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Abstract
Analysis and visualization of the data generated by scientific simulation codes is a key step in enabling science
from computation. However, a number of challenges lie along the current hardware and software paths to scientific
discovery. First, only advanced parallelism techniques can take full advantage of the unprecedented scale of
coming machines. In addition, as computational improvements outpace those of I/O, more data will be discarded
and I/O-heavy analysis will suffer. Furthermore, the limited memory environment, particularly in the context of in
situ analysis which can sidestep some I/O limitations, will require efficiency of both algorithms and infrastructure.
Finally, advanced simulation codes with complex data models require commensurate data models in analysis
tools. However, community visualization and analysis tools designed for parallelism and large data fall short in a
number of these areas. In this paper, we describe EAVL, a new library with infrastructure and algorithms designed
to address these critical needs for current and future generations of scientific software and hardware. We show
results from EAVL demonstrating the strengths of its robust data model, advanced parallelism, and efficiency.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—C.1.3
[Computer Systems Organization]: Processor Architectures—Heterogeneous Systems

1. Introduction

Extracting scientific results from computational simulations
is growing increasingly difficult due to the changing hard-
ware and software supercomputing environments. As high-
lighted in the the 2011 U.S. Department of Energy report
“Scientific Discovery at the Exascale”, future architectures
are expected to show consistent trends: required concur-
rency will increase tremendously, per-core memory will be
reduced, and I/O will be slower relative to both computation
and memory speeds [ASM∗11]. In response to each of these
factors, the software ecosystem must change, further impact-
ing visualization and analysis tool design for these systems.
We consider each of these factors in turn.
• Concurrency: The Exascale DOE report predicts concur-

rency will rise by a factor of 40,000 to 400,000 in this
decade due to increases in both shared- and distributed-
memory parallelism. As such, advanced techniques will
be required to take advantage of both types of par-
allelism. For example, the Message Passing Interface
(MPI) [GLS99] can successfully accommodate large dis-
tributed parallelism, but relying on it within a shared-
memory node is unlikely to result in high efficiencies.
Graphics processing units (GPUs) are a current-day ex-

ample of the types of parallelism which may be required
to utilize these future compute nodes.

• Memory: The report also predicts available memory will
rise by only a factor of 100. Relative to the increase in
concurrency, this represents a drastic reduction in per-core
memory. Utilizing more efficient representations for data
models and developing algorithms with lower require-
ments for temporary storage will both be helpful in miti-
gating the effects of the memory reduction.

• I/O: Furthermore, the report predicts that the I/O subsys-
tem will be smaller and slower relative to both the com-
putational and memory subsystems. This is, again, a con-
tinuation of an existing trend; the amount of computed
data it is possible to write to disk is shrinking, and com-
putational simulations often discard many time steps be-
tween saving snapshots. Processing data in situ as it is
generated [FMT∗,WFM11,YWG∗10] is one practical so-
lution for analysis methods that work on short windows
of simulation time, but sharing computational nodes with
the simulations will further constrain memory usage. As
post-processing is largely constrained by I/O, where in
situ is not possible, analysis software must have strong
techniques for minimizing time spent reading from disk.
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• Data: As simulation codes evolve, new and updated mesh
and data models appear. MADNESS (http://code.
google.com/p/m-a-d-n-e-s-s/), for example, re-
fines its grid on a per-cell basis, and its variables can
be potentially high order (e.g., K = 20) Legendre poly-
nomial series, resulting in over 8,000 coefficients for
each variable in a single cell. GenASiS (http://astro.
phys.utk.edu/activities:genasis) supports com-
plex refinement schemes on high-dimensional grids. Non-
physical data are becoming more common, and these
are a poor match for visualization tools designed for
three-dimensional physical simulations. Molecular data
requires mixed-dimensionality fields on a single mesh
(0D for atomic numbers and 1D for bond strengths), and
many engineering codes require 2D or 1D subsets of a
3-dimensional grid (known as side sets and node sets, re-
spectively). For visualization tools to correctly analyze the
data generated by simulation codes, they must contain a
superset of simulation data models.

Taken together, these known software and hardware chal-
lenges inform requirements for future general-purpose visu-
alization and analysis tools: they must have highly efficient
algorithms, support advanced parallelism including hetero-
geneous systems, and contain robust data models.

2. Related Work

A common model for production software development is
to provide maximal end-user functionality in minimal time.
Unfortunately, in the context of visualization and analysis,
this approach has largely overlooked needs for the exas-
cale [ASM∗11,ARS11], resulting in large risks for achieving
scientific discovery in the coming years.

Numerous software toolkits do exist for scientific vi-
sualization and analysis, but though many are effective,
each has disadvantages. Development of OpenDX (http:
//opendx.org), open-sourced from IBM’s Visualization
Data Explorer, has long ceased. AVS/Express (http://
www.avs.com) and EnSight (http://ensight.com) both
have some parallel support, though both are closed-source,
making community expansion and integration challenging.
The Visualization Toolkit [SML04] is a de facto standard in
open source visualization libraries; two scalable open source
visualization and analysis tools, VisIt [CBB∗05] (http:
//visitusers.org) and ParaView (http://paraview.
org), both popular in the U.S. Department of Energy high-
performance computing community, rely on VTK for their
underlying data structures and many staple algorithms.

Unfortunately, the commonly used scientific data model
in VTK (vtkDataSet) has some shortcomings in terms
of parallelism, efficiency, and data model expressiveness.
It does not support data parallelism or general acceleration
via graphics processors, and leading examples of distributed
scaling were accomplished by layering a spatial decompo-
sition on the serial vtkDataSet model [CPA∗10]. It sup-

ports a small number of fixed mesh types, and even scien-
tific data which it can represent correctly is often forced into
an inefficient data structure. Furthermore, the data model
is limited compared to the demands of contemporary sci-
entific simulation codes, missing support for necessary fea-
tures mentioned in Section 1, such as mixed-dimensionality
elements in a single data set, general high order polynomial
elements, non-Cartesian space or dimensionalities other than
three, multi-dimensional state spaces, and quadtree meshes.
(Though the VTK library includes other, more flexible data
types, including vtkTable and vtkGraph, those cannot
be used for general scientific visualization.)

In the late 1990’s and early 2000’s, several scien-
tific data model libraries were developed, including Field
Model [Mor01], CDMLib [ABM∗99], Data Models and For-
mats [Sch00] and Sets And Fields [MRM∗01]. These ef-
forts all intended to improve the sharability of scientific data
by formalization of the underlying data model. While each
drew from the mathematical underpinnings of spatial dis-
cretization and vector spaces, as does EAVL, none of the
implementations were designed for the restricted memory
spaces of future architectures nor the extreme concurrencies
of many-core processors.

The move to the next generation of architectures neces-
sitates a new approach to algorithm design. One possibil-
ity is a domain-specific language, which may provide for
productive and efficient algorithm development [DJP∗11,
CSB∗11]. Another is to make the change from common
message passing techniques like MPI [GLS99] to accommo-
date extreme levels of concurrency. The nearest current mea-
sure of future node architectures is the graphics processing
unit (GPU), often programmed using explicit data-parallel
languages like CUDA (http://developer.nvidia.
com/cuda) and OpenCL (http://www.khronos.org/
opencl/) or compiler directives [PGI10, DBB07, LE10].
This is the principle behind the Dax toolkit [MAGM11],
which provides a framework for high node-level concur-
rency, implementing a subset of visualization algorithms,
though to our knowledge, Dax does not currently address
considerations of analysis at the exascale beyond concur-
rency. PISTON [LSA] is set of analysis operators written
on top of Thrust [BH11], which is capable of creating code
for GPUs using CUDA and OpenMP, and similarly focuses
on node-level concurrency. These works each embody im-
portant considerations for general-purpose analysis libraries.
However, we propose herein a framework with considera-
tions not just for concurrency and programmability, but also
for the memory and I/O constraints of future architectures
and for the scientific simulations designed to use them.

3. Details

The Extreme-scale Analysis and Visualization Library
(EAVL) project comprises three aims: a new data model, in-
creased efficiency, and new avenues for scalability. EAVL re-
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visits many of the assumptions endemic to current large-data
visualization and analysis tools. For example, many assume
scientific data is always in three dimensional space and falls
into a few narrowly defined mesh structures. Such simplistic
assumptions have two drawbacks: many types of scientific
data simply do not fit into these structures, while the data that
do fit are often forced into a less efficient structure. Improve-
ments in the data model can thus lead to improved memory
efficiency and improved algorithmic efficiency. EAVL also
provides other controls for memory footprint and algorith-
mic improvements, supports both distributed and data paral-
lelism, and can transparently target heterogeneous systems.
Below, we visit each of these improvements in detail, and we
measure the contributions of EAVL against the current gold
standard for visualization libraries, VTK.

3.1. Data Model

The data model is the foundation for the internal storage
and operational aspects of a visualization and analysis li-
brary. For example, a traditional data model like that of the
VTK data set might be described as a few choices of grid
types — such as rectilinear, structured, and unstructured —
where each mesh has a set of three-dimensional point loca-
tions and a set of cells referencing those points, and fields
live on either the points or the cells. In this section, we de-
scribe our goals for the EAVL data model and give a high-
level overview of its design, discuss the features our design
provides, and show detailed examples of its application to
new and existing types of scientific data.

3.1.1. Data Model Design Overview

Developers of new data models risk becoming mired in topo-
logical mathematics and other quandaries and can become
victims of their own ambition. With EAVL, our approach is
to make only a few substantive changes to the traditional data
model in order to address its main deficiencies. We had a
number of high-level goals in mind when designing EAVL’s
data model, such as allowing more flexible point and cell
arrangements, reducing memory usage and memory copies,
better supporting non-physical data, efficiently supporting
subset topologies, and enabling fine-grain parallelism and
support for future system architectures.

For example, in EAVL the data set class is not chosen
from a short list of predefined types. Instead, it is more flex-
ible, simply containing zero or more sets of coordinates ob-
jects and zero or more sets of cell objects. It also contains a
separate logical structure object which describes the basis of
arrangement for the points or cells, and it contains a set of
fields which are each associated with some part of the mesh.

EAVL provides a variety of concrete types of cell sets.
For example, one is for regular arrangements, another is for
explicit connectivity, and others are for implicit or explicit
subsets of the mesh. EAVL also provides a variety of con-
crete types of coordinate arrays: all of them refer to one or

more of the fields on the mesh, and all have a method to
translate their raw point locations into Cartesian space. And
finally, the fundamental array class used throughout EAVL
is heterogeneous memory space-aware.

3.1.2. Data Model Features

More detail on the data model in EAVL can be found at
http://ft.ornl.gov/eavl. Here, we expand here on the
implications of this overall design:

• Meshes can have any number of coordinate systems.
This includes the possibility of zero coordinate systems,
useful for non-physical data.

• Each coordinate system has an arbitrary spatial di-
mension. This can be less than three, or arbitrarily high.
Two coordinate systems on the same mesh may have a
different spatial dimension.

• Coordinate arrays can be interleaved or separated. For
example, explicit coordinates for a VTK unstructured grid
must be interleaved into a single three-component array,
whereas EAVL allows any mixture of single- or multi-
component coordinate arrays on a single mesh.

• The point structure is independent of the cell struc-
ture. Regular geometry can refer to explicit points, and
explicit geometry can refer to regular point arrangements.

• Meshes have an explicit logical structure. Separate
from the cells and points, it might represent a multi-
dimensional regular basis or add a refinement dimension.

• Fields are associated with one of the mesh structures.
Traditional “cell” and “point” fields are supported, as are
fields on the whole mesh, as are fields associated with a
logical dimension.

• Coordinate arrays are fields on the mesh. In a curvilin-
ear or unstructured mesh, for example, coordinate fields
are associated with the mesh points. In a rectilinear mesh,
each coordinate array is instead associated with one of the
logical dimensions.

• Each coordinate array can be defined on a different
mesh structure. The X and Y coordinates might be de-
fined on the i and j logical dimensions, for example, with
the Z coordinate defined explicitly for every point.

• Each mesh can have an arbitrary number of sets of
cells. Pure “point meshes” need no cells, and might define
no cell sets. An unstructured mesh might define multiple
groupings of cells on which to associate different fields.

• Cell sets can be defined in terms of other cell sets. A
subset relationship can be as simple as “this-set-of-cells-
from-” a different cell set.

• Faces and edges are simply cell sets. They use an “all-
faces-of-” relationship with another cell set, for example.

• Arrays support handles to accelerator device memory.
They can transparently copy data between host and device
memory as needed.

In combination, these (sometimes simple) additions to the
traditional data model result in numerous strengths. Below,
we explore examples.
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3.1.3. Improving Support for Traditional Data

Even simple extensions can have obvious benefit. For exam-
ple, by allowing fewer than three spatial dimensions, EAVL
saves memory which would be wasted on second or third co-
ordinate values for 1D/2D data. This same example also im-
proves performance, as algorithms must only operate on 1/3

or 2/3 of the data. These and other examples of how the data
model improves memory and performance efficiency are de-
tailed below in Section 3.2.

By supporting both interleaved and separated coordinate
arrays, we can achieve higher device bandwidth on GPUs
where one variant may result in a more optimal memory ac-
cess pattern. By encapsulating both host and device memory
handles, arrays contain features necessary to support hetero-
geneous node architectures. These and other considerations
for data parallelism are detailed in Section 3.3.

Other extensions make working with scientific data more
convenient. For example, a geospatial data set on the sur-
face of the Earth is simultaneously defined in two coordi-
nate systems: two-dimensional latitude/longitude and three-
dimensional X/Y/Z. As these coordinate arrays are simply
mesh fields, they can be analyzed as easily as other field data.

These coordinate arrays may also be used to address com-
mon data modeling difficulties. For example, after slicing a
curvilinear 3D grid (i.e., with explicit point coordinates) by
the plane Z = 6, storing this “6.0” value only once for the
entire grid is not just more memory efficient and generally
higher performance, it is more elegant.

Other extensions make working with scientific data more
correct. Molecular data is one example: in a data model sup-
porting only a single set of cells on a mesh, these cells must
include both atoms and bonds. Within this environment, a
field on the bonds (like covalent bonding strength) must in-
clude dummy values for the atoms, as a field on the cells
must have values for every mesh cell. Any existing analysis
algorithm applied to this field would have incorrect results,
as it would be including these dummy values. By allowing
the atoms and bonds to be separate sets of cells, fields can be
defined on only one of the two, and analysis algorithms will
automatically (and correctly) use only relevant values.

3.1.4. Supporting Non-traditional Data

Another goal of creating a new data model is to ensure we
can support the complex structures of modern simulation ap-
plications. Just as rethinking the taxonomy of mesh classifi-
cation improves support for data that fit into the traditional
model like that of the VTK data set, it also allows support
for types of data that do not.

Making the choice of cell and point structures more inde-
pendent is one way of enabling new types of data sets, as data
is no longer constrained to arbitrary combinations of these
structures, like “unstructured” and “curvilinear.” Adding a
refinement dimension in a logical structure allows a basis for

block-structured AMR (advanced mesh refinement) grids, or
even per-cell refinement grids like quadtrees.

By allowing multiple cell sets on a single mesh, we en-
able concepts like “side sets” where faces of a subset of vol-
umetric cells are collected into an explicit grouping. Side
sets share the points with the volumetric grid, but only some
variables exist on both the volumetric and surface elements.
Without this feature, one must represent the volumetric and
surface elements as different meshes, and mapping the rela-
tionship between the two would be extremely expensive as
the meshes cannot share a common point indexing.

Similarly, a volumetric subset of volumetric cells gives
an efficient representation of the result from a “threshold”
operation. This also provides a native solution for node sets
and flux surfaces, and for face and edge data, all of which
have traditionally been a challenge in analysis tools.

The additional self-descriptiveness of fields allows more
informed interpretation. For example, visualization tools of-
ten interpolate point-based fields linearly along adjoining
cells. However, fields like “atomic number” on a molecular
mesh cannot be interpolated, and EAVL allows us to tag the
field as piecewise constant. This descriptiveness also clari-
fies the interpretation of a three-component cell array as a
high-order polynomial on the cells instead of a 3D vector.

And one of the simplest examples is native support for
data with unusual spatial dimensions. These might be pure
parameter studies (like a 4D data cube whose values are the
reaction rates under varying concentrations of four chemical
species) or a simple graph of vertices and edges with no spa-
tial coordinates whatsoever. Concepts like time can also be
treated efficiently as coordinate axes here.

3.2. Efficiency

3.2.1. Memory Efficiency

One of the most obvious needs for improvement in future
analysis software is in memory efficiency; as mentioned,
growth in system memory capacity is slow, and in situ sce-
narios place additional burdens on memory usage. Fortu-
nately, a more descriptive data model, as described above,
has positive implications for efficiency:
• A 2D curvilinear grid can cut its memory usage by one

third when we remove the requirement for the Z coordi-
nate array, generally all zeros. Similarly, one dimensional
or entirely non-spatial data can realize substantial savings.

• Due to the separation of point and cell structures, instead
of creating an explicit unstructured grid to represent an
irregular subset of a regular grid, we can retain the more
efficient regular point arrangement and make only the cell
connectivity explicit.

• Better yet, this irregular subset can be represented even
more compactly as two cell sets on the same mesh: the
first contains the original regular cells, and the second is a
cell set referencing an explicit subset of the first.
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• As each coordinate axis can be independently implicit or
explicit in EAVL, a 2D terrain image elevated by a height
field into 3D could have its X and Y axes remain a space-
efficient implicit outer product, with the Z axis containing
the only explicitly represented values.

• A skewed regular grid, common in molecular data, could
compactly specify its coordinate axes as a 4×4 matrix
transformation relative to Cartesian X/Y/Z axes.

EAVL includes improved controls for memory usage as
well. For example, some algorithms support operation in-
place; a trivial example would be a coordinate displacement
operation which simply overwrites each point, providing
nearly zero memory growth. We have also explored adding
tiling to our basic array structure: arrays appear allocated
at initialization, but may actually be allocated (or freed) in
blocks as necessary, allowing algorithms to free an input
mesh as the output mesh is generated.

3.2.2. Algorithmic Efficiency

Memory efficiency can translate directly into algorithmic
efficiency. As data movement becomes a driving factor in
overall computational performance more than raw arithmetic
prowess, moving fewer bytes will result in not just reduced
memory usage but also reduced run times for many algo-
rithms. For example, as EAVL requires just two coordinate
values for two-dimensional data, it cuts not just memory us-
age but also memory accesses by one third. In fact, all mem-
ory savings suggested in Section 3.2.1 can contribute to per-
formance improvements.

This more descriptive data model allows improved perfor-
mance in other ways as well. For example, by allowing im-
plicit coordinates to remain implicit, we save the step of con-
version to explicit coordinates. By allowing a native subset-
of-cells construct, we skip the step of creating an entirely
new data set during a threshold operation. By allowing recti-
linear grids, even when in transformed space, to stay rectilin-
ear, the many algorithms which operate more efficiently on
rectilinear grids can generally continue to do so, with only a
small extension.

3.3. Scalability

3.3.1. Node-level Parallelism

To achieve data parallelism in EAVL algorithms, we adopt
a functor/iterator model: a function object, or functor, is an
object which encodes an operation, and an iterator defines
the execution pattern. By separating these two pieces, EAVL
allows more ways to combine them, increasing reuse and
flexibility. This is much like the high productivity computa-
tional model of Thrust [BH11]. Here, however, we provide
a set of execution patterns based on mesh topological con-
structs (like a node-to-cell pattern, a cell-to-face pattern, and
so on), and these support functors with inputs and outputs
common to visualization algorithms such as scalar fields and

point coordinates. Furthermore, we provide both OpenMP
and CUDA implementations of these execution patterns, and
the same functor code may be passed to either. This en-
ables algorithms to be be written once and execute efficiently
on several data-parallel architectures. Within a node, algo-
rithm developers may always revert to serial code or manual
CUDA/OpenMP kernels; by supporting heterogeneous
memory spaces automatically, the built-in EAVL array type
simplifies this process.

Listing 1 shows an example of CUDA code implement-
ing the node-to-cell operation in EAVL. The actual code in
EAVL contains other optimizations, and it is slightly more
complex — for example, it handles both interleaved and sep-
arated coordinates via a multiplier and offset for each input
array, and a variant for structured cells needs only the mesh
dimensions instead of explicit connectivity. The CPU execu-
tion path simply uses a for loop over the output cells, with a
pragma to enable OpenMP parallelism. Note that Explic-
itConnectivity contains dynamic data but transparently
handles the transfer to device memory. Also, the result is
transfered back to the host later, but only when necessary,
allowing data to remain on the device as much as possible.

Listing 2 shows this pattern being instantiated to calcu-
late the surface normal using a cross-product functor. It also
highlights how a developer can pass values to functors dur-
ing construction. Functors have other benefits as well: unlike
function pointers, they are available even in languages (like
older CUDA compute capabilities) where function pointers
are not, and they can be effectively inlined by compilers.

Listing 1: CUDA code in EAVL for a node-to-cell execution
pattern for explicit cell connectivity and three inputs.
t empla te < c l a s s F>
_ _ g l o b a l _ _ void NodeToCel lKerne l3 ( f l o a t ∗a r r a y 0 ,

f l o a t ∗a r r a y 1 ,
f l o a t ∗a r r a y 2 ,
f l o a t ∗out ,
E x p l i c i t C o n n e c t i v i t y conn ,
F f u n c t o r )

{
c o n s t i n t i n d e x = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
i n t nNodes , n o d e I d s [ 8 ] ;
f l o a t nodeValues [ 3 ] [ 8 ] ;

conn . Ge tCe l lNodes ( index , nNodes , n o d e I d s ) ;
f o r ( i n t i =0 ; i <nNodes ; i ++)
{

nodeValues [ 0 ] [ i ] = a r r a y 0 [ n o d e I d s [ i ] ] ;
nodeValues [ 1 ] [ i ] = a r r a y 1 [ n o d e I d s [ i ] ] ;
nodeValues [ 2 ] [ i ] = a r r a y 2 [ n o d e I d s [ i ] ] ;

}
f u n c t o r ( nodeValues [ 0 ] ,

nodeValues [ 1 ] ,
nodeValues [ 2 ] ,
&o u t [ i n d e x ∗ 3 ] ) ;

}

void NodeToCellOp3 : : ExecuteCUDA ( )
{

f l o a t ∗d _ a r r 0 = ( f l o a t ∗) a r r a y 0−>GetCUDAArray ( ) ;
f l o a t ∗d _ a r r 1 = ( f l o a t ∗) a r r a y 1−>GetCUDAArray ( ) ;
f l o a t ∗d _ a r r 2 = ( f l o a t ∗) a r r a y 2−>GetCUDAArray ( ) ;
f l o a t ∗d_ou t = ( f l o a t ∗) o u t p u t−>GetCUDAArray ( ) ;
/ / c a l c u l a t e CUDA t h r e a d g r i d nb / n t
nodeToCel lKerne l3 <<<nb , nt >>>( d_a r r0 , d_a r r1 , d_a r r2 ,

d_out , conn , f u n c t o r ) ;
}
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Listing 2: To calculate face surface normals, a developer
instantiates the node-to-cell pattern using mesh coordinates
as the input arrays and a cross product functor.
s t r u c t Po lyNorma lFunc to r
{

bool n o r m a l i z e ;
Po lyNorma lFunc to r ( bool n ) : n o r m a l i z e ( n ) { }
void operator ( ) ( f l o a t ∗x , f l o a t ∗y , f l o a t ∗z , f l o a t ∗n )
{

f l o a t ax = x[1]−x [ 0 ] , ay = y[1]−y [ 0 ] , az = z [1]−z [ 0 ] ;
f l o a t bx = x[2]−x [ 1 ] , ay = y[2]−y [ 1 ] , az = z [2]−z [ 1 ] ;
n [ 0 ] = ay∗bz − az∗by ;
n [ 1 ] = az∗bx − ax∗bz ;
n [ 2 ] = ax∗by − ay∗bx ;
i f ( n o r m a l i z e )
{

f l o a t l e n = s q r t ( n [0 ]∗ n [ 0 ] + n [1 ]∗ n [ 1 ] + n [2 ]∗ n [ 2 ] ) ;
n [ 0 ] / = l e n ; n [ 1 ] / = l e n ; n [ 2 ] / = l e n ;

}
}

} ;

void C a l c u l a t e F a c e N o r m a l s ( . . . )
{

/ / . . .
e x e c u t o r −>AddOpera t ion (

new NodeToCellOp3 ( xcoord , ycoord , zcoord ,
o u t p u t n o r m a l s ,
i n p u t c e l l s ,
Po lyNorma lFunc to r ( f a l s e ) ) ) ;

}

Developers can combine individual data-parallel patterns
into complex sequences. For example, in an isosurface oper-
ation, a node-to-node pattern evaluates a nodal field against
a target value, and a node-to-cell pattern evaluates these
booleans as an integer bit pattern, resulting in a lookup case
(via a gather pattern) for the isosurface tables. As most cells
do not contribute to the resulting isosurface, it is more effi-
cient to parallelize over output geometry. To accomplish this,
we use a reduction pattern to calculate the number of output
pieces, a prefix sum pattern to find each cell’s starting in-
dex into the output geometry, and a scatter pattern to map
the isosurface cases into the output arrays. A node-to-edge
pattern then calculates the final coordinate locations for the
nodes of the isosurface mesh.

3.3.2. Distributed Parallelism

In [CPA∗10] we see that a pure spatial decomposition is ef-
fective at scaling to current node counts and very large data
sets. In EAVL, we support this same general decomposi-
tion strategy via MPI, allowing ghost cells for operations
where only a local neighborhood of information for each cell
is necessary to minimize parallel communication. Allowing
MPI at the functor level is impossible (as these must support
execution on GPUs), but EAVL allows MPI calls at the filter
level for more explicit communication when necessary.

In addition to single-block file readers (e.g., a legacy VTK
importer) and simulation-specific readers (e.g., MADNESS
and CHIMERA), EAVL contains file format readers which
support parallelism, such as Silo and BOV, and a NetCDF
reader supporting automatic domain decomposition and par-
allel hyperslab I/O. EAVL also supports a file-list importer
which interprets a series of files as a time sequence. EAVL’s

native understanding of discrete dimensions also provides
another dimension along which to parallelize; section 4.3.3
shows the advantages of spatiotemporal parallelism support.

4. Results

4.1. Data Model

In this section we present results highlighting our design de-
cisions in EAVL to support the complexities of current and
future simulation codes which are difficult to represent cor-
rectly using traditional data models.

4.1.1. High-dimensionality Grids in CHIMERA

(a) collapse to 2D (b) collapse to 1D 

Figure 1: Dimensional collapse of a 5D CHIMERA data set.
(a) 2D collapse to X/Y/Z, then a slice. (b) 4D collapse to X
for the electron, anti-electron, and tau neutrino flavors.

CHIMERA [BMH∗10] is a tightly coupled multi-physics
code for simulating core-collapse supernovae. CHIMERA
calculates stellar gas hydrodynamics and nuclear kinetics,
represented on a three dimensional spatial grid, and ray-by-
ray neutrino transport, represented on a five dimensional grid
consiting of three spatial dimensions, neutrino flavor (elec-
tron, anti-electron, tau and anti-tau) and energy group (cur-
rently 20 levels). The flexibility of the data model in EAVL
allows an accurate and consise representation of CHIMERA
data.

Since many visualization algorithms only operate in two
or three dimensions, dimensionality reduction filters have
been implemented. Figure 1 shows the ψ0 variable in a 5D
CHIMERA data set after dimensional collapse operations.
In Figure 1(a), the data set was reduced by averaging the
neutrino flavor and energy group dimensions, followed by
a center slice of the resulting spatially-3D data set. In Fig-
ure 1(b), the data set was collapsed by averaging the Y and
Z spatial dimensions as well as the energy group dimension,
and the result plotted for three neutrino flavors along the X
dimension.

4.1.2. High Order Quadtrees in MADNESS

Quadtrees and octrees are tree based data structures which
can be used for partitioning a two- or three-dimensional
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space, respectively. They have gained popularity in the vi-
sualization community as an efficient acceleration struc-
ture. However, their use as a mesh structure is not
common, and so visualization tool support is generally
unavailable. MADNESS (http://code.google.com/p/
m-a-d-n-e-s-s/) is a multi-resolution, adaptive frame-
work for simulations that uses quadtrees and octrees as a
mesh structure. The variable values in the quadtree are high-
order, represented by coefficients for Legendre polynomials
of up to order 20.

(a) constant (b) bi-linear (c) bi-quadratic

Figure 2: Rendering a high-order MADNESS quadtree mesh
with different methods of interpolation.

Figure 2 shows the quadtree mesh structure of a MAD-
NESS data set with a standard per-cell refinement. For this
data set, each cell has nine values: coefficients for a bi-
quadratic function. In Figure 2(a) EAVL renders the data set
by coloring each cell using the value of this function at its
center. In 2(b), we see the result when values are assigned
to the nodes of the mesh, rendering with standard bilinear
interpolation. Note the discontinuities where the refinement
level changes between adjacent cells. In Figure 2(c), we
see the result when these high-order coefficients are passed
down to the rendering infrastructure where tessellation oc-
curs the fly — and as such, requires no extra memory. EAVL
also supports tesselation within a visualization pipeline, so
high order fields can be approximated using finer-grain lin-
ear fields that are more widely supported in common opera-
tions such as isosurfacing.

4.2. Efficiency

Another of the primary design considerations in EAVL was
memory efficiency. In this section we explore several exam-
ples that highlight the benefits of these design decisions.

4.2.1. 2D to 3D Elevation

rectilinear structured unstructured
before after before after before after

EAVL 11 kB 11 kB 21 kB 21 kB 17 kB 17 kB
VTK 11 kB 21 kB 26 kB 21 kB 19 kB 17 kB

Table 1: Memory required before and after elevating three
different data sets in both VTK and EAVL.

Table 1 shows a comparision of the memory usage of an

elevation operation on three small two-dimensional data sets
containing two scalar fields, u and v. In each case, the mesh
was elevated into three dimensions by a height field defined
by v, and then colored by u. Note that we measure VTK
memory usage here through the number of bytes each data
set occupies as a binary file on disk, as this avoids counting
temporary internal memory usage.

VTK does not support the combination of coordinate ar-
rays on logical dimensions with ones associated with the
points, so the rectilinear data set must be converted to the
more explicit curvilinear grid. For the curvilinear and un-
structured inputs, the operation copies the v array elements
over the third (dummy) coordinate value already existing in
the explicit coordinate arrays, and then discards the v array.
Thus, starting memory usage is higher, and after the linear-
time copy operation shrinks to the same usage as EAVL.

In the case of EAVL, for each input only a constant-time
modification of the meta-data is required to set the third co-
ordinate axis to point to the existing scalar field v; memory
usage is also nearly constant.

4.2.2. Rectilinear Threshold
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Figure 3: Memory and runtimes for various threshold values
subsetting a rectilinear grid.

In Section 3.1, we described the ability for a single mesh
to mix and match point and cell structures, and for one cell
set to refer to subsets of other cell sets. A threshold opera-
tion on a regular grid provides a concrete example of these
benefits. In Figure 3(a), we show the memory usage of the
resulting data set after thresholding the rectilinear noise data
set (included with VisIt) by a variety of cutoff values. In
this figure, we see that the threshold operation resulting in
a fully explicit VTK unstructured grid resulted in a mem-
ory increase of up to 14× in the worst case. In EAVL, this
same scenario was a seven-fold improvement compared to
VTK. In Figure 3(b), we see the improvement in runtime
of the same operation; in EAVL, this operation requires not
just less storage, but also less computational work due to the
more descriptive data model.
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4.2.3. Face Data

A native representation of face and edge data is another
strength of the EAVL data model. Without this ability, users
must find workarounds for storing face-centered field data.

For example, a 1003 regular grid has 99×99×100×3 =
2.9M faces. In a data model which does not support face data
on regular grids, one might store these faces as a fully ex-
plicit polygonal data set, or as three hundred regular 2D grids
(100 along each of the three coordinate axes). As Table 2
shows, the latter option comes closer in memory usage to the
native face data avenue as present in EAVL, with the added
expense of managing 300 meshes which were intended to
be one. And with either workaround, the face data must be
in a separate mesh from the volumetric cells, or one cannot
manage fields separately on each — and unfortunately, in a
separate mesh one loses the intrinsic information mapping
the faces to the cells and points of the original mesh. With
EAVL, however, the single regular grid retains the mapping
between faces, volumetric cells, and the points.

Single VTK polygonal data set 74.8 MB
300 VTK regular grids 12.3 MB
Single EAVL regular grid 11.8 MB

Table 2: Memory required for storage of the mesh and a
single face-centered scalar field on a 1003 regular grid.

4.2.4. In-Place Algorithms
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Figure 4: Memory usage over time, with and without tiling.
Left: external facelist filter on a rectilinear data set. Right:
isosurface on the vortex data set.

As mentioned in Section 3.2.1, for data-parallel algo-
rithms, it is possible to free data as it is consumed. To ac-
complish this wile minimizing overheads and retaining suf-
ficient data level parallelism, we added experimental sup-
port for tiling arrays in EAVL into chunks of a configurable
size. To test this capability, we added code to the isosurface
and external facelist algorithms to tag elements as no longer
needed, allowing EAVL to free their memory in chunks. This

allowed these algorithms to operate in an in-place manner
with little developer effort. Figure 4 shows memory usage as
these algorithms proceed on two data sets. Of course, final
memory usage is identical with or without chunking when
the algorithm completes, as one can then free the input data
entirely. Compared to an unmodified algorithm, though, both
peak and average memory usage can be significantly lower
operating in this mode.

4.3. Parallelism

In this section, we explore examples of EAVL’s multiple lev-
els of parallelism designed to address the concurrency con-
straints of coming generations of supercomputing architec-
tures.

4.3.1. Scaling

To evaluate the capability of EAVL to support distributed
scaling, we executed parallel file reader I/O, isosurface, and
then surface normal operation on a large, 100-billion cell,
1000-computational domain data set. The source data set
was a core-collapse supernova simulation on a curvilinear
mesh using the CHIMERA code. We up-sampled the en-
tropy variable onto a 46403 rectilinear grid, reading it in a
strong scaling mode using 125 to 500 processors of the Lens
cluster at Oak Ridge National Laboratory, calculating a se-
quence of isosurfaces and their surface normals. The results,
in Table 3, show high scaling efficiencies.

Number of Processors 125 250 500
Total Runtime 1428 sec 707 sec 353 sec

Table 3: Runtimes to load and calculate a series of isosur-
faces, and their surface normals, on 100-billion cell data set.

4.3.2. Data Parallelism

To explore data parallelism in EAVL, we examine how the
face normal operation from Section 3.3.1 performs in our
data-parallel framework. This operation is implemented as a
cross-product functor passed to a node-to-cell iteration pat-
tern.

As previously noted, EAVL currently provides both
CUDA and OpenMP back ends for its iteration patterns, and
both use the same functor code provided by the algorithm
developer. Figure 5 illustrates the timings of this surface
normal filter when run on the noise data set. These results
show significant speedups using both OpenMP and the GPU.
Note that timings include all kernel launch overheads, but
not PCI-Express data transfer times on the GPU, as we ex-
pect a significant proportion of chained filters to operate on
the same device, thus amortizing or eliminating any transfer
costs.

In addition to running on GPUs and multi-core CPUs,
we also ported EAVL to the Intel R© Many Integrated Core
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Figure 5: Timings for serial and parallel runs to calculate
the face-centered surface normal on a noise data set.

(MIC) Architecture Software Development Platform. Using
the Intel compiler to generate native code for the acceler-
ator (codenamed Knights Ferry) using OpenMP for data-
level parallelism, we ran the surface normal calculation on
the same data set. Although absolute performance numbers
from this pre-production development platform would not be
representative of a final product, we could investigate scal-
ing of the architecture. Table 4 shows the parallel efficiency
across a range of threads. As before, we do not measure PCIe
transfer times, but we do include overheads from OpenMP
thread launches. We see an initial efficiency penalty from en-
abling OpenMP threading, but efficiency quickly improves,
peaking around 16 threads for this problem. Runtimes im-
proved consistently with each increase in thread count; the
fastest runtime was achieved with 120 threads. As these re-
sults show a strong combination of high efficiency and ease
of programming, we believe our data-parallel strategy is ef-
fective for not CPUs and GPUs but the Intel MIC architec-
ture as well, and we plan to continue our support for it.

Threads 2 3 4 8 12 16 20 30 60 90 120
Efficiency (%) 63 73 74 80 81 85 81 70 62 50 40

Table 4: Scaling efficiency by thread count (relative to
single-threaded performance) on the Intel MIC SDP for the
surface normal calculation on a noise data set.

4.3.3. Distributed Parallelism

Figure 6 shows a scaling experiment we performed on the
Lens cluster at ORNL to examine the benefits of temporal
parallelism calculating the maximum-over-all-time on a 50-
year climate simulation from the Community Climate Sys-
tem Model (CCSM). Note that the number of nodes (and
available I/O bandwidth) increased when using up to 16 pro-
cessors. To determine the performance baseline of spatial
parallelism, we compared against VisIt, known to scale well
with a spatial decomposition. While VisIt performed almost
identically to EAVL with a single processor, it was clear that
the spatial parallelism in VisIt reached scaling limits before
an equivalent EAVL analysis using temporal parallelism. To
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Figure 6: Strong scaling runtimes to calculate the maximum
value over all time from a 50-year CCSM NetCDF data set.
EAVL runs used only temporal parallelism, and VisIt runs
used only spatial parallelism. Scaling up to 16 processors
used 1 task/node, and up to 256 processors by adding tasks
on 16 nodes.

further explore this effect, we ran this same test using var-
ious combinations of spatial and temporal parallelism. The
results are shown in Table 5. Although temporal parallelism
generally results in higher efficiency, it also increases mem-
ory usage; the hybrid parallelism enabled by EAVL thus al-
lows for more fine-grained trade-offs between maximizing
I/O efficiency and minimizing memory usage.

Temporal Spatial Parallelism
Parallelism 1-way 2-way 4-way 8-way

16-way - 87% 79% 36%
32-way 105% 92% 50% 20%
64-way 98% 78% 42%

128-way 87% 59%
256-way 69%

Table 5: Scaling efficiency of temporal versus spatial par-
allelism on a 50-year CCSM NetCDF data set. Efficiency is
calculated relative to the runtime with 16-way temporal par-
allelism and no spatial parallelism.

5. Conclusion and Future Work

We have implemented an analysis and visualization library
with a combination of features to support current and fu-
ture scientific software and hardware platforms. With a
strong data model, EAVL supports complex structures like
high dimensionality, arbitrary refinement and mixed topol-
ogy meshes that are becoming more common in simula-
tion applications but are poorly supported in traditional vi-
sualization libraries. This data model also forms a basis
for robust memory and algorithmic efficiency. Parallelism
is implemented at multiple levels, supporting heterogeneous
memory spaces and data-parallel architectures like multi-
core CPUs, many-core accelerators like GPUs, and hybrid
distributed parallelism for improved scaling at larger node
counts.
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We plan to continue development of EAVL towards
production-ready status; more details will be made available
at http://ft.ornl.gov/eavl. Our plan includes contin-
ued improvements to the data model, such as optimizations
of data layouts, additional support for arbitrary refinement
grid topologies, data-based partitions, and additional pre-
defined data-parallel functors and iteration patterns. We also
plan to increase the number of built-in algorithms, develop
an execution framework for data flow pipelines, and provide
an easy to use application programming interface. Finally,
we will explore deployment avenues such as integration with
existing visualization tools and integration in situ with sim-
ulation codes.
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