
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Streamed Ray Tracing of Single Rays on the Cell Processor

Florian Bingel† and Andre Hinkenjann‡

Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany

Abstract

In this paper we present an approach to efficiently trace single rays on the Cell Processor, instead of using ray

packets. To benefit from the performance of this processor, a data structure is chosen which allows traversal with-

out excessive accesses to main memory. Together with careful optimization for SIMD processing, a performance

comparable to a packet based ray tracer, running on the same hardware, is achieved. In special cases, when the

coherency of the traced rays get very low, it even outperforms the packet based approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing;

1. Introduction

Most of today’s real time ray tracing approaches support ray
packets to benefit from the coherence of the rays. This works
well for simple ray casting algorithms and ray tracing of
scenes producing highly coherent secondary rays. For trans-
parent objects like windows or flat mirrors this usually is
the case, while curved surfaces like lenses, liquids or bumpy
structures can lead to a wide spreading of secondary rays.
Also, in more sophisticated global illumination algorithms
the rays sampling a scene in several ways are not necessarily
coherent. In that case the performance of packet based ray
tracers usually degenerates to a fraction of the speed com-
pared to tracing coherent rays. To overcome this issue, it is
useful to trace only single rays and to take advantage of the
coherence of the rays, when its available.
In this paper we present a ray tracing approach that utilises
the Cell Broadband Engine (Cell B.E.), known as the pro-
cessor of Sony’s Playstation 3, to trace single rays using
well known structures like Uniform Grids. A streaming ar-
chitecture, which does not depend on efficient caching, is
used to keep a high workload on the processor. Special tech-
niques from the Cell B.E. architecture are used to overcome
the high latency when accessing main memory and to utilize
the SIMD-capabilities of the processor. The Cell processor

† e-mail: florian.bingel@h-brs.de
‡ e-mail: andre.hinkenjann@h-brs.de

contains a so called Power Processing Element (PPE), which
is a common general purpose processor. It is not very fast,
contains 2 MByte second level cache and is intended for
controlling. The compute-power of the Cell is provided by
eight Synergistic Processing Elements (SPE). This simple
but very fast SIMD-Processors each contain a 256 KByte
Local Store (LS), which is located in the processing ele-
ment and therefore can be accessed very fast (within 6 cy-
cles). In contrast, the SPEs cannot directly access the main
memory. Instead, special direct memory access (DMA) - in-
structions load from and store to the main memory. All data
necessary for a program and the program itself has to fit
into the local store. This memory hierarchy makes the de-
velopment more complicated, but the programmer can com-
pletely control which data is in the LS. A software managed
cache, provided by IBM’s Cell-SDK [cel09], can be used
if the memory access pattern makes it reasonable. The doc-
umentation recommends the use of double-/multi buffering
schemes, where parts of the needed data is loaded into the
LS and processed, while the loading of another part is in
progress. This is meant to overcome the limitations of the
size of the LS and to hide the latency of several hundred
or thousands of processor cycles while loading/storing data
from/to the main memory.

2. Related Work

Since its release in 2006, few ray tracers for the Cell pro-
cessor were published. A demo version of IBM’s Interac-

c© The Eurographics Association 2010.

DOI: 10.2312/EGPGV/EGPGV10/035-041

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV10/035-041

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

tive Ray Tracer (iRT) is available for free and uses pre-
computed datasets that are rendered either directly on a
Playstation 3 via a joy-pad controlled interface or remotely
on the QS21/QS22 hardware. It allows to render static scenes
with simple shading, texturing and shadowing and supports
ambient occlusion for global-illumination-like effects. The
recursion depth limited to four is enough for simple scenes
but not for advanced optical effects with many transmis-
sive or reflective objects. In 2006 in [BWSF06] a packet
based ray tracer was published. The algorithms for data
structure traversal and intersection test, adopted from x86-
implementations, where successfully transferred to the Cell
architecture primarily using software caches and software-
hyperthreading, which implements an advanced double-
/multi-buffering approach. A cell ray tracer, based on the
bounding interval hierarchy [WK06] data structure and 4*4
packet tracing was published in [BMH09] in 2009. In com-
bination with the VR-Framework basho [HM04] a complete
immersive visualization system is available which provides
a modern software architecture using plugins. This ray tracer
was used for comparison to the approach introduced in chap-
ter 4. In [Hap09] a comparison of a BIH and a kd-Tree imple-
mentation of a ray tracer on the Cell was published. Different
techniques are evaluated to speed up the rendering process,
but the implementation suffers from non optimal load bal-
ancing between the PPE and the SPEs.
Several recent papers address the problem of coherent and
especially incoherent rays. In [MMAM07] a large buffer
is used to store generated rays and sort them to discover
coherence for a common packet tracer. This generates a
large memory footprint and does not pay off, according to
their results. Another approach, as published in [WBB08]
or [DHH∗08], implements single ray ray tracing on a flat-
tened bounding volume hierarchy. This addresses the SIMD
capabilities of current and future processors and showed a
performance comparable to current packet tracers when ren-
dering scenes producing many incoherent rays. In [BWB08]
a packet tracer uses big packets which are merged with other
packets as the number of masked rays increases. The inac-
tive rays can be removed from the rendering loop this way,
but a clever way of combining packets containing coherent
rays is needed.

3. Streamed Ray Tracing

Our single ray tracing approach uses a typical uniform grid
for acceleration. There are two important reasons for this. At
first, a uniform grid is a regular data structure. This allows
for traversal without doing excessive accesses to main mem-
ory. Only the location of the grid (usually the bounding box
of an object), its resolution (in cells / dimension) and a small
bit-lookup-array are needed. This array contains one bit for
every grid cell which indicates if a cell contains objects. By
pre-loading this data into the local store of the SPEs, it is
possible to traverse the data structure until a non-empty cell
is intersected. The second reason for using a uniform grid is

that during traversal only a small amount of data needs to
be stored (e.g. current cell), and not a stack which is usu-
ally needed while traversing tree-like structures, like BVHs
or kd-trees. This allows traversing many rays consecutively
and to use this as a multi-buffering scheme for overlapping
memory accesses. To be independent of any coherence of
the rays, the triangle data, contained in the grid cells, is not
cached. Instead it is loaded from main memory to a buffer
in SPEs local store during traversal. The rays are streamed
through the several steps of the ray tracer. This scheme is
similar to that in [MMAM07], but does no sorting of the rays
at all. The rays are processed in the order they occur. One
condition for that scheme is an iterative approach, instead of
doing a common recursive ray tracing (like in [MMAM07]).

3.1. Construction of the Uniform Grid

The construction of the grid is completely done on the PPU
using common approaches. This means that the build is not
very fast, most effort was made to enhance the rendering
part. But the construction of a grid is generally very fast,
compared to other data structures (for construction times,
see chapter 4). An approach to efficiently implement this on
a streaming processor was published in [KS09] and we are
considering to use this for our system.

Figure 1: The ray pipeline. The processing elements are

blue, the green ones are buffering elements for rays, pixel

and triangles. The arrows show the flow of the data.

3.2. The Ray Pipeline

Figure 1 shows the steps each ray takes until the final pixel
color is calculated. At first, a fixed number of eight rays is
generated and written into a ray buffer. These rays are pro-
cessed at the same time, but completely independent from
each other. In one iteration, eight rays are read from the
buffer and traversed through the grid until the first hit of a
non-empty cell. The data for these cells is asynchronously
loaded into the triangle-buffer. When the traversal for all
eight rays is done, the triangle data of the first processed ray
usually is already loaded and it can be intersected against
the triangles. This is done in "VisitVoxel". If an intersection
was found, additional data (normals, texture coordinates,...)
of the hit triangle is asynchronously loaded. If no intersec-
tion was found, the ray is written back into the ray buffer.
This step is repeated for all of the eight rays. After finishing
this part, shading of the hit points is done for all rays that hit

c© The Eurographics Association 2010.

36

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

a triangle. In the shading-routine the material data of the hit
triangles is loaded from a software managed cache [cel09].
This works well because usually the memory footprint of the
complete material data is small. Also the secondary rays are
generated here and written into the ray buffer. Now the ray
buffer is checked, if it holds less than eight rays. If this is the
case, new primary rays are generated. If not, the processing
continues with the traversal. The ray buffer is implemented
as a ring buffer and is accessed in FIFO-style. The procedure
continues until less than eight rays are left and no more pri-
mary rays can be generated. Since this covers only a small
fraction of all rays and only occurs at the end of a rendering
step, these last rays are processed individually, without any
interleaving of the memory accesses. A more dynamic pro-
cessing of different numbers of rays would generally lead to
a bigger overhead and is not suitable for a streaming proces-
sor like a SPE.

3.3. SIMD-Traversal of the Grid

The grid traversal of the rays is a hot spot of the ray tracer.
Depending on the scene, this part can take more than 50%
of the total run-time. Therefore, this part is heavily opti-
mised. The traversal is implemented according to the al-
gorithm of [AW87], but without any branches. The use of
SIMD programming features and intrinsics make it possible
to traverse a ray in only 21 processor cycles per grid cell.

Listing 1: The while loop of the traversal of the grid cells.

whi le (! ou t)
{

t empCe l l I ndex = c e l l I n d e x ;
v e c t o r u i n t b i t I n d e x = spu_r lmaskqw (t empCe l l Index , 3) ;

/ / s h i f t one b i t t o t h e c o r r e c t p o s i t i o n f o r t h e c u r r e n t c e l l

v e c t o r u i n t b i t V e c t o r V a l = spu_s lqw (oneOne , t empCe l l I ndex) ;

/ / compare a l l t h r e e comp . o f tMax t o f i n d s m a l l e s t E lement

v e c t o r unsigned i n t compare = spu_cmpgt (tMaxRota te1 , tMax) ;
v e c t o r unsigned i n t compare2 = spu_cmpeq (tMaxRota te1 , tMax) ;
compare = spu_o r (compare , compare2) ;
tMaxRota te2 = (v e c t o r f l o a t) spu_cmpgt (tMaxRotate2 , tMax) ;
compare = spu_and (compare , (v e c t o r unsigned i n t) tMaxRota te2) ;

/ / add s m a l l e s t e l emen t t o c u r r C e l l and tMax

v e c t o r s i gned i n t c u r r S t e p = spu_and (s t ep , compare) ;
v e c t o r f l o a t c u r r D e l t a = spu_and (t D e l t a , compare) ;
c u r r C e l l = spu_add (c u r r C e l l , c u r r S t e p) ;
tMax = spu_add (tMax , c u r r D e l t a) ;
tMaxRota te1 = s p u _ s h u f f l e (tMax , tMax , r o t 3 _ 1) ;
tMaxRota te2 = s p u _ s h u f f l e (tMax , tMax , r o t 3 _ 2) ;
c e l l I n d e x = s p u _ s p l a t s (s p u _ e x t r a c t (c e l l I n d e x , 0)) ;
c e l l I n d e x = spu_add (c e l l I n d e x , i n d e x S t e p) ;
v e c t o r unsigned i n t outOfBox = spu_cmpeq (c u r r C e l l , j u s t O u t) ;
outOfBox = spu_orx (outOfBox) ;

/ / Load t h e B i t v e c t o r i n t o a r e g i s t e r

v e c t o r u i n t l ookupVec to r = s i _ l q x (b i tLookupVec to r , b i t I n d e x) ;

/ / r o t a t e t h e b i t f o r t h e c u r r e n t c e l l t o t h e f i r s t b y t e

l ookupVec to r = spu_ r l qwby t ebc (lookupVec to r , t empCe l l I ndex) ;
voxelNotEmpty = spu_and (lookupVec to r , b i t V e c t o r V a l) ;
outOfBox = spu_o r (outOfBox , voxelNotEmpty) ;
c e l l I n d e x = spu_and (c e l l I n d e x , (v e c t o r s i gned i n t) compare) ;
c e l l I n d e x = spu_orx (c e l l I n d e x) ;
ou t = s p u _ e x t r a c t (outOfBox , 0) ;

}

Listing 1 shows the main part of the traversal, the while-
loop where one ray is traversed through one grid cell. Please
note that this loop computes values from consecutive iter-
ations. While the current cell’s (stored in "tempCellIndex")
bit value is loaded, the next cell is computed in "cellIndex".
The six cycles latency only of the "si_lqx()" instruction,
which loads from the local store, allows this on-demand
loading. The compiler reorders the C-instructions above to
minimize dependency stalls of the instructions. The loop ex-
its if the ray leaves the grid or if a non-empty cell was hit.

3.4. Atomic Read of the Grid Information

During the traversal of the grid, when a non-empty cell is
found, the number of triangles in that cell as well as their
location in main memory is not known. An array, containing
this information for every grid cell is located in main mem-
ory. Since it should not be loaded using a cache, due to the
possible incoherency of the rays, a different way of loading
has to be used. The Cell B.E. architecture provides a low la-
tency atomic access to main memory, intended for synchro-
nization purposes of the SPEs. This operation implements
a high priority, 128 Byte load in about 200 - 300 processor
cycles, opposed to at least 800 - 900 cycles latency needed
for a standard DMA access. By using atomic loads, the num-
ber of the triangles in the current grid cell and a pointer to
the triangles in main memory can be loaded very efficiently
without the use of any caching. Table 1 gives a comparison
of different possibilities of loading the two values. For the
benchmarking a very cache friendly dataset was used, so the
times for the software cache are best case values and can be
higher in practice. It should be mentioned that the "atomic"
nature of the load is not needed at all, only the high priority
and the short latency makes it useful for that case. Due to
the property of the implementation of this instruction (getl-
lar()), which does not lock the memory but just reserves it,
accesses from other SPEs to the same memory location are
possible.

Table 1: The table shows the average cycles needed to load 8

bytes from main memory. By using an asynchronous atomic

load, the latency can be minimized without the need of a

software managed cache. This allows completely incoherent,

but efficient loads.

SW-
Cache

DMA
sync.

DMA
async.

Atomic
sync.

Atomic
async.

315 986 609 470 269

3.5. The Micro-Cache

After the traversal for every ray (processed in one iteration) a
buffer is needed to hold the triangle data of the grid cell that
was traversed. It makes sense to reuse that data when a ray
intersects the same grid cell as one of its direct predecessors.

c© The Eurographics Association 2010.

37

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

By using a simple comparison of the grid cell indices, a ray,
coherent to another ray, can use the grid information and the
triangle buffer already loaded in the same iteration of the
ray pipeline. A very small size of 8 entries, using 2 vectors
each containing 4 grid cell indices, and the SIMD commands
of the SPEs make it possible to test for already loaded grid
cells with virtually no overhead cost. In scenes producing
high coherent rays this can lead to a speed-up of about 20%,
whereas in scenes producing low-coherent rays no drawback
is noticed due to the low overhead of the "caching".

3.6. Triangle Intersection

To intersect the triangles, two different algorithms were
tested. To take advantage of the SIMD capabilities, the trian-
gles are always organized in packets of four. The packet size
matches the SIMD width of the SPEs.

We compared two algorithms: a version from the Cell
SDK, included in the example library [cel09], based on the
well known Moeller-Trumbore-Test [MT97], and a SIMD-
optimized test [MSK07] are used to intersect one ray with
four triangles at a time. The loop, iterating over the triangles
always processes two triangle packets at once. This loop-
unrolling showed an increase of performance of about 10%
because of a higher processor load. Shevtsov’s algorithm
performed only slightly better than the SDK-Version. Be-
cause of a more expensive pre-calculation during build-up of
the dataset, needed for Shetsov’s version, the SDK-Version
was used.

3.7. Shading, Texturing and Secondary Ray Generation

After a hit was found, shading is started. The implementa-
tion currently supports phong shading and texturing. This is
the only part of the whole system where caches are used. The
material data usually consists of some ten materials, allow-
ing an efficient caching even without good coherency. The
textures are also loaded using a cache, which showed a big-
ger but acceptable impact. Future versions should get rid of
the caches and load that data directly from main memory,
similar to the loading of triangle data. The shading routine
also includes the generation of the secondary rays. They are
written into the ray buffer to be processed in a subsequent
iteration of the whole process. Since these rays emerge in a
grid cell whose data is still in the triangle buffer, they are
directly intersected with the triangles. This prevents an addi-
tional load of that data when first traversing these rays. This
optimization resulted in a speed-up of 1 to 7%.

3.8. Extension to a Simple Hierarchy

The bit array, indicating if a grid cell is occupied or not,
must reside completely in the local store of the SPEs dur-
ing traversal. Since only about 100 KByte can be used for
this, the size of the grid is limited to about 800000 cells.

The performance of larger scenes, like the "fairy" scene (cf.
figure 4) suffers from this limitation. To overcome this prob-
lem, a simple hierarchy was included in an extended ver-
sion of the ray tracer. Every grid cell, containing more than
a fixed number of triangles, contains another uniform grid
consisting of 8*8*8 cells. When loading the grid informa-
tion (see chapter 3.4), the complete information needed to
traverse this small grid can be loaded from main memory in
one step. The atomic load always performs a 128 Bytes load,
so the bit array for 83 cells, as well as additional information
like pointers to triangle data, fits perfectly into this size. The
additional traversal step is done after the Traversal() and be-
fore the VisitVoxel() steps of the ray pipeline. This way the
extended grid can efficiently handle much bigger scenes than
the simple uniform grid.

Figure 2: Render times for the "eye"-scene, rendered with

one to six SPEs. The renderer shows a nearly linear speed-

up because all renderers run completely independent. The

small divergence is a result of the heavy load to the memory

controller which connects all SPEs to the main memory.

3.9. Parallelization and Load Balancing

Since each SPE runs a complete instance of the ray tracer,
and since there are six SPEs available on a Playstation 3, six
individual renderers can be run. The process of the ray trac-
ing itself is easily parallelized. A "sort first" [MCEF08] ap-
proach is utilized by dividing the view port into tiles and as-
signing each SPE one tile at a time. This is done by a global
counter which all SPEs read and increment using an atomic
access. The next tile to be rendered can be calculated from
the counter value and the predefined tile size. The speed-up
for using one to six SPEs is nearly linear (cf. figure 2). The
memory controller which connects all SPEs to main memory
limits the parallel processing by only a few percent. Differ-
ent tile sizes and tile shapes where tested. Figure 3 shows
that the performance of the renderer is heavily dependent of
the tile size. By rendering small tiles of only 8∗8 pixels the
overhead for synchronization limits the rendering speed. The
blue bars show a performance increase for square tiles up to
32∗32 pixels. The red bars show the render times for equally

c© The Eurographics Association 2010.

38

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

sized blocks of 1280 pixels, beginning with a nearly square
tile (40 ∗ 32) to one single line of the image. Rendering a
single line does provide the best memory access pattern, but
suffers from a low coherency of the rendered tiles. Since the
pipeline of the renderer uses only the coherency of the 8 pix-
els rendered at once (see chapter 3.5), it is more efficient to
generate 4∗ 2 Rays, instead of a row of 8. This can be done
by assigning tiles of a size of 640 ∗ 2 pixels to render, the
best trade-of of a good memory access and a high coherency
for the rendering step. Due to the limitations of the SPEs lo-
cal store, it is not possible to use tiles with more than 1280
pixels.

Figure 3: Different tile sizes and tile shapes result in differ-

ent rendering times. Larger tile sizes lower the synchroniza-

tion overhead. The maximum possible size of 1280 pixels in

different shapes is shown by the red bars. A more line-based

setting provides a faster memory access. Rendering single

lines (last bar) does not provide good coherency of the rays,

thus lowering the speed.

Figure 4: Different scenes ray traced with a 1280 ∗ 1024
pixel resolution. The first scene is an eye model of an eye

surgery simulator (courtesy VRmagic [VRm09]). The sec-

ond scene (FairyForest scene from [fai09]) is provided to

compare the results to other ray tracers.

4. Results

To measure the efficiency of the presented ray tracing ap-
proach, three different scenes where tested. Figure 4 shows
two of the scenes. The eye scene shows a model of a hu-
man eye, part of an eye-surgery simulator. It consists of
50.000 triangles, but many transparent layers generate many

secondary rays. The next scene is well known from many
other publications and is taken from [fai09]. It is made of
170.000 triangles which takes advantage of the hierarchical
grid, where the simple uniform grid does not perform well.
In figure 7 a scene, called "spherebox", is shown which was
constructed to force the generation of incoherent rays. This
scene is also made of about 50.000 triangles. The resolu-
tion of all renderings was 1280 ∗ 1024. To compare the re-
sults to a common packet based ray tracer, an implementa-
tion of the BIH data structure [WK06] in combination with
a 4 ∗ 4 packet tracing was used, which is further described
in [BMH09]. It runs on the Cell, using 6 available SPEs of a
Playstation 3. It should be mentioned that the BIH does not
perform as good as a well constructed kd-Tree or BVH, but
allows for very fast build times. This means that it is possi-
ble to render dynamic scenes. An implementation of the BIH
compiler on one SPE, like the one mentioned in [WRH09],
shows a speed-up of up to seven compared to the PPU im-
plementation. The data structure builds in this paper are done
on the PPU, but a future implementation of the grid-build on
the SPE is expected to show a similar behaviour.

Figure 5: The relation of primary and secondary rays for

recursion depths up to 8 for the scenes "spherebox" (fig. 7),

"eye" and "Fairy Forrest" (fig. 4).

4.1. Ray Distributions

The different scenes chosen generate different characteris-
tics of ray-distributions. In the FairyForest scene nearly all
rays are primary rays, thus having a high degree of coher-
ence while rendering. The eye scene does generate many
secondary rays, but they are very coherent due to the fact,
that the lens system of the eye bundles the rays, and some
transparent layers in the eye do not spread the rays at all.
The spheres scene represents a scene generating many sec-
ondary rays having a wide spreading, resulting in low ray
coherence. Figure 5 shows the fractions of the rays of differ-
ent recursion depths to all rays traced.

4.2. Benchmarks

In figure 6 three charts show the results for three different
ray tracers. The first one uses the uniform grid as explained
in this paper. The second one uses the extension to the sim-
ple hierarchical Grid as mentioned in chapter 3.8. The third

c© The Eurographics Association 2010.

39

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

Figure 6: The benchmarks for the three scenes, using the

different ray tracers, show that the single ray approach can

compete with the packet based BIH ray tracer.

one is the packet-based ray tracer using a BIH data structure
as mentioned above.
The first chart shows the buildtimes of the different data
structures for the different scenes. As expected, both the uni-
form grid and the hierarchical grid are built faster than the
BIH structure but the huge difference in building the "fairy"-
scene is remarkable. For the two smaller scenes, "sphere-
Box" and "eye", even the slow PPU builds the data structures
fast enough to reach interactive frame rates.
The second chart shows the pure render times for the same
data structures and scenes. Because of many reflections, the
"sphereBox" results in the largest render time. Both grid-
based ray tracers are advantageous over the BIH ray tracer
due to many incoherent rays in this scene. The ray packets
lead to a low efficiency of the BIH traversal. In the "eye"-
scene all ray tracers are almost equally fast, only the over-
head of the hierarchical grid does not pay off for this small
scene. It is interesting that the uniform grid can compete with
the BIH even for highly coherent secondary rays produced in
this scene. The "fairy" scene is the biggest scene here and it
shows a clear advantage of the BIH ray tracer. Since most
of the rays are primary rays, the ray packets benefit from the
very high coherence of the rays. Using the uniform grid, this
scene can not be rendered efficiently because of its limita-
tions of the grid size. In this case the hierarchical grid is the
better one of the grids.
Since our ray tracers are intended for rendering dynamic
scenes, the time to image, the sum of both times mentioned
above, is important. For both the "sphereBox" and "eye"
scenes the relation of the times of the three ray tracers is sim-
ilar to the render times, showing an advantage of the grids

for the "sphereBox" and an almost equal performance for the
"eye". For the "fairy" scene the BIH ray tracer suffers from
the very slow buildtime, leading to even slower performance
than the uniform grid.

Figure 7: The "spherebox" scene, rendered with recursion

depth 0 (ray casting), 1, 2, and 9. The differences of the re-

cursion depths from 3 to 9 are only hardly noticeable.

4.3. The Impact of the Recursion Depth

To analyse the impact of the recursion depth to the render
times, the "spherebox"-scene is used. In figure 7 this scene
is rendered with different recursion depths. The difference
in the images of depths 2 and 9 is very small, only a small
fraction of rays is active in the third and following recursions
(see figure 5). Figure 8 shows the render times for the three
ray tracers for only primary rays and the recursion depths
from 1 to 9. Starting at a depth of four, the render times
for the grids are stable at 1 second. The few additional rays
don’t influence the rendering very much. For the BIH-ray
tracer the times increase for every additional recursion step,
which indicates a bad efficiency for the ray packets from a
recursion depth of 3 upwards. This behaviour is an important
feature of the single-ray ray tracers proposed here.

5. Conclusion and Future Work

We successfully implemented a ray tracer on the Cell pro-
cessor which is capable of tracing single rays in a streaming
fashion. It can compete with another ray tracer for this pro-
cessor, which implements the traditional packet based trac-
ing. Future work is to remove the dependency on the tex-
ture cache, allowing incoherency in the shading part, too. A
drawback right now is the lack of shadows, an extension is
needed. We would like to implement this approach on al-
ternative platforms, like GPUs, to find out if the approach
presented here is portable to other architectures.

c© The Eurographics Association 2010.

40

Florian Bingel & Andre Hinkenjann / Streamed Ray Tracing of Single Rays on the Cell Processor

Figure 8: The render times for the packet based BIH ray

tracer increases even for recursion depths where not many

rays are active any more. The single-ray ray tracers do not

show this behaviour.

Acknowledgements

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) under grant no
1762X07. We would like to thank VRmagic for providing
the eye model and IBM Deutschland GmbH for the close
co-operation.

References

[AW87] AMANTIDES J., WOO A.: A fast voxel traversal algo-
rithm for ray tracing. In Eurographics 1987 (1987).

[BMH09] BINGEL F., MANNUSSF., HINKENJANN A.: Ray trac-
ing on a cell cluster for virtual environments. In CGI ’09:

Computer Graphics International (New York, NY, USA, 2009),
ACM.

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray
packet reordering. In Interactive Ray Tracing, 2008. RT 2008.

IEEE Symposium on (Aug. 2008), pp. 131–138.

[BWSF06] BENTHIN C., WALD I., SCHERBAUM M.,
FRIEDRICH H.: Ray Tracing on the CELL Processor. In
Proceedings of the 2006 IEEE Symposium on Interactive Ray

Tracing (2006), pp. 25–23.

[cel09] Cell broadband engine resource center, December 2009.
http://www.ibm.com/developerworks/power/cell/.

[DHH∗08] DAMMERTZ, H., HANIKA, J., KELLER, A.: Shallow
bounding volume hierarchies for fast simd ray tracing of inco-
herent rays. Computer Graphics Forum 27, 4 (June 2008), 1225–
1233.

[fai09] The utah 3d animation repository, December 2009.
http://www.sci.utah.edu/ wald/animrep/.

[Hap09] HAPALA M.: Data structures for ray tracing on cell ar-
chitecture. In CESCG 2009 (Slovakia, April 2009).

[HM04] HINKENJANN A., MANNUSSF.: basho - a virtual envi-
ronment framework. In Proc. of 7th Symposium on Virtual Real-

ity, SVR 2004 (2004).

[KS09] KALOJANOV J., SLUSALLEK P.: A parallel algorithm
for construction of uniform grids. In HPG ’09: Proceedings of

the Conference on High Performance Graphics 2009 (New York,
NY, USA, 2009), ACM, pp. 23–28.

[LJS∗08] LI B., JIN H., SHAO Z., LI Y., LIU X.: Optimized
implementation of ray tracing on cell broadband engine. In Mul-

timedia and Ubiquitous Engineering, 2008. MUE 2008. Interna-

tional Conference on (April 2008), pp. 438–443.

[MCEF08] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. In SIGGRAPH Asia

’08: ACM SIGGRAPH ASIA 2008 courses (New York, NY, USA,
2008), ACM, pp. 1–11.

[MMAM07] MANSSON E., MUNKBERG J., AKENINE-MOLLER

T.: Deep coherent ray tracing. In IEEE Symposium on Interactive

Ray Tracing, 2007. RT ’07. (Sept. 2007), pp. 79–85.

[MSK07] MAXIM SHEVTSOV A. S., KAPUSTIN A.: Ray-
triangle intersection algorithm for modern cpu architectures. In
GraphiCon’2007 (Moscou, 23–27 juillet 2007).

[MT97] MOELLER T., TRUMBORE B.: Fast, minimum storage
ray-triangle intersection. J. Graph. Tools 2, 1 (1997), 21–28.

[VRm09] Vrmagic gmbh, December 2009.
http://www.vrmagic.com.

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets - efficient simd single-ray traversal using multi-
branching bvhs -. In Interactive Ray Tracing, 2008. RT 2008.

IEEE Symposium on (Aug. 2008), pp. 49–57.

[WK06] WÄCHTER C., KELLER E.: Instant ray tracing: The
bounding interval hierarchy. In In Rendering Techniques 2006

- Proceedings of the 17th Eurographics Symposium on Render-

ing (2006), pp. 139–149.

[WRH09] WEIER M., ROTH T., HINKENJANN A.: Efficient
strategies for acceleration structure updates in interactive ray
tracing applications on the cell processor. In ISVC ’09: Proceed-

ings of the 5th International Symposium on Advances in Visual

Computing (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 987–
998.

c© The Eurographics Association 2010.

41

