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Abstract
With faster graphics hardware comes the possibility to realize even more complicated applications that require
more detailed data and provide better presentation. The processors keep being challenged with bigger amount of
data and higher resolution outputs, requiring more research in the parallel/distributed rendering domain. Optimiz-
ing resource usage to improve throughput is one important topic, which we address in this article for multi-display
applications, using the Equalizer parallel rendering framework. This paper introduces and analyzes cross-segment
load balancing which efficiently assigns all available shared graphics resources to all display output segments with
dynamical task partitioning to improve performance in parallel rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

Keywords: Dynamic load balancing, multi-display systems

1. Introduction

As CPU and GPU processing power improves steadily, so
and even more increasingly does the amount of data to
be processed and displayed interactively, which necessitates
new methods to improve performance of interactive massive
data visualization systems. Parallel and distributed comput-
ing is being utilized in a wide range of applications that re-
quire high processing power on massive data. Consequently,
the demand for more research in this domain produces im-
provements in efficiency of algorithms as well as better
presents solutions to system optimization issues, like dealing
with heterogeneity and inconsistent availability of resources,
communication and I/O bottlenecks, changing workloads,
etc.

High-resolution, large multi-display systems are becom-
ing more and more commonplace in various contexts of in-
teractive and/or immersive visualization installations as well
as virtual reality systems. Built from arrays of projectors or
flat-panel monitors driven by a distributed set of graphics
workstations, the aim is to provide large screen real-estates
and high image resolutions. Used in conjunction with mas-
sive amounts of data to be rendered, these display systems
impose serious performance demands due to the required
processing of large geometric/graphics data sets and delivery

of massive pixel amounts to the final display destinations at
interactive frame rates. The graphics pipes (GPUs) driving
the display array, however, are typically faced with highly
uneven workloads as the vertex and fragment processing cost
is often very concentrated in a few specific areas of the data
and on the display screen. Balancing the workload among
the multiple available GPUs – which are inherently available
in multi-display or projector walls – for optimal throughput
becomes extremely important in these circumstances and is
the core topic of this work, see also Figure 1.

A number of algorithms and techniques for parallel ren-
dering have been proposed in the past, however, only a
few truly generic (cluster-)parallel rendering APIs and sys-
tems have been developed and are available, including
e.g. VR Juggler [BJH∗01] (and its derivatives), Chromium
[HHN∗02], OpenGL Multipipe SDK [BRE05] or Equalizer
[EMP09]. We have chosen the latter in this work for its re-
source usage configuration flexibility and its extensibility
with respect to dynamic load balancing.

A serious challenge for all cluster-parallel rendering sys-
tems driving a large multi-display system is to deal with the
varying rendering density per display, and thus the graph-
ics load on its driving GPU(s). In this article, we present
a novel dynamic load balancing approach built into the se-
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lected parallel rendering framework, namely Cross-Segment
Load Balancing (CSLB), and analyze its performance in the
case of a multi-display setup for polygon rendering applica-
tions. The next section gives background information about
related work in parallel rendering. Section 3 explains how
cross-segment load balancing works, and Section 4 compiles
our performance improvement analysis for a set of test cases.
Section 5 concludes the paper with a summary of results
along with ideas for future improvements of the system.

Figure 1: In a multi-display setup, Equalizer can use cross-
segment load balancing, which dynamically assigns the
available resources to the output displays. When a resource
has higher workload than others, it gets help from less
loaded resources to improve performance. The top left seg-
ment is comparably overloaded, thus, help is acquired from
less busy display resources connected to the right segments
to equalize the workload.

2. Related Work

A large amount of literature is available on parallel render-
ing. In the following we concentrate on the most relevant
and related work, and we only roughly sample the remain-
der of the vast amount of proposed approaches to the various
problems of distributed parallel rendering. Some approaches
propose generic solutions for a wider range of applications,
while others try to address very specific problems.

2.1. Parallel Rendering

Parallel, distributed rendering can either be a solution to effi-
ciency problems through the distribution of workload among
graphics resources, or it can be enforced by the application
due to task constraints or the nature of the application. While
some applications make use of parallel resources to simply
increase rendering throughput, others may be forced to deal
with distributed data and display resources, as the input data

may only be available from different sources and the output
image destination consists of multiple separate destination
display channels.

In the context of Molnar et al.’s parallel-rendering taxon-
omy [MCEF94] on the sorting stage in real-time parallel ren-
dering, various generally applicable concepts and results on
cluster parallel rendering have recently been presented: e.g.
[SFLS00b,SFLS00a,CKS02,BHPB03] on sort-first and sort-
last architectures, or [SWNH03,CMF05,CM06,FCS∗10] on
scalability. On the other hand, many application specific al-
gorithms have been developed for cluster based rendering.
However, only a few generic APIs and libraries exist that
support the development of a wide range of parallel render-
ing and visualization applications.

VR Juggler [BJH∗01] is a graphics framework for VR ap-
plications which shields the application developer from the
underlying hardware architecture and operating system. Its
main aim is to make VR configurations easy to set up and use
without the need to know details about the devices and hard-
ware configuration, but not specifically to provide scalable
parallel rendering. Chromium [HHN∗02] provides a pow-
erful and transparent abstraction of the OpenGL API, that
allows a flexible configuration of display resources, but its
main limitation is that it is focused on streaming OpenGL
commands through a network of nodes, often initiated from
a single source. OpenGL Multipipe SDK (MPK) [BRE05]
implements an effective parallel rendering API for a shared
memory multi-CPU/GPU system. It handles multi-pipe ren-
dering by a lean abstraction layer via a conceptual call-
back mechanism and it runs different application tasks in
parallel. However, MPK is not designed nor meant for dis-
tributed cluster based rendering. CGLX [DK11] intercepts
a few GLX and OpenGL calls to reconfigure the applica-
tion’s output frusta for multi-display rendering. It does not
concern itself with distributing and synchronizing the ap-
plication data, and does not perform any scalable render-
ing or load-balancing. DRONE [RLRS09] is a high-level
framework for GPU clusters, using a scene graph for render-
ing. [MWP01] presents another system that focuses on sort-
last parallelization of very large data sets on tiled displays.
Its performance is largely dependent on image compositing
strategies among the available resources.

Equalizer [EMP09] was developed as a parallel rendering
solution for porting OpenGL-based applications to deploy
on multiple graphics nodes and multi-pipe systems through a
run-time configurable client/server architecture. While it re-
quires minimally-invasive changes to existing applications,
it has become a productive standard middleware that enables
applications to benefit from multiple computers and graphics
cards in a scalable and flexible manner to achieve better ren-
dering performance, visual quality and bigger display sizes.
Due to its architecture, an application can run without mod-
ifications on any visualization system, from a simple work-
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station or VR installations to large scale graphics clusters
and display walls that employ multiple GPUs and nodes.

Besides its key advantages of scalable resources usage
and flexibility of task decompositions, it also features in-
tegrated load balancing components that can dynamically
distribute tasks among resources according to various par-
allel rendering modes (sort-first, sort-last, time- and view-
multiplex etc.). Our cross-segment load balancing approach
and results are demonstrated in the context of this parallel
rendering framework.

2.2. Load Balancing

In parallel, distributed rendering systems, it is important that
graphics resources assigned to the destination display chan-
nels are proportional to the rendering load to achieve optimal
performance. By maximizing resource utilization, interac-
tive applications can benefit from minimized response times.
In an ideal case all resources share the work volume equally
and finish their tasks at the same time. Only few, often em-
barrassingly parallel tasks can easily achieve this through a
static load balancing scheme.

However, in practice this is rarely the case. Not only can
the resources have heterogeneous processing power, the data
and algorithms may have dependencies, and distribution of
tasks can require extra overheads like communication and
I/O, which complicates matters especially when there are
network bottlenecks. Balancing of load fairly becomes even
more difficult when the task partition is complicated or when
prediction of parameters like workload cost is not easy to de-
termine exactly.

Dynamic load balancing: Parallel systems that adapt the
distribution of workload at runtime according to changing
conditions are said to have dynamic load balancing. Such
systems must assess the cost of partitions of work as accu-
rately as possible, and assign them to the available resources
in order to achieve optimal system throughput. An interac-
tive multi-display system will have a non-uniform workload
for its different display segments for the duration of its use
and hence requires efficient dynamic load balancing.

Various parameters are to be considered for a dynamic
adaptive load balancing scheme to be able to produce a fair
distribution of tasks. In fact, running a load-balancing algo-
rithm itself may have a non-negligible cost and thus prof-
itability of adapting the workload within predetermined or
dynamical parameters must be assured. Workload estimation
may be particularly difficult in interactive visualization sys-
tems as it is hard to know in advance how costly the next
set of rendered frames will be. Cost estimation requires in-
formation not only about the execution time for rendering
some data, but also on the associated parallel overhead like
synchronization, communication and I/O as well as avail-
ability and topology of the resources. Granularity limita-
tions of tasks, priorities and dependencies among tasks are

other parameters that display significance in choosing the
best approach in load balancing. [OA02] categorizes various
dynamic load balancing strategies according to different as-
pects of the load balancing process, e.g. how it is initiated,
whether task queues are kept in a central location or are dis-
tributed, etc., and makes suggestions about their suitability
to different kinds of applications.
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(a) Static load balancing.
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(b) Dynamic load balancing.

Figure 2: Static load balancing partitions and distributes
tasks just at the beginning of the application, whereas a dy-
namic load balancer re-adapts the partitioning and resource
allocation during execution to make sure that the resources
are utilized evenly to achieve optimal throughput.

With respect to our targeted scenario of multi-projector
and tiled display systems, corresponding work on load-
balancing for parallel rendering has been presented in the
following literature. In [SZF∗99] the fundamental concepts
of adaptive sort-first screen partitioning are presented and
various tile-based load-balancing strategies are proposed.
The usage of 2D tiles for load-balancing introduces an a pri-
ori granularity and is not well-suited for OpenGL applica-
tions, where geometry submission and processing introduces
a significant overhead for small tiles. The authors alleviate
this using various strategies to determine the optimal tile size
and by merging tiles. Albeit rather relevant to our work due
to employing different resources for rendering tiles within
other display segments, this work separates from ours by
concentrating on performance of some approaches for tiling
the global scene in a balanced way through a scene graph,
whereas we attack the balancing issue in a display segment
based fashion with a more generic way within our paral-
lelization framework transparent to the application. Further-
more, a hybrid extension also including sort-last task par-
titioning is introduced in [SFLS00a]. Past-frame rendering
time is proposed as a simple yet effective cost heuristic in
[ACCC04], however, cross-segment sort-first task distribu-
tion is not considered, only one display node has been used,
which could affect the heuristic and load balancing. Pixel-
based rendering cost estimation and kd-tree screen partition-
ing are exploited in [MWMS07] for dynamic load-balanced
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sort-first parallel volume rendering. However, as [ACCC04],
also [MWMS07] does not address cross-segment rendering
in a tiled display environment. Similarly per-pixel vertex and
fragment processing cost estimation and adaptive screen par-
titioning is proposed in [HXS09] but no cross-segment load
balancing is considered.

Load balancing in Equalizer: Equalizer supports a wide
variety of task distribution approaches from more easily
load-balanced time- and view-multiplexing to more diffi-
cult sort-last or sort-first parallel rendering. Based on past-
frame rendering times, basic adaptive load-balancing is pro-
vided for both sort-last and sort-first rendering. Sort-last
load-balancing follows similar principles as in [MMD06]
(for volumes) in that the data is split proportionally among
the graphics resources based on their last frame render-
ing cost. Adaptive and dynamic screen-partitioning is sup-
ported in the framework as well, similar in principle as in
[SZF∗99, ACCC04, MWMS07, HXS09] but based on past
rendering times. Additionally, dynamic frame resolution is
supported, suitable for fragment cost bound applications,
which adaptively alters the resolution of the output frame
in order to achieve a constant frame rate. Based on this soft-
ware, application specific optimal (sort-last) load balancing
has been demonstrated for multi-resolution real-time render-
ing of very large terrain data in [GMBP10].

In this work we report on the new cross-segment load bal-
ancing mechanism available in the framework, that allows
the normally uneven rendering load on N graphics pipes
driving M ≤ N displays – the typical setup of many multi-
panel or -projector display systems – to be redistributed
across the different GPUs irrespective of their physical at-
tachment to displays. This in reality very typical display wall
situation, see also Figure 1, has not directly been addressed
in past sort-first load balancing approaches and no ready-to-
use solution exists in other parallel rendering frameworks.
Note that our cross-segment load balancing approach also
works for M ≥N, but this is a less common setup and is thus
not specifically discussed in this paper.

3. Cross-Segment Load Balancing

In load balancing, it is as important to decide on the best way
to assign tasks to the available resources as how the tasks are
partitioned. As a dynamic load balancing approach, cross-
segment load balancing (CSLB) tries to achieve optimal uti-
lization of available resources through dynamic allocation of
N GPUs to a set of M display destination channels, constitut-
ing the M segments of a multi-display system, e.g. a display
wall or immersive installation. Commonly, each destination
channel is solely responsible for rendering and/or composit-
ing of its corresponding display segment.

A key element of CSLB is that the M GPUs physically
driving the M display segments will not be restricted in a
one-to-one mapping to rendering tasks of the correspond-

ing display segment. In fact, CSLB performs dynamic as-
signment of N graphics resources from a pool to drive M
different destination display segments, where the M destina-
tion channel GPUs themselves may also be part of the pool
of graphics resources. Dynamic resource assignment is per-
formed through load-balancing components that exploit sta-
tistical data from previous frames for the decision of optimal
GPU usage for each segment as well as optimal distribution
of workload among them. The algorithm can easily be ex-
tended to use predictive load-balancing based on a load esti-
mation given the application.

CSLB is implemented as two layers of hierarchically or-
ganized components, specified in the server configuration
file. Figure 3 depicts a snapshot of a simple CSLB setup
along with its configuration file. Two destination channels,
Channel1 and Channel2, each connected to a projector, cre-
ate the final output for a multi-projector view. Each projec-
tor is driven by a distinct GPU, constituting the source chan-
nels Source1 and Source2. But each source channel GPU can
contribute to the rendering of the other destination channel
segment.

In general, the M destination channels and their display
segments are physically driven by M graphics pipes (GPUs).
All destination channel GPUs, however, are as well part of
the possibly larger pool of N source channel graphics re-
sources. Thus in CSLB any display segment’s own GPU can
contribute, functioning as a generic source channel, to the
rendering of any other display segment’s final image at run-
time, hence the term cross-segment load balancing.

Resource allocation: For CSLB, a view_equalizer compo-
nent is attached to the top level of the parallel rendering task
decomposition compound hierarchy, which handles the re-
source assignment. Each child of this root compound has one
destination channel, constituting a display segment, with a
load_equalizer component each. Hence the view_equalizer
component supervises the different destination channels of
a multi-display setup. The load_equalizer component on the
other hand is responsible for the partitioning of the rendering
task among its child compounds. Therefore, each destina-
tion channel of a display segment has its source channel leaf
nodes sharing the actual rendering load. One physical graph-
ics resource (GPU), being assigned to a source channel, can
be referenced in multiple leaf nodes and thus contribute to
different displays. For performance reason, one resource is
at most assigned two rendering tasks, e.g., to update itself
and to contribute to another display.

The 3D data, viewing configuration and user interaction
will at runtime produce different rendering loads in each
segment of a multi-display system. As the slowest segment
will determine the overall performance of the system, it
is important to dynamically adjust load among segments.
The view_equalizer component analyzes the load of all seg-
ments based on past frame rendering statistics and adapts
resource usage for each segment. For each rendered frame,
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Channel 1
load_equalizer

Source 1
Usage 1.0

Channel 2
load_equalizer

view_equalizer

Source 2
Usage 0.2

Source 1
Usage 0.0

Source 2
Usage 0.8

(a) CSLB resources setup.

compound
{
view_equalizer {}
compound
{
channel "Channel1"
load_equalizer{}
compound {} # self
compound
{
channel "Source2"
outputframe {}

}
inputframe{}
...

}
compound
{
channel "Channel2"
load_equalizer{}
compound {} # self
compound
{
channel "Source1"
outputframe {}

}
inputframe{}

}
...

}

(b) CSLB configuration file format.

Figure 3: For each destination channel that updates a display segment, a set of potential resources are allocated. The top-level
view_equalizer assigns the usage of each resource, based on which a per-segment load_equalizer computes the 2D split to
balance the assigned resources within the display. The left segment of the display has a higher workload, so, both Source1 and
Source2 are used to render for Channel1, whereas Channel2 makes use of only Source2 to assemble the image for the right
segment.

the view_equalizer sets the usage of each leaf source channel
compound, to activate or deactivate it for rendering.

Algorithm 1 presents how the decision is made to set
the usage of resources. The CSLB is initialized with set-
ting up statistic listener objects on the task decomposition
and rendering compound nodes. This way the past frame
rendering time statistics can be used for load-balancing pur-
poses. The number of graphics resources (GPUs) is also de-
termined during initialization. The dynamic load-balancing
is then executed for each rendered frame and reassigns the
N rendering source channel GPUs to the M output desti-
nation channels. Since image transmission and compositing
can run concurrently to rendering (rasterization) [EMP09],
the update time is the maximum of rendering and transmis-
sion times. Hence the destination channel redraw time is esti-

mated at tdest←∑(max(tsource_render, tsource_transmit)). How-
ever, practically it has shown to be more beneficial to take a
scaled average source channel rendering time as a heuristic
to describe the rendering load, using tdest← (tsource_average×√

nsources) instead on Line 8 in Algorithm 1. This heuristic
accounts for the non-linear relationship between number of
resources and achieved performance. On Lines 10 and 11 the
total frame rendering time ttotal and workload per GPU tGPU
is determined.

Subsequently, for all destination output channels the re-
quired number of GPUs are computed and assigned for ren-
dering of the next frame. First, on Lines 14 to 17 the total
number of GPUs ndest_GPU required to cover the workload
of that channel is determined, as well as to how much the
channel’s own and any other GPU can be used, nsel f _usage
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and ndest_remaining, respectively. If the GPUs assigned in the
previous frame are not sufficient to cover the current work-
load, Lines 18 to 21, then other available GPUs are assigned
as well to this destination channel, Lines 22 to 24. This anal-
ysis and GPU assignment is done for all destination chan-
nels. The priority of self GPUs over GPUs used in the last
frame over any other GPU optimizes compositing cost and
inter-frame data coherency, respectively.

Task partitioning: Once the usage of the resources is set,
the load_equalizer assigns work to each leaf compound ac-
cording to its allowed usage. The load_equalizer can be con-
figured to either perform sort-last (object space) or sort-first
(image space) task partitioning. For partitioning both in 2D
image space and in object database space, frame-to-frame
coherency is taken into account while distributing the work-
load. The server keeps records of timing statistics about pre-
vious frames, gathered from the client channels that do the
actual rendering. This information is used to predict work
density, which is then used to repartition the rendering tasks
to achieve a balanced load in the child components of a
load_equalizer compound within the allowed usage bound-
aries.

Typically, the change in rendering workload on each dis-
play and graphics pipe is gradual during interactive visual-
ization, rather than sudden and discontinuous in subsequent
frames. For such applications, where frame coherency holds,
making use of previous frame time statistics will provide a
quite consistent accuracy in prediction of future workload.
In practice, the load balancer also quickly catches up with
more sudden load changes, and the distribution of workload
among child compounds is realized in a quick and fair way.

Example: In Figure 3(a), the right segment, destination
Channel2 and rendering compound Source2, has a lower
graphics load than the left segment, Channel1 and Source1.
view_equalizer analyzes the usage of the available resources
and load_equalizer calculates optimal partitioning of seg-
ment rendering tasks, as per the algorithm mentioned above.
Consequently, the system assigns 80% of the Source2 GPU
capacity to Channel2, and 20% to Channel1. The Source1
GPU is fully assigned to Channel1. Therefore, overall a ra-
tio of 1.2 graphics resources are assigned to Channel1 and
0.8 to Channel2, the ’left’ and ’right’ tiled display segments,
respectively, from the 2 physical GPUs in the system.

Cross-segment load balancing thus allows for optimal re-
source usage of multiple GPUs used for driving the display
segments themselves as well as any additional source GPUs
for rendering. It combines multi-display parallel rendering
with scalable rendering for optimal performance.

4. Results

Hardware and software setup: To compare performance
improvement brought by utilization of cross-segment load
balancing, we have run tests with various configurations on

Algorithm 1 Cross-Segment Load Balancing Algorithm.
1: Initialization:
2: Set up statistic load listeners on all leaf channels
3: Calculate total number of GPUs available nGPU
4: for each frame do
5: Compute time needed to redraw each destination

channel:
6: for each destination compound do
7: Compute its time to redraw:
8: tdest ← (tsource_average×

√
nsources)

9: end for
10: ttotal ← ∑ tdest
11: tGPU ← ttotal/nGPU
12: for each destination compound do
13: Compute number of GPUs needed:
14: ndest_GPU ← tdest/tGPU
15: Usage of the destination’s own GPU:
16: nsel f _usage←min(1.0,ndest_GPU )
17: ndest_remaining← ndest_GPU −nsel f _usage
18: if ndest_remaining > 0 then
19: Assign the same ndest_last f rame GPUs used in

last frame (up to ndest_remaining)
20: ndest_remaining← ndest_remaining−ndest_last f rame
21: end if
22: if ndest_remaining > 0 then
23: Assign any other available GPUs (up to

ndest_remaining)
24: end if
25: end for
26: end for

a PC cluster driving a 24Mpixel display, a 2×3 array of LCD
panels at 2560×1600 resolution each. Each monitor is con-
nected to an Ubuntu Linux node with dual 64bit AMD 2.2
GHz Opteron processors and 4GB of RAM. Each node em-
ploys two NVIDIA R© GeForce R© 9800 GX2 graphics cards,
one of which is connected to the display monitor, while the
other is used for rendering tasks through frame buffer ob-
jects when necessary. All nodes of the PC cluster each have
a 1 Gigabit ethernet network interface.

Executables and data files are accessed through a network
mounted disk on the gigabit network connection, and the
Equalizer server is run on one node along with the poly-
gon renderer application, which starts the rendering clients
on all six display nodes each of which loads whole of model
data to render. The polygonal rendering application is eq-
Ply, which is a simple mesh based renderer and comes as an
example application with the framework package that loads
and displays PLY files and can play a recorded camera path
from a text file. The application was modified minimally
with extra logging for statistical data to make analysis eas-
ier, and a camera path was designed to move the model in
different regions of the whole display area for a better view
of the effects of load balancer under different load condi-
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tions. The tests all target a tiled display view with full screen
non-decorated windows on all of the monitors, with differ-
ent configuration files selecting the assignment of resources
to segments.

Models: To be able to analyze the results better, we
have chosen to use three different sized models, namely
david1mm, david2mm and lucy, with 56M, 8M and 20M tri-
angles respectively. The smallest model, david2mm, can in
fact be rendered at around 35 frames per second on our 2×3
tiled display cluster setup without dynamic load balancing,
using one GPU per segment. It can fit into the graphics mem-
ory of modern GPUs, thus not requiring frequent and ex-
pensive CPU-to-GPU data transfers. In the mid-range, the
full lucy model renders at around 4 frames per second only,
still fitting into graphics card memory but load-balancing can
already be beneficial. The most complex model david1mm
pushes the GPU and its memory to the limit, rendered at
only 1.9 frames in one second on our system.

Test configurations: We have used two sets of configura-
tions for testing the performance. Due to further complex-
ity of image assembly in sort-last partitioning, which re-
quires more network traffic and higher level of synchroniza-
tion points, we opted to use simpler 2D sort-first partitioning
for task decomposition in our experiments, avoiding costly
z− depth or α − opacity compositing stages that could di-
lute the analysis of the actual sort-first load balancing.

The first set of configurations consists of stat_2D_6to6,
cslb_2D_6to6_2, cslb_2D_6to6_4 and cslb_2D_6to6_6.
The first config, stat_2D_6to6, is our base setup, with each
GPU statically connected to the display of its node. Network
communication is limited to client and server command
packets that drive the rendering process by setting view frus-
tum and start of a new frame, and no dynamic balancing of
work load occurs among nodes. The other cslb_2D_6to6_K
configurations also use the six display GPUs for rendering,
but do cross-segment load balancing by sharing the GPU
resources with other segments so that the total number of
available GPU resources for each segment is K. The extra
resource, when K > 1, is a display GPU assigned to another
segment, so making use of extra available resources for a
segment will mean communication of the resulting image
data over the network for assembly of the final local segment
image.

The second set of configurations are chosen similarly,
but instead all of the 12 GPUs are made use of. For
static distribution, we used stat_2D_12to6 configuration
that assigns half of the image segment on each node to
one display GPU and half to the other GPU. Image data
does not need to travel over the network, however, the
image formed in a frame buffer object on the second
GPU needs to be read back and assembled by the dis-
play GPU which renders the other half of the segment
area locally. We also tested with a similar configuration
called stat_2D_12to6_LB, which differed only by replacing

the static half-half distribution to two GPUs on the same
node with a local 2-way dynamic sort-first load balancer.
For CSLB, we used cslb_2D_12to6_2, cslb_2D_12to6_4,
cslb_2D_12to6_6, cslb_2D_12to6_8, cslb_2D_12to6_10,
cslb_2D_12to6_12 setups to observe the effect of cross-
segment load balancing with a 12 GPU pool, with 2, 4, 6,
8, 10 or 12 GPUs shared and assigned to each segment re-
spectively. Other than the 2-GPU assignment, all segments
might be getting help from one or more other GPUs from
other nodes, thus requiring network for image data transfers.

Tests: For each configuration and model, we have run the
eqPly application three times to make sure we have consis-
tent frame timing statistics among the three results for each
frame. We observed very similar behavior in graphs plotting
the frame timings by using either median, maximum or min-
imum of these three runs; but we display the graphs using
the minimum from three runs in this paper, as the produced
graphs are more easily viewable on paper due to smaller fluc-
tuations in the data. Where oscillating curves, which happen
in load balanced setups as the load balancer tries to con-
stantly adapt, make it difficult to view, we overlay a moving
average trend-line on the original data, and the relationships
between different data series still hold while it is much easier
to observe.

A camera path was replayed twice in each run, and the
second loop is analyzed for frame time statistics, to avoid
irregular effects on timings due to interference from client
execution by initialization and caching processes. One loop
of the camera path is designed as a sequence of 540 frames
zooming in and out on the displayed model as well as ro-
tating the model. Throughout the replay, the model starts
zoomed out in the middle of the display region, and while
rotating, it is zoomed in so that it starts covering all segments
of the tiled display, and then zooms back out to the original
position. By this, we aim to cover the following cases that
would imitate a typical user experience with a big display:

• The model occupies the middle region whereas the side
regions remain largely empty, which is bound to be a typ-
ical use case as users tend to place models centered for
viewing in an interactive visualization system.

• The model is zoomed in on to observe more detail, occu-
pying most of the display area.

Moving the model to left or right regions will technically
perform very similar to the first case in terms of load im-
balance, as the nodes have equivalent power, each loads the
whole of the model, and each is connected similarly to a
switch for networking which would not put any to advan-
tage over another based on locality. That is why we did not
extend our camera path to include such a specific case. Fig-
ure 4(a), 4(b), 4(c) display three ranges of frames from our
camera path, that places the model in different zones of the
display region, which one can observe in the behavior of the
system through the frame timing graphs of Figures 4(e) and
4(f).
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(a) Frames 1 to 345. (b) Frames 346 to 466. (c) Frames 467 to 540.
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(d) Pure rendering timings of segments for the static stat_2D_6to6 setup.
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(e) Frame times (ms) for static 6-to-6 compared to best performing CSLB 6-to-6 configuration for david1mm.
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(f) Frame times (ms) for static 12-to-6 compared to best performing CSLB 12-to-6 configuration for david1mm.

Figure 4: One can easily observe the uneven workload distribution of a static tile setup in (d), whereas cross-segment load
balancing can outperform static task distribution especially in the regions where load imbalance is high due to the views of the
model, (e) and (f).
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Configuration
david2mm lucy david1mm

Overall FPS FPS 270–345 Overall FPS FPS 270–345 Overall FPS FPS 270–345

stat_2D_6to6 37.612 35.055 3.611 2.524 1.882 1.918
cslb_2D_6to6_2 35.669 31.509 3.507 2.508 1.865 1.911
cslb_2D_6to6_4 24.289 22.170 4.821 3.818 2.078 3.106
cslb_2D_6to6_6 19.313 18.831 4.297 2.323 1.894 2.221
stat_2D_12to6 24.324 21.739 4.023 3.483 2.265 2.837
stat_2D_12to6_LB 25.366 24.382 5.945 5.729 1.918 2.090
cslb_2D_12to6_2 27.457 27.133 4.954 3.621 1.965 1.649
cslb_2D_12to6_4 26.984 26.518 9.636 8.052 2.514 3.260
cslb_2D_12to6_6 26.294 25.107 11.029 11.411 3.991 3.844
cslb_2D_12to6_8 20.204 19.948 6.254 7.409 4.886 5.170
cslb_2D_12to6_10 20.531 20.127 10.378 10.066 2.926 3.354
cslb_2D_12to6_12 18.165 17.483 9.564 10.594 3.117 3.395

Table 1: Overall and partial fps results for three data sets. CSLB improvement is more visible for larger models.

In Figure 4, based on david1mm test runs, we display
frame timing graphs for the fastest stat_* and cslb_* config-
urations for 6 and 12 GPU setups respectively, underneath
the images showing three frame ranges where the model oc-
cupancy is concentrated in different zones. A graph of pure
rendering times for each of the six display GPUs of the
stat_2D_6to6 base run is presented alongside in Figure 4(d)
to emphasize the uneven load distribution among segments
in different situations, thus indicating the performance im-
provements made possible by cross-segment load balancing.

In Table 1, we list the fps rates of our test runs for all
three data sets for all configurations. For each model, the
left column provides average fps rates over the whole camera
path, while the right column records averages for the frame
range 270 to 345, during which the uneven distribution of
load between segments of the display can easily be observed
in Figure 4(d).

Our results show that multi-display setups can experi-
ence serious load imbalance which will cause the perfor-
mance to suffer, and cross-segment load balancing improves
the overall performance remarkably by making use of idle
resources to help overloaded segments. We have seen that
smaller models like david2mm, which can be rendered very
easily, benefit much less, or even suffer, from CSLB due to
overhead costs like network communication. Also, when too
many extra resources are shared and assigned, communica-
tion can cause a bottleneck due to network limits and af-
fect the performance negatively, as seen in Table 1. When
rendering time is very small, distributing rendering tasks to
nonlocal resources will bring comparably high communi-
cation overhead for collecting rendered image tile data for
compositing. However, lucy and david1mm results demon-
strate how helpful our cross-segment load balancing sys-
tem can be, achieving up to more than 2.74 times speed-

up when the rendering time dominates communication over-
head. The right column for lucy and david1mm models in
Table 1 show that CSLB achieves even higher speeds as col-
laboration across segments removes the otherwise excessive
load imbalance due to the positioning of the model.

5. Conclusion and Future Work

In this paper, we have presented a dynamic load balancing
approach integrated into Equalizer, named cross-segment
load balancing (CSLB), which is designed to share the
graphics workload across segments of a multi-display sys-
tem. Imbalance of rendering load across display segments is
a very common situation in parallel rendering applications
which achieve higher resolutions and bigger display areas
through multiple displays built as an array of projectors or
flat panel screens driven by a rendering cluster. Using simple
frame timing statistics from past frames, CSLB assigns ex-
tra resources to overloaded segments, which share workload
through dynamic task partitioning in image or object space,
all transparent to the application that utilizes the rendering
framework.

We have observed remarkable performance improvements
in our test runs, although being limited by network resources
for cases where a lot of extra resources need to communicate
image data to each other. Nevertheless, when rendering costs
are higher than communication overhead, dynamically bal-
ancing workload of resources across segments of a display
proves to be an extremely efficient and useful approach. For
very simple rendering tasks, though, overheads might dom-
inate causing a decrease in performance. To overcome such
problems, we plan to improve the CSLB algorithm by in-
corporating other parameters like overhead cost more effec-
tively for better decision making. Similarly, a more compli-
cated cost prediction strategy can make the task partitioning
system better by adapting faster to changing conditions, thus
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achieving better overall performance with higher throughput
for a wider range of applications.

Due to the increased resource utilization, CSLB provides
more stable frame rates regardless of the model distribution
in screen space. Our tests have shown that the composit-
ing overhead, in particular the network transport, counter-
acts this equalization effect in some cases. We plan to ad-
dress this by using more effective compression techniques
and faster network interconnects to reduce the compositing
cost.
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