
Eurographics Symposium on Parallel Graphics and Visualization (2010)

J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Self-Scheduled Parallel Isosurfacing using Distributed Span

Space on Cell

Michael R. Caruso1 and Timothy S. Newman1

1Department of Computer Science, Univ. of Alabama in Huntsville , USA

Abstract

A method designed for fast isosurfacing on Cell platforms is introduced. It well-utilizes limited amounts of local

memory by exploiting a block-based span space. Exploitation goes beyond the usual steps of avoiding span space

tiles whose range does not contain the isovalue. In particular, the method keeps resident in local memories most

span space information in addition to the parts of the volume most likely to be examined if multiple isovalues are

explored. The method also performs distributed self-scheduling of isosurfacing work among the Cell’s Synergistic

Processing Units (SPUs) without explicit centralized computation of workload or assignment of work. Results are

also presented for trials on the Playstation-3, including comparison to another fast, parallel isosufacing method

(which is faster than prior reported parallel methods on Cell).

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—

Parallel processing; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data

types; I.3.m [Computer Graphics]: Miscellaneous—Isosurfaces

1. Introduction

Volumetric datasets that are organized as collections of

scalar values on rectilinear grids are produced by many scan-

ners (e.g., CT) and simulations. One common means for in-

formation discovery from such datasets is the extraction and

rendering of a surface (i.e., an isosurface) of a constant value

(i.e., an isovalue). Isosurfacing often involves much explo-

ration of the isosurface and of the isovalue space, usually via

geometric transformations and trial-and-error experimenta-

tion, respectively. Fast isosurfacing can benefit the explo-

ration process by keeping the user better-engaged with their

exploration task as well as making it more possible to ex-

plore more of the isovalue space. Isosurfacing is also used to

achieve certain special effects in graphics applications, and

in such applications, the isosurfacing is usually just one part

of a larger rendering; speed is of the essence.

In this paper, a new method for quickly performing the

most popular sort of isosurfacing [NY06]—Marching Cubes

(MC) isosurface extraction—on the Cell commodity pro-

cessor is described. Versions of Cell are currently used in

both the Sony Playstation-3 (PS-3) consumer graphics de-

vice and in servers. Cell is attractive for visualization tasks

due to its high computational potential, especially consid-

ering that this potential is available in inexpensive systems

such as the PS-3. The paper’s new method, which uses a

novel distributed self-scheduling mechanism well-suited to

the Cell architecture, exhibits substantially better Cell per-

formance than prior Cell-specific isosurfacing methods.

The rest of the paper is organized as follows. In Section 2,

the Cell architecture is described. In Section 3, related work

is discussed. The details of the new method are presented in

Section 4. Results and comparisons against other methods

are presented in Section 5. The paper is concluded in Sec-

tion 6.

2. Cell Architecture

The work here is applied on the PS-3. The PS-3 architec-

ture includes a Cell processor, Rambus-based main memory,

and Reality Synthesizer (RSX) graphics processor. The RSX

graphics processor is based on Nvidia’s G70 architecture.

The PS-3’s Cell processor includes one PowerPC processor

Element (PPE) (which has a two-level cache [IST08]) and

eight Synergistic Processor Elements (SPEs). (Cells used in

c© The Eurographics Association 2010.

DOI: 10.2312/EGPGV/EGPGV10/073-079

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV10/073-079


M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

the PS-3 have just seven functioning SPEs, however, which

allows for increased chip yield.) Each SPE has a Synergistic

Processor Unit (SPU) and memory flow controller (MFC).

The PPE and SPEs on our PS-3 run at 3.2GHz.

Our PS-3 runs linux. The linux hypervisor on PS-3 dis-

ables access to the RSX. It also claims one SPE, leaving six

usable SPEs for our experiments.

A block diagram of the Cell layout is shown in Figure 1.

Figure 1: Block Diagram of Usable Components of Linux-

based PS-3 Cell, based on [IST08].

Each SPU has 128 128-bit registers and runs a SIMD in-

struction set that allows small-scale vector operation. 256

KB SRAM of local storage is available on each SPE. SPEs

have no local cache. The SPU code and the data stack are

limited to the local storage space, although main memory

can be indirectly accessed. This main memory access is via

direct memory access (DMA) through the MFC. At most 16

main memory DMAs can be outstanding at once. Double

buffering of DMAs can be used to hide main memory’s la-

tency. An overlay capability allows code sizes exceeding the

local storage limit, when such sizes are needed. Our code’s

size was typically under 20KB per module; overlay was not

needed.

SPUs execute in-order and treat all branches as not-taken.

The SPUs are dual-issue, with each pipe dedicated to certain

instruction types [IST08]. Pipe 0 is for most floating-point,

integer, and logical operations. The other pipe handles loads,

stores, data shuffles, branch resolutions, etc. In addition, dual

issues happen only on clocks where an instruction that Pipe

0 can handle is at an even address and the next odd address

contains an instruction that is assignable to Pipe 1.

Although the Cell offers great potential with its many

SPEs and its PPE, methods developed for more conventional

architectures are unlikely to be able to leverage much of the

available computational power. In particular, the limited lo-

cal storage spaces, pipeline issuance properties, and small-

scale SIMD offered by the wide registers present challenges.

Typically, taking advantage of the available power requires

approaches that differ from the norm in conventional com-

puting. The method we describe later in this paper includes

steps that enable leverage of the available capabilities, how-

ever.

3. Related Work

Due to the number of application areas to which isosurfac-

ing can be applied, many methods for achieving fast perfor-

mance for Marching Cubes have been explored in the liter-

ature. The first direction that has been pursued includes the

strategies that avoid unnecessary processing in regions of the

volume that do not contain the isosurface. Methods of this

type can be called space-skipping methods. Since Marching

Cubes can be applied independently on the cubes that make

up a rectlinear scalar volumetric dataset, data-parallel strate-

gies for realizing it have been another popular direction pur-

sued by performance-focused researchers [ZNZ04]. A num-

ber of methods that are both parallel and space-skipping

have also been described.

Next, we describe some of the related work of these types.

We also focus here on past efforts to develop parallel visual-

ization methods geared toward the Cell processor.

The space-skipping methods avoid unnecessary computa-

tion in some parts of the volume not intersected by the iso-

surface. Since usually most cubes are not intersected (i.e.,

are not active), such methods can often be used to great ef-

fect. Many isosurfacing acceleration methods of this type

are based on spatial data structures, such as various sorts

of octrees [WvG92] or range-of-value data structures, such

as span spaces [LSJ96]. Quantized span spaces (organized

similar to the arrangement in Shen et al.’s [SHLJ96] ISSUE

algorithm) have been found to be quite effective range-of-

value data structures. As a result, they are popular space-

skipping data structures. Quantized span spaces consist of a

set of tiles. The tiles are used to organize the cubes of the

dataset. Each tile has an associated span of minimum values

and a span of maximum values. For each cube of the dataset,

an entry is made in one tile (i.e., in the one tile whose span of

minima includes the cube’s minimum value and whose span

of maxima includes the cube’s maximum). Methods like IS-

SUE are fast since they easily identify dataset cubes whose

range of values do not include the isovalue. With ISSUE,

isosurface extraction is only considered for cubes stored in

tiles whose range of values includes the isovalue. A diagram

of a quantized span space with isovalue T is shown in Fig-

ure 2. The tiles containing possibly active cubes are shown

highlighted in blue. Tiles shown in red do not contain active

cubes; no isosurfacing computations are performed on these

cubes. (N.B.: In quantized span spaces, for a given isovalue,

some tiles are not active, others are active, and a few others

are mixed—such tiles could store both active and inactive

cubes.)

c© The Eurographics Association 2010.

74



M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

Figure 2: Quantized span space (active tiles in blue, non-

active tiles in red for isovalue T )

Block-based versions [ZN04] of quantized span spaces

have been found to offer the advantage of reduced mem-

ory consumption while still enabling very fast isosurfac-

ing [ZNZ04]. In block-based span space, each tile stores in-

formation about a group of cubes of the data (rather than

about just one cube as in a standard quantized span space).

Each group has m× n× p adjacent cubes, with each cube a

member of exactly one group.

A variety of parallel approaches to MC-based isosurfac-

ing have been described in the literature [NY06], including

block-based span space approaches [ZNZ04]. Many of the

parallel approaches have been designed for use in super-

computers or clusters (e.g., [LT04, MMD∗05]) or in other

server-class parallel computers (e.g., [SG99]). A few of the

parallel approaches may also be suitable for the Cell. (We

explore one such approach in this paper.) Previously, two

parallel isosurfacing methods specific to Cell have also been

described [JLZZ09,OOC06]. The earliest of these [OOC06]

found the isosurface mesh in tetrahedral subdivisions of each

cell after assigning an approximately equal number of cubes

of the volume to each SPU. That work does not appear to

utilize SIMD capabilities of the SPUs or use space-skipping

mechanisms. The other work [JLZZ09] performs some com-

ponents of MC using small-scale vector processing capabil-

ities of the SPUs (which we also do in our method). It also

processes the dataset in a block-based manner that is func-

tionally similar to a block-based span space. Specifically, the

PPE determines which blocks are active. It stores the active

blocks in a buffer. The SPUs monitor the buffer, and when-

ever an SPU becomes idle, it grabs a block from the buffer

and computes the portion of the isosurface passing through

it.

Parallel methods for other problems have also been de-

veloped for Cell, including methods for other types of

visualization (e.g,. [KJ09]). Parallel simulation schemes

have also been described and implemented on PS-3 Cells

(e.g., [LEV∗08]).

4. Methods

Our new method is described next. It utilizes a (4× 4× 4)

block-based span space approach to skip processing in the

parts of the volume that do not contain the isosurface.

We follow a MC processing regimen in which first the

dataset data points are classified as being above the isovalue

or not. Next, the triangle topology type for a cube is deter-

mined. We note that the topologies used guarantee forma-

tion of a water-tight isosurface since they follow the triangle

facetization patterns described by Nielson et al. [NHS02].

Then, the location of the triangle vertices are determined

using linear interpolation. Finally, the triangles are formed

by linking vertices according to the facetization pattern for

the topology. In the case of our block-based approach, these

steps were applied using the small-scale vector (SIMD) par-

allelism operations of the SPUs for the cubes in each block.

Only the blocks that are potentially active are processed,

according to the span space rules. Next, we describe the

structure of the span space.

The span space tiles are of size two by two. Span space

information is stored in a highly compact manner on the

SPUs due to the limited amount of local storage on the SPUs.

The method keeps as much of the span space resident on

the SPUs as possible to reduce main memory accesses since

main memory accesses are slower than local memory access

and since only a limited number of main memory accesses

can actually be outstanding at any instant in time. The tiles

that are resident are kept resident for all the isosurface ex-

tractions. Due to the limited amount of storage space on the

SPUs, it is typically not possible for all span space informa-

tion to be kept resident.

A map of the block-based span space for two datasets used

in our work are shown in Figures 3 and 4. In these figures,

the axes are labelled by tile number. Since the datasets are

byte formated datasets, there are a total of (128× 128)/2

tiles. The tiles are presented here in “hot” colors, where a

red-to-yellow scale indicates the normalized count for the

tile. Higher-count tiles are yellow and low count tiles are

dark red, with oranges indicating mid-range values. A loga-

rithmic scale is used in mapping the values to colors. There

are no tiles below the diagonal or beyond the line marking

tiles 128 on the vertical and horizontal, so these areas of the

space should be ignored. Of particular interest here are the

tiles in the upper left corner. These are tiles that are likely to

be involved in nearly every isosurface extraction since most

isovalue choices will include the tiles closest to the upper left

corner as active tiles. In the case of the Engine data, there are

many medium-gray tiles near the upper left corner. Keeping

those tiles and associated blocks of the dataset resident in

local storage on the SPUs reduces the memory traffic and

improves the speed for iterative isosurfacing. Our approach

exploits this characteristic of the span space.

A pre-processing step performed on the PPU steps

c© The Eurographics Association 2010.

75



M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

Figure 3: “Hot color” coding of Span Space, Bonsai Data,

axes labelled by bin number

Figure 4: “Hot color” coding of Span Space, Engine Data,

axes labelled by bin number

through the volume in a block-by-block manner to build the

span space. Blocks are associated with the appropriate tiles

of span space. Blocks with a range of 0 (i.e., blocks whose

minimum and maximum are equal) are not stored in the span

space since such blocks will never contain isosurface facets.

For the Engine and Bonsai datasets, the counts of the blocks

with range of 0 are indicated in the Figures 3 and 4 as “Zero

Range Blocks.” Each tile is organized as a collection of da-

tums, each containing a small, compact representation of in-

formation about 4 blocks. Since main memory access on

Cell is via DMA, with the access accomplished fairly effi-

ciently on 16B-aligned addresses, the tile datums are each

16B in size.

The DMA accesses in our implementations were all per-

formed asynchronously. They were also done using a strat-

egy in which a new access request is sent on-the-fly while the

results from a prior access result are processed. This strategy

reduces idle cycles by overlapping processing of data with

retrieval of data.

Once the span space is constructed, its tiles are assigned to

the SPUs. Some of the tiles assigned to each SPU are phys-

ically distributed to the SPU, as described later. The other

assigned tiles are physically located in main memory and

retrieved as needed. There is available space to store only

130KB of span space information per SPU, although for

2563 or smaller datasets, this is enough to hold the basic in-

formation about the span space entirely on the SPUs. Certain

associated blocks are also distributed among the SPUs with

their containing tile. The remainder of the blocks are stored

in main memory and retrieved as needed. There is available

space to store only 400 associated blocks per SPU.

The assignment of tiles to SPUs begins in the upper left

corner of span space. Each tile is visited in order, moving

outward from that base tile. As each tile is visited, the block

references associated with the tile are evenly divided among

the SPUs. As a result, each SPU has approximately the same

number of pieces of the volume. Actual block information is

then assigned to the SPUs in order until the SPUs run out of

space. (As stated above, the remaining block data is kept in

the main memory.)

In order to achieve a reasonable load balance among the

SPUs, each SPU is responsible for approximately the same

number of blocks in the span space.

Isosurface extraction is achieved by the SPUs, each of

which self-schedules its necessary isosurface extraction ac-

tivities in the tiles assigned to it. Processing considers only

the active tiles assigned to the SPU, with data accessed as

needed from either the SPU or the main memory.

4.1. Finer Weighted Method

For comparison with our method, we also experimented with

a statically load-balanced work assignment mechanism that

is very similar to the finer weighted load balancing mecha-

nism described by Zhang et al. [ZNZ04]. We chose a finer

weighted method because it has data-parallel properties that

make it easily mappable to the Cell and because Zhang et

al. reported that it was fairly fast with very low computa-

tional overhead. In finer weighted load balancing, the num-

ber of isosurface facets per slice is taken as an estimate of the

amount of isosurfacing work for the slice. The facet count is

determined by finding the active cubes and then the topolog-

ical case of each active cube. This can be done quickly via

a comparison of each dataset data point followed by a table

c© The Eurographics Association 2010.

76



M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

look-up for the topological case, as described by Zhang et

al. [ZNZ04]. Once the slice-by-slice profile of the work has

been determined, the PPU assigns an approximately equal

amount of work per SPU, with work assigned on a slice-

by-slice basis. In the Zhang et al. approach, all the work

was divided at the beginning. Here, we first divided the first

quarter of the work among the SPUs, with each SPU getting

a set of slices with an approximately equal number of iso-

surface facets. Whenever an SPU completed one work as-

signment, another set of slices of approximately equal work-

load was assigned. The SPU’s small-scale SIMD-based op-

erations were used for the isosurfacing in each slice.

5. Results

Next we report results for several datasets. In all, 6 datasets

were tested, with at least 5 isovalues per datasets. The pre-

sentation here focuses on the Bonsai and Engine datasets

from Roettger’s Volume Library since extractions for over

100 distinct isovalues have been completed for them. These

two datasets are both 2563 datasets. An example isosurface

rendering from the Engine dataset is shown in Figure 5.

Figure 5: Engine Dataset Isosurface Rendering

Figure 6 exhibits isosurfacing times for the Bonsai dataset

(α =11) for the finer weighted and new approaches versus

number of SPUs used. For comparison, extraction time for

standard Marching Cubes on one core of an Intel Core 2

Quad Core is also shown. The new approach is faster on one

SPU than is a standard Marching Cubes on the Core 2 core,

and both approaches are much faster using all the Cell re-

sources than is standard Marching Cubes on the Core 2.

A speedup chart for representative extractions from the

Bonsai and Engine datasets are shown in Figures 7 and 8.

Both the finer weighted and new distributed span space ap-

proaches exhibit nearly linear speedup as the number of

SPUs utilized increases.

Performance is well-balanced among the SPUs for both

of the techniques we discuss. A graphical picture of the SPU

Figure 6: Bonsai (α= 11) Extraction Times vs. SPUs used.

Figure 7: Bonsai Speedup versus Number of SPUs

assignments for the finer weighted method on Engine block

is shown in Figure 9. This figure is color-coded by SPU;

all of the facets for all the assignments to a given SPU are

colored in the same color.

5.1. Pipeline Performance

Pipeline performance of the new approach’s core isosurfac-

ing component was examined using the IBM Cell SDK SPU

Timing Tool. The key measure examined with the tool was

the dual issue rate of the block processing actions (interpo-

lation, topology determination, triangle construction, etc.).

Of 739 issue slots for a typical block, 318 slots (43%) were

dual-issued. Excluding the triangle construction, there were

281 issue slots, 186 of which (66%) were dual-issued. The

triangle construction action has less dual issues—due to it

being dominated by memory operations (i.e., for Pipe 1

only).

The triangle construction action’s use of small-scale vec-

c© The Eurographics Association 2010.

77



M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

Figure 8: Engine Speedup versus Number of SPUs

Figure 9: Color Coding of SPU assignment, Finer Weighted

Method, Engine Data

tor parallel instructions was also found to provide a small

(1.09) times performance improvement versus using scalar

operations only.

5.2. Some More Analyses

Next, we report some additional analyses and characteris-

tics of the methods. First, we determined (via benchmarking)

that the self-scheduling aspect of the distributed span space

exhibited a 1.08 times improvement in performance over

centralized (PPU-driven) scheduling. A plot of the PPU-

driven versus self-scheduled extraction times for several rep-

resentative extractions on the Bonsai dataset is shown in Fig-

ure 10. In the figure, the times are presented versus percent-

age of active cells.

Figure 10: Self-scheduled versus Centralized Scheduled

Span Space Times, Bonsai Data

Second, we determined the set-up overhead for the span

space. This is a one-time (up front) activity, after which

subsequent extractions proceed at full speed. For the Bon-

sai dataset this overhead was 416 msec. For reference, the

distributed span space-based extraction took 62.5 msec us-

ing 6 SPUs with α (i.e., isovalue) 11 for the Bonsai dataset.

For this extraction, about 9% of the cells are active. For the

Engine dataset at α = 4, results are comparable: 7% of the

cells are active and the distributed span space-based extrac-

tion took 51.2 msec using 6 SPUs. The overhead for Engine

was 397 msec.

The finer weighted approach always requires work esti-

mation. For the Bonsai dataset with α 11, the total extraction

time was 100 msec on 6 SPUs, although 5.3 msec of that was

determining the work breakdown. Subsequent isosurfacings

still need to do a new work calculation, though. If there will

be little experimentation with isovalues, the finer weighted

approach is thus preferrable.

5.3. Method Comparisons

Since the prior Cell-based isosurfacing method of O’Conor

et al. [OOC06] reported performance for the Bonsai dataset,

we next report our relative performance versus it for that

dataset. Due to the fact that O’Conor et al. used a Cell

clocked at a lower rate (2.1 GHz versus our 3.2 GHz), some

extrapolation is necessary to complete the comparison. In

addition, O’Conor et al. did not report the isovalue they

used. For this comparison, we use an isovalue associated

with a very high level of activity for the dataset (α = 11,

for which 9% of cubes are active). At this level, our ex-

traction times are close to their longest; the comparison is

conservative. O’Conor reported a processing rate of 4 mil-

lion cubes (i.e., 20 million tets) per second on 2 SPUs, with

c© The Eurographics Association 2010.

78



M. R. Caruso & T. S. Newman / Self-Scheduled Parallel Isosurfacing ... on Cell

Method Triangles Cubes/Sec. S

O’Conor [OOC06] 2.95 M 6.08 M –

Finer Weighted 2.95 M 58.80 M 9.7

Dist. Span Space 2.95 M 94.21 M 15.5

Table 1: Isosurface Extraction Time Comparison, 2 SPUs,

Bonsai

nearly linear speedup beyond 2 SPUs. (Finer weighted and

distributed span space approaches also show nearly linear

speedup.) Their results, normalized to a 3.2 GHz clock, are

shown versus the finer weighted and distributed span space

approaches (also on 2 SPUs) in Table 1. As shown in the ta-

ble’s last column (“S”), the finer weighted approach is about

10 times faster than O’Conor et al.’s method. The distributed

span space approach is more than 15 times faster than that

prior work.

The other Cell-based method of Jin et al. [JLZZ09] in-

cluded a comparison study versus the O’Conor et al. method,

but with datasets not available to us. Depending on the

dataset, the Jin et al. method was between 1.2 and 3.4

times faster than the O’Conor et al. method. Thus, the finer

weighted and distributed span space approaches are much

faster than the fastest prior methods for Cell-based isosurfac-

ing. In particular, finer weighted is about 3 to 8 times faster

and the new distributed span space is 4.5 to 13 times faster

than the Jin et al. method.

6. Conclusions and Future Work

A new self-scheduling distributed span space-based

method for very fast isosurfacing on the Cell has been in-

troduced. The method exploits properties of span space to

keep resident in local storage the most critical parts of the

data and supporting data structures, which enables the fast

performance. Comparison studies versus the other reported

methods for Cell-based isosurfacing suggest the new method

is quite fast, offering in some cases an order of magnitude

time improvement over the prior methods. The method ex-

ploits locality of reference properties of the span space and

leverages the small-scale (SIMD) vector parallelism capa-

bilities of the Cell’s SPUs to achieve its very high level of

performance.

For future work, we would like to explore the performance

of the methods on Cell blade systems where more SPUs

would be available. We would also like to explore if the dis-

tributed span space concept can be well-adapted for use in

systems with multiple GPUs.

References

[IST08] IBM, SONY, TOSHIBA: Cell Broadband Engine Pro-

gramming Handbook Including the PowerXCell 8i Processor,

Version 1.11. 2008.

[JLZZ09] JIN J., LI B., ZHENG R., ZHANG Q.: Fast isosurface
extraction for medical volume dataset on cell be. In Proc., 2009

Int’l Conf. on Parallel Processing (2009), pp. 100–107.

[KJ09] KIM J., JAJA J.: Streaming model based volume ray cast-
ing implementation for cell broadband engine. Scientific Pro-

gramming 17, 1-2 (2009), 173–184.

[LEV∗08] LUTTMANN E., ENSIGN D., VISHAL V., HOUSTON

M., RIMON N., VOLAND J., JAYACHANDRAN G., FRIEDRICHS

M., PANDE V.: Accelerating molecular dynamic simulation on
the cell processor and playstation 3. J. Computational Chem. 30

(2008), 268–274.

[LSJ96] LIVNAT Y., SHEN H.-W., JOHNSON C. R.: A near op-
timal isosurface extraction algorithm using span space. IEEE

Trans. on Vis. and Comp. Graphics 2 (1996), 73–84.

[LT04] LIVNAT Y., TRICOCHE X.: Interactive point-based iso-
surface extraction. In Proc., Visualization ’04 (2004), pp. 457–
464.

[MMD∗05] MERELLI I., MILANESI L., D’AGOSTINO D.,
CLEMATIS A., VANNESCHI M., DANELUTTO M.: Using par-
allel isosurface extraction in superficial molecular modeling. In
Proc., First Int’l Conf. on Dist. Frameworks for Multimedia Apps.

(DFMA’05) (2005), pp. 288–294.

[NHS02] NIELSON G., HUANG A., SYLVESTER S.: Approxi-
mating normals for marching cubes applied to locally supported
isosurfaces. In Proc., Vis. ’02 (2002), pp. 459–466.

[NY06] NEWMAN T., YI H.: A survey of the marching cubes
algorithm. Computers & Graphics 30, 5 (Oct. 2006), 854–879.

[OOC06] O’CONOR K., O’SULLIVAN C., COLLINS S.: Isosur-
face extraction on the cell processor. In Proc., Seventh Irish Work.

on Comp. Graphics (2006).

[SG99] SULATYCKE P., GHOSE K.: A fast multithreaded out-of-
core visualization technique. In Proc., Int’l Symp. on Par. and

Dist. Processing (IPPS/SPDP) ’99 (1999), pp. 569–575.

[SHLJ96] SHEN H.-W., HANSEN C., LIVNAT Y., JOHNSON C.:
Isosurfacing in span space with utmost efficiency (issue). In
Proc., Visualization ’96 (1996), pp. 287–294.

[WvG92] WILHELMS J., VAN GELDER A.: Octrees for faster
isosurface generation. ACM TOG 11, 3 (1992), 201–227.

[ZN04] ZHANG H., NEWMAN T.: Span space data structures
for multithreaded isosurfacing. In Proc., IEEE Southeastcon ’04

(2004), pp. 290–296.

[ZNZ04] ZHANG H., NEWMAN T., ZHANG X.: Case study
of multithreaded in-core isosurface extraction algorithms. In
Proc., Eurographics Symp. on Par. Graphics and Vis. ’04 (2004),
pp. 83–92.

c© The Eurographics Association 2010.

79


