach has another advantage
over the ETPF. It progressively refines the whole animation
and hence this gives the flexibility to stop and later continue

the computation at any given time. In contrast, the ETPF ap-
proach employs a progressive rendering algorithm but the
whole approach is not progressive as it tackles one frame at
a time.

4. Implementation Details

The implementation of the MQS approach needs to be care-
fully planned. The details for each pixel of the animation,
such as pixel colour and number of samples computed, need
to be stored in memory as any of the pixels of the anima-
tion may be processed at any given time. Even for a small
animation of 720 frames with 1024×768 resolution, storing
this data would require approximately 3.16 GB of memory.
To overcome this potential problem, an out-of-core storage
mechanism is necessary and memory mapped files were em-
ployed for this implementation.

An overview of the system is depicted in Figure 2. First,
the scheduler divides the computation into smaller jobs and
places them on a job queue. Next, these are communicated to
idle workers executing on the desktop grid when a request is
received from them. They then process the job and send the
results back. As pixels from multiple frames can be sched-
uled at the same time, multiple result arrays are used for stor-
ing the received data individually for each frame. A multi-
threaded architecture is employed on the master to handle
and prioritise the communication, such that the results are
transferred to the out-of-core storage only when idle. This
prevents the master from becoming a bottleneck in the whole
process. A producer-consumer problem arises in the system
as the workers produce the results while the master trans-
fers (consumes) them to the out-of-core storage. Therefore,
a balance between the rate of production and consumption is

c© The Eurographics Association 2012.

152



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

B

A

(a) Kalabsha (861k polygons)

A,B

(b) Kiti (243k polygons)

A

B

(c) Sponza (262k polygons)

Figure 3: Start (top-left), middle (top-right), end (bottom-
left) frames and the animation path (bottom-right) from A to
B chosen for the three scenes.

Scene Time-constraint (minutes) Number of Frames
Kalabsha 360 720
Kiti 120 720
Sponza 150 240

Table 1: Time-constraints used for various animations

needed since the master has a limited memory space along
with a managed synchronisation between the threads. The
size of the job sent to the workers can be dynamically ad-
justed to maintain the equilibrium, as a larger job size would
decrease the rate of production and vice versa.

The scheduler needs to keep track of the time-constraint
and monitor the job queue before adding more jobs based
on one of the two approaches presented. For the ETPF ap-
proach, jobs were scheduled by splitting each frame quasi-
randomly, and rendering each frame separately for equal
portions of the total time-constraint. The animation subdi-
vision for the MQS approach was carried out using a three-
dimensional quasi-random Sobol sequence [Sob67]. A base-
2 Sobol sequence was used rather than using those presented
in [KK02] as they are valid for a single-dimension only.
However, a three dimensional base-2 Sobol sequence is fixed
and cannot be changed as described in [KK02]. Hence, to
increase the fault-tolerance, the sequence was shifted circu-
larly to obtain a different grouping of set of pixels between
iterations.

5. Results

Both the algorithms have been implemented and tested on
a desktop grid consisting of twenty four machines with two
dual-core AMD Opteron processors running at 2.6GHz at
each node. Each machine also had 8GB RAM shared among
the four CPU cores. Each of the 96 cores were used indepen-
dently, as the number of idle CPUs in a machine vary with
the load on it. The rendering was carried out by the workers
using path tracing [Kaj86], however, other point sampling
methods can also be employed. The animation frames were
rendered at a resolution of 1024×768. The nearest neigh-
bour algorithm was used in the rare cases where reconstruc-
tion was required.

The two time-constrained rendering approaches were
compared for the three animation sequences depicted in Fig-
ure 3. The computational complexity of the Kiti animation
is fairly constant across the animation while it varies sub-
stantially for both the Kalabsha and the Sponza animations.
The time-constraints used for rendering and the number of
frames for the animations are listed in Table 1. The time-
constraints were chosen to be approximately 10% of the time
it took to render the reference animation on the desktop grid.

Three types of fault variations were used for comparisons:
no faults (NF), random faults (RF) and temporal faults (TF).

c© The Eurographics Association 2012.

153



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

R
M

S
E

Frames

MQS-NF

ETPF-NF

ETPF-TF50

MQS-TF50

MQS-RF25

MQS-RF50

(a) Kalabsha

0

0.005

0.01

0.015

0.02

0.025

0.03

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

R
M

S
E

Frames

MQS-NF

ETPF-NF

ETPF-TF50

MQS-TF50

MQS-RF25

MQS-RF50

(b) Kiti

0

0.02

0.04

0.06

0.08

0.1

0.12

1 21 41 61 81 101 121 141 161 181 201 221

R
M

S
E

Frames

MQS-NF

ETPF-NF

ETPF-TF50

MQS-TF50

MQS-RF25

MQS-RF50

(c) Sponza

Figure 4: The RMSE comparisons for the animations rendered with two algorithms under different fault models
c© The Eurographics Association 2012.

154



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

(a) ETPF-TF50 (b) MQS-TF50 (c) Reference Frame

Figure 5: Cropped portion of a frame from Kalabsha animation for comparing the visual quality of MQS and ETPF algorithms.
Note that the algorithms were constrained to only 10% of the time it took to compute the reference.

The whole desktop grid was dedicated to render the ani-
mations for the NF condition. The unpredictable nature of
shared resources at run-time on a desktop grid was mod-
elled by using RF. In order to simulate RF condition, a re-
sult sent to the master was rejected with a probability of
either 25% (RF25) or 50% (RF50). This was achieved by
employing a Mersenne Twister pseudo-random number gen-
erator [MN98]. Finally, to mimic the time-variant nature of
desktop grids TF was used. For the first half of the time-
constraint, 25% random faults were generated while for the
second half 75% random faults were generated. On an aver-
age, this is similar to RF50 and hence the notation TF50 is
used.

5.1. Visual Quality

The visual quality of animations computed with the two ap-
proaches under different fault variations was measured using
the Root Mean Square Error (RMSE) quality metric. A high-
quality reference animation was calculated with 1000 sam-
ples computed per pixel (SPP) and no time-constraints or
faults for comparison. The results for each frame have been
presented in Figure 4 and average RMSE over the sequence
is shown Table 2. It can be seen from these results that MQS-
NF has the best visual quality overall as expected. The MQS
and the ETPF approach have similar average RMSE for the
NF condition while the MQS is at least 10% better than the
ETPF for the TF50 condition. The average RMSE values in-
crease for the three cases of MQS: MQS-NF, MQS-RF25
and MQS-RF50, as the number of faults generated increase.

The RMSE curve for ETPF-NF is very similar to MQS-
NF for the Kiti animation as the complexity of this anima-
tion is relatively constant. However, for the Kalabsha and
the Sponza scenes, ETPF-NF performs worse than MQS-NF
for the computationally difficult frames. This is due to the
fact that ETPF allocates equal time for each frame irrespec-
tive of the complexity, while MQS progressively refines the
complete solution.

The difference between the two algorithms is much higher

Scene Kalabsha Kiti Sponza
MQS-NF 0.0309 0.0102 0.0337
ETPF-NF 0.0309 0.0103 0.0374
MQS-TF50 0.0399 0.0170 0.0540
ETPF-TF50 0.0444 0.0189 0.0636
MQS-RF25 0.0379 0.0129 0.0432
MQS-RF50 0.0419 0.0170 0.0553

Table 2: Average RMSE Values for the two algorithms with
no faults (NF), random faults (RF) and temporal faults (TF)

for the TF50 condition, see Figure 5. MQS-TF50 and MQS-
RF50 have very similar RMSE plots showing that the MQS
approach can resist temporal fluctuations of computational
power. On the other hand, ETPF-TF50 is similar to MQS-
RF25 for the first half of the time-constraint as only 25%
faults occur in this period. Hence, it is better than MQS-
TF50 for those frames. However, for the second half of the
time-constraint with 75% faults, the RMSE curve for ETPF-
TF50 shows a drastic increase, while MQS-TF50 doesn’t
depict any such phenomenon. Hence, the MQS approach
aims at obtaining an even visual quality across the anima-
tion while the ETPF approach is susceptible to uneven visual
quality especially in presence of temporal variations.

5.2. Fault-tolerance

The amount of work completed within a given time-
constraint for a path tracing based renderer can be broadly
measured by the SPP. Due to the quasi-random sampling em-
ployed in the two algorithms described in this paper, SPP can
be different for each pixel of the animation. The number of
pixels (count) in a frame for which a given SPP have been
computed, serves as an indicator of the load balancing of
an algorithm in the presence of faults. The graphs between
count and SPP for each frame of the Sponza animation have
been shown in Figure 6 and indicate the fault-tolerant prop-
erties of the presented algorithms.

c© The Eurographics Association 2012.

155



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

100
101

102
103

104
105

106
107

108
109

110

0

50

100

150

200

3
3.5

4
4.5

x 105

SPPFrames

Co
un

t

(a) MQS-NF

80
90

100
110

120
130

140
150

0

50

100

150

200

0

5

10
x 105

SPPFrames

Co
un

t

(b) ETPF-NF

10 20 30 40 50 60 70 80 90 100

0
50

100
150

200

0

0.5

1

1.5

2

2.5
x 105

SPP
Frames

Co
un

t

(c) MQS-RF25

0 10 20 30 40 50 60 70 80 90 100

0
50

100
150

200

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
x 105

SPP
Frames

Co
un

t

(d) MQS-RF50

Figure 6: Count versus SPP for different frames of the Sponza animation rendered with the two algorithms under various fault
models

c© The Eurographics Association 2012.

156



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

0 10 20 30 40 50 60 70 80 90 1000
50

100
150

200

0

0.5

1

1.5

2

2.5 x 105

SPP
Frames

Co
un

t

(e) MQS-TF50

0 20 40 60 80 100 120 140 1600
50

100
150

200

0

0.5

1

1.5

2

2.5 x 105

SPP
Frames

Co
un

t

(f) ETPF-TF50

Figure 6: Count versus SPP for different frames of the Sponza animation rendered with the two algorithms under various fault
models (continued)

The graph in Figure 6a shows the progressive nature of the
MQS approach. The MQS-NF plot shows that all the pixels
in the animation have been calculated at a minimum of 100
SPP, and some of them have been further refined to 110 SPP,
resulting in a smooth planar plot across the frames. How-
ever, the variation of the plot across the animation frames for
ETPF-NF (see Figure 6b) depicts that the level of refinement
for the ETPF approach is affected by the computational com-
plexity of the frames and hence it calculates unequal SPP
for different frames. The variation of SPP versus count for a
frame for the MQS approach, in the presence of faults, fol-
lows a Gaussian distribution (see Figures 6c, 6d, 6e). Also,
this variation is constant across the frames of the animation.
As the number of faults increases, the peak of the Gaussian
curve shifts leftwards illustrating the fact that less work is
completed. Once again the graphs (Figures 6e and 6f) for
MQS-TF50 and ETPF-TF50 show the effect of temporal
variation. ETPF-TF50 shows two distinct lobes for the two
halves of the time-constraint with different number of faults

while MQS-TF50 remains unaffected by temporal fault vari-
ations and is similar to MQS-RF50.

6. Conclusions, Limitations and Future Work

This paper presented two novel approaches for time-
constrained rendering of animations on desktop grids. The
results obtained showed that the MQS approach achieved
better load balancing than the ETPF approach, while pro-
gressively refining the animation in case of faults. The MQS
approach tackled the two flaws of the ETPF approach effec-
tively, that is it was insensitive to both temporal variations
of computational power of a desktop grid and difference in
computational complexity across the animation frames. The
MQS approach can restrict performance in the case where
each frame requires expensive modifications to the scene
as these modifications would need to be performed repeat-
edly as multiple frames are rendered in each job. Further re-
search needs to be carried out to develop an efficient mem-
ory management technique for storing these scene modifi-

c© The Eurographics Association 2012.

157



Aggarwal et al. / Time-constrained Animation Rendering on Desktop Grids

cations, possibly in an incremental fashion thereby reducing
any performance issues.

The MQS approach presented in this paper used three-
dimensional quasi-random sampling for job subdivision. For
simplicity, this approach assumes that each pixel of the ani-
mation contributes equally to the visual quality of the anima-
tion. This assumption can be removed by sampling a func-
tion which maps the pixels to their contribution to the visual
quality as a fourth dimension, for example [FPSG96], while
quasi-randomly selecting the pixels. However, as this func-
tion would change while the rendering progresses it would
have to be evaluated on the fly. This would both raise the
memory requirements of the MQS approach as well as in-
crease the complexity of the sampling process and this will
be tackled in future.

Acknowledgements

The authors wish to thank Crytek for the Sponza model, Jas-
sim Happa and Vedad Hulusic for their help with the Kiti
and the Kalabsha models. This work was partially supported
by EPSRC grant EP/I038780/1.

References
[ACD08] AGGARWAL V., CHALMERS A., DEBATTISTA K.:

High-Fidelity Rendering of Animations on the Grid: A Case
Study. In Eurographics Symposium on Parallel Graphics and
Visualization (Crete, Greece, 2008), Eurographics Association,
pp. 41–48. 2, 3

[ADBR∗10] AGGARWAL V., DEBATTISTA K., BASHFORD-
ROGERS T., DUBLA P., CHALMERS A.: High-fidelity interac-
tive rendering on desktop grids. IEEE Computer Graphics and
Applications 99, PrePrints (2010). 2, 3

[ADD∗09] AGGARWAL V., DEBATTISTA K., DUBLA P.,
BASHFORD-ROGERS T., CHALMERS A.: Time-constrained
High-fidelity Rendering on Local Desktop Grids. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (Munich,
Germany, 2009), Eurographics Association, pp. 103–110. 2, 3

[BBC∗05] BRODLIE K., BROOKE J., CHEN M., CHISNALL D.,
FEWINGS A., HUGHES C., JOHN N. W., JONES M. W., RID-
ING M., ROARD N.: Visual supercomputing: Technologies,
applications and challenges. Computer Graphics Forum 24, 2
(2005), 217–245. 3

[BP89] BADOUEL D., PRIOL T.: An efficient parallel ray tracing
scheme for highly parallel architectures. In Eurographics Hard-
ware Workshop (1989), Springer-Verlag. 3

[CDR02] CHALMERS A., DAVIS T., REINHARD E. (Eds.): Prac-
tical Parallel Rendering. A. K. Peters, Ltd., 2002. 2, 3

[CSL06] CHONG A., SOURIN A., LEVINSKI K.: Grid-based
computer animation rendering. In GRAPHITE ’06: Proceedings
of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia (2006),
ACM, pp. 39–47. 2, 3

[Deb06] DEBATTISTA K.: Selective Rendering for High-Fidelity
Graphcs. PhD Thesis, University of Bristol, 2006. 3

[DSSC05] DEBATTISTA K., SUNDSTEDT V., SANTOS L. P.,
CHALMERS A.: Selective component-based rendering. In
GRAPHITE ’05: Proceedings of the 3rd international conference

on Computer graphics and interactive techniques in Australasia
and South East Asia (2005), ACM, pp. 13–22. 3

[FPSG96] FERWERDA J. A., PATTANAIK S. N., SHIRLEY P.,
GREENBERG D. P.: A model of visual adaptation for realistic
image synthesis. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques (1996), SIG-
GRAPH, pp. 249–258. 10

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. In SIGGRAPH ’93: Proceedings of
the 20th annual conference on Computer graphics and interac-
tive techniques (1993), ACM, pp. 247–254. 3

[GB99] GOBBETTI E., BOUVIER E.: Time-critical multiresolu-
tion scene rendering. In VIS ’99: Proceedings of the conference
on Visualization (1999), IEEE Computer Society Press, pp. 123–
130. 3

[GLH∗08] GAO J., LIU H., HUANG J., BECK M., WU Q.,
MOORE T., KOHL J.: Time-Critical Distributed Visualization
with Fault Tolerance. In Eurographics Symposium on Parallel
Graphics and Visualization (Crete, Greece, 2008), Eurographics
Association, pp. 65–72. 3

[GMWV∗10] GONZALEZ-MORCILLO C., WEISS G., VALLEJO
D., JIMENEZ-LINARES L., CASTRO-SCHEZ J. J.: A multiagent
architecture for 3d rendering optimization. Applied Artificial In-
telligence: An International Journal 24, 4 (2010), 313–349. 3

[Kaj86] KAJIYA J. T.: The rendering equation. In SIGGRAPH
’86: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques (1986), ACM, pp. 143–150.
1, 5

[KFC∗10] KŘIVÁNEK J., FAJARDO M., CHRISTENSEN P. H.,
TABELLION E., BUNNELL M., LARSSON D., KAPLANYAN
A.: Global illumination across industries. In ACM SIGGRAPH
Courses (2010), SIGGRAPH. 1

[KK02] KOLLIG T., KELLER A.: Efficient multidimensional
sampling. Computer Graphics Forum 21, 3 (2002), 557–563.
5

[Mel08] MELIGY A.: Parallel and distributed visualization: The
state of the art. In CGIV ’08: Proceedings of the Fifth Interna-
tional Conference on Computer Graphics, Imaging and Visuali-
sation (2008), IEEE Computer Society, pp. 329–336. 3

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Transactions on Modeling and Computer
Simulation 8, 1 (1998), 3–30. 7

[RGS00] REISMAN A., GOTSMAN C., SCHUSTER A.:
Interactive-rate animation generation by parallel progres-
sive ray-tracing on distributed-memory machines. Journal of
Parallel and Distributed Computing 60, 9 (2000), 1074–1102. 3

[Sob67] SOBOL I. M.: On the distribution of points in a cube and
the approximate evaluation of integrals. U.S.S.R. Computational
Mathematics and Mathematical Physics 7 (1967), 86–112. 5

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. In SIGGRAPH ’88:
Proceedings of the 15th annual conference on Computer graph-
ics and interactive techniques (1988), ACM, pp. 85–92. 3

[YPZ10] YAO J., PAN Z., ZHANG H.: A distributed render farm
system for animation production. In Entertainment Computing
– ICEC 2009, vol. 5709. Springer Berlin / Heidelberg, 2010,
pp. 264–269. 3

[ZA10] ZHU Q., AGRAWAL G.: Supporting fault-tolerance for
time-critical events in distributed environments. Scientific Pro-
gramming 18, 1 (2010), 51–76. 3

c© The Eurographics Association 2012.

158


