
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Cross-Node Occlusion in Sort-Last Volume Rendering

Stéphane Marchesin1 and Kwan-Liu Ma1

1University of California, Davis

Abstract

In the field of parallel volume rendering, occlusion is a concept which is already widely exploited in order to

improve performance. However, when one moves to larger datasets the use of parallelism becomes a necessity,

and in that context, exploiting occlusion to speed up volume rendering is not straightforward. In this paper, we

propose and detail a new scheme in which the processors exchange occlusion information so as to speed up

the rendering by discarding invisible areas. Our pipeline uses full floating point accuracy for all the intermediate

stages, allowing the production of high quality pictures. We further show comprehensive performance results using

this pipeline with multiple datasets and demonstrate that cross-processor occlusion can improve the performance

of parallel volume rendering.

1. Introduction

Volume rendering is a multi-purpose tool for data explo-
ration and visualization thanks to its good ability at depict-
ing internal data features. However, the images produced us-
ing volume rendering usually require a lot of computation,
and often processor time is spent on areas which do not con-
tribute to the final pictures, namely the occluded areas. In
this paper, we introduce a parallel rendering pipeline making
use of inter-processor occlusion. Taking advantage of cross-
processor occlusion allows us to obtain substantial perfor-
mance improvements, especially on dense scenes, which are
common in the area of volume rendering. We also make use
of a two-level parallel rendering scheme with load balancing
at the lower level. We demonstrate and benchmark a float-
ing point rendering pipeline running on a CPU cluster. Al-
though CPU clusters are not the most appropriate for high
performance rendering, GPU clusters are not always avail-
able. Furthermore, CPU clusters are often the only way to
achieve in-situ visualization, which is useful for extremely
large simulations where the sheer size of the data prevents
moving it to a separate, dedicated visualization cluster.

2. Related works

Volume rendering as introduced by Sabella [Sab88] is an ef-
ficient technique for data exploration and visualization. As
opposed to surface rendering, it allows the depiction of all
the internal data features in a simultaneous fashion, and thus
produces pictures conveying more information. At the core,
volume rendering entails numerically computing an approx-
imation of the so-called volume rendering integral, which

computes the final color of each ray going through a vol-
ume. This is an expensive process, especially since it has to
be computed for each pixel of the screen.

Much research was pursued to speed up compute-
intensive volume rendering algorithms. Volume rendering
of large datasets on a single machine can be achieved us-
ing simplification-based techniques. These techniques usu-
ally create a number of level-of-details for the data and use
these levels to achieve real-time visualization. In this con-
text, bricking as introduced by Weiler et al. [WWH∗00] is
a method for improving the efficiency of volume render-
ers, which consists in splitting the volume into equally-sized
bricks. This entails a number of advantages: empty bricks
can be culled, and multi-resolution methods can be used, for
example by lowering the level of detail for bricks which are
further away from the observer. Weiler et al. [WWH∗00] and
Lamar et al. [LHJ99] use data-dependent multi-resolution
textures which reduce the requirements for texture mem-
ory, and are thereby able to render large datasets. Lamar
et al. [LHJ03] propose an efficient error computation tech-
nique for 3D data. Their technique uses a histogram for each
data brick, and takes advantage of this histogram to quickly
compute error values for a given brick. This is particularly
useful to evaluate the simplification error and the visibility
of a given brick without iterating all its voxels. Röttger et

al. [RKE00] introduced the notion of pre-integration which
greatly enhances the quality of volume rendered pictures.
This work was conducted in the context of unstructured
datasets, and was later extended by Engel et al. [EKE01] to
support structured datasets. Grimm et al. [GBKG04] intro-

c© The Eurographics Association 2010.

DOI: 10.2312/EGPGV/EGPGV10/011-018

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV10/011-018


S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

duce an efficient CPU-based volume rendering framework,
including many techniques which improve performance.

Guthe et al. [GS04] use a two-pass algorithm to achieve
culling of invisible areas. In a first pass, they consider the
data at a low resolution and determine the invisible bricks; in
the second pass, only the visible volume parts are rendered.

In order to increase the size of the datasets that one
can handle, volume rendering has been parallelized. In the
field of parallel rendering, techniques were classified into
three categories by Molnar et al. [MCEF94] (sort-first, sort-
middle and sort-last) according to the place of the sorting
phase in the graphics pipeline. When the sorting is done prior
to transforming and rasterizing the primitives, the approach
is of the sort-first kind. If sorting is done between the trans-
form and rasterization phases, the approach is called sort-
middle. Finally, if sorting is done at the end of the pipeline,
the approach is of the sort-last kind. However, only sort-first
and sort-last are relevant in the field of parallel volume visu-
alization. In this paper, we will focus on sort-last techniques
which are the most efficient for very large datasets.

Much research has gone into the issue of improving the
performance of sort-last rendering. In particular many tech-
niques have been proposed to recompose the partial images
together. Direct send as introduced by Hsu [Hsu93] is an
efficient algorithm for compositing these images. This algo-
rithm allows using all the processors for compositing and
therefore achieves good scalability. Ma et al. [MPHK94]
propose the binary swap algorithm which uses a hierarchi-
cal communication scheme to improve the performance on
large scale workloads while still involving all the proces-
sors in the compositing. Stompel et al. [SML∗03] propose
a scheme which focuses on software rendering and mini-
mizing the impact of the sort-last communication stage. The
authors take into account the footprint of the rendered data
and use it to load balance the compositing jobs between the
cluster nodes. Yu et al. [YWM08] improve the binary swap
algorithm by exploiting a hybrid 2 and 3-swap mechanism
which allows using an arbitrary number of compositing pro-
cessors. Peterka et al. [PGR∗09] further improve this algo-
rithm by proposing the Radix-k algorithm which combines
multiple direct-send stages. Strengert et al. [SMW∗04] im-
plement an efficient sort-last volume rendering framework
using level-of-detail, and report interactive frame rates on
a cluster of Myrinet-connected machines. Lombeyda et al.

[LMS∗01] are able to achieve interactive volume render-
ing performance (more than 25 frames per second) using
dedicated rendering and compositing hardware. Peterka et

al. [PYRM08] evaluate the efficiency of software-based vol-
ume rendering Blue Gene/P for in-situ visualization on a
large number of processors. Wylie et al. [WPLM01] show
that using a sort-last technique, it is possible to handle large
datasets using a static data distribution. However, when us-
ing a static data distribution in a sort-last scheme, load im-
balance can happen between the nodes as not all the nodes

have the same amount of work to be done. For example,
level-of-detail based methods will result in such load im-
balance. Advanced techniques using occlusion and empty
space culling can also result in such imbalance. Therefore,
load-balancing sort-last techniques have been developed.
Wang et al. [WGS04] achieve dynamic load balancing in
the context of software based volume rendering. Finally, dy-
namic load balancing of volume data can be achieved us-
ing a hierarchical KD-tree decomposition as described in
[MMD06,MSE06].

The issue of occlusion between different rendering nodes
of a sort-last cluster has been studied before. Cox et al. have
analyzed the issue of depth complexity in parallel polygo-
nal rendered scenes [CH92]. In particular, the authors have
proven [CH93] that an evenly distributed depth between
the nodes was the worst situation for inter-node occlusion
snooping in a parallel rendering system. In the field of iso-
surface extraction and rendering, Gao et al. [GS01] pro-
pose a multi-pass occlusion algorithm which only computes
and renders the visible parts of an isosurface on a render-
ing cluster. To exploit occlusion in volume rendering, Gao
et al. [GHSK03] propose the use of plenoptic opacity func-
tions which allow determining opaque bricks and therefore
culling away the hidden voxels. However, this approach is
conservative and requires a pre-computation step.

Although inter-node occlusion has already been widely
exploited for parallel isosurface occlusion and volume ren-
dering already exploits culling of invisible volume parts at a
coarse granularity, to the extent of our knowledge no work
has been conducted which handles exact occlusion in the
case of parallel volume rendering. Volume rendering can ac-
tually benefit greatly from occlusion culling as the process is
computationally intensive, and therefore culling out invisible
and occluded regions is a substantial source of performance
improvement.

3. Parallel rendering pipeline

Our parallel rendering pipeline is based on a direct send
implementation. We now detail its two main capacities:
two-level high quality hybrid volume rendering and cross-
processor occlusion.

In the rest of the paper, we use the following terminology:
a processor is the smallest possible computation unit; a node

is a machine connected to a network, containing one or mul-
tiple processors; a cluster is a collection of multiple nodes

connected by a shared network.

3.1. Hybrid parallel volume rendering

Our rendering pipeline uses two-level hybrid parallelism.
This scheme is depicted on Figure 1 and works as follows:

• The first level of parallelism takes place between the dif-
ferent processors of a node. Inside a node, sort-last render-
ing is not used, instead we employ a brick-based render-
ing scheme for performance reasons. In this scheme, the

c© The Eurographics Association 2010.

12



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

Figure 1: Hybrid multi-core/multi-node parallelism with

two dual-core rendering nodes and a master node. The ren-

der threads repeatedly take a brick from the work queue and

draw it onto the frame buffer. After all bricks have been ren-

dered, the communication threads handle the compositing

stage while another frame starts being rendered on the pro-

cessors.

processors use a shared queue of work to achieve load-
balanced rendering of volume bricks. This queue contains
a front-to-back sorted list of bricks, and the different pro-
cessors take work away from that queue and render the
corresponding bricks to a shared frame buffer. Notice that
this is not as trivial as one could think, as race conditions
can happen if all processors render to the shared buffer
directly. For example if we consider two bricks B1 and
B2 with a back-to-front dependency between B1 and B2,
one processor P1 could finish rendering brick B1 before
processor P2 finishes brick B2, even though processor P2
started first and therefore the work queue order was re-
spected. We solve this by having each processor render
each brick to a private buffer and using a completed work
queue; a given volume rendered brick is only blended
from the private buffer onto the shared buffer once all the
bricks it depends on are in the completed work queue.
Once the brick is rendered, it is also placed in the com-
pleted work queue.

• The second level of parallelism exists between the nodes
and uses sort-last rendering to dispatch the work. The data
is partitioned between the nodes following a KD-tree de-
composition. We use a space-coherent decomposition as
it is less likely to result in evenly-distributed depth in the
rendered scenes, as was proved in [CH93], and therefore
provides the better inter-node occlusion speedups. Notice
that although intra-node load balancing happens, no load
balancing happens between separate nodes, as the cost
of moving data over the network is very high. An opti-
mized implementation of direct-send compositing is used
to combine the intermediate pictures. Essentially, each of
the nodes is seen as a single entity from the point of view
of the direct send compositing system.

The rendering is done on the processors by a volume ray-
caster which uses pre-integration and shading with pre-
computed gradients. In order to cull invisible data, we make
use of bricking. The memory layout is also brick based: each
of the data bricks (including the associated gradient) uses a
separate linear area of contiguous memory which ensures
cache-friendly memory accesses as each brick is rendered.
We use tri-linear interpolation of the scalar and gradient val-
ues which provides good rendering quality, although it re-
sults in longer rendering times, mainly because of the in-
creased memory access costs. The rendering itself works as
follows: First a processor takes a brick from the work queue.
The footprint of this brick is projected onto the screen. For
each pixel of this footprint a ray is cast through the brick and
the result is accumulated to the private render buffer. Notice
that for completely transparent samples, it is not necessary to
compute the shading function, nor the interpolated gradient
value. Therefore, as a performance optimization we skip this
step if the look-up into the pre-integration table for the en-
try and exit scalar values results in a completely transparent
sample. After the whole brick has been rendered to the pri-
vate buffer, the dependencies with other bricks are checked
and the brick is written back to the shared buffer.

The compositing stage of our parallel pipeline is an op-
timized direct-send implementation. We make use of the
bounding rectangle optimization, by which the visible foot-
print of the current node’s data is projected into screen space
and only this specific area is shared with other processors.
We also experimented with the use of the LZO compression
as a means of reducing the amount of network data.

Most of the existing sort-last rendering pipelines use a
quantization of intermediate pictures into four 8-bit RGBA
values before sending them over the network and before
compositing. Even if the rest of the rendering is done at full
floating point accuracy, this means that a quantization step
happens once per node. In the case of sort-last rendering,
this has the unwanted side-effect of lowering the final ren-
dering quality as the number of quantization steps increases
with the number of rendering nodes. This in turn means that
the quality of the final pictures lowers as the scale of the
rendering job increases, which makes high-scale parallel vi-
sualization less interesting. Instead, we decided in this paper
to use floating point quantities for all the intermediate com-
putations of our rendering pipeline, and only use a single
quantization step at the very end of the pipeline into 8-bit
RGBA values for final display. Therefore, all the intermedi-
ate pictures used for rendering and compositing are stored
in full floating point accuracy. However, this incurs an addi-
tional cost; in particular, floating point accuracy quadruples
the network bandwidth usage when compared to 8-bit val-
ues, and the image compositing process also requires four
times the memory bandwidth as for 8-bit data. Notice that we
quantize the composited images to 8 bit and drop the alpha
channel at the last step of direct-send, right after composit-
ing and just before sending the final pictures to the master

c© The Eurographics Association 2010.

13



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

node for display. This quantization operation could of course
be done on the master node, but doing so on the rendering
nodes lowers network bandwidth usage for the last commu-
nication stage while maintaining the same final quality.

3.2. Cross-processor occlusion

When rendering 3D images, occlusion commonly happens
between different areas. Figure 2 depicts the case of sort-last
rendering where the rendering from two processors occludes
the rendering from two other processors. Although such in-
formation can be trivially exploited to cull away rendering
in the sequential rendering case, we want to extended it to
the sort-last rendering case. To do so, we make use of cross-
processor occlusion at two different levels matching the two
rendering levels seen previously in Subsection 3.1:

Figure 2: Occlusion between different nodes in a sort-last

context where each processor is assigned a separate part of

the dataset. In this example, rendering from processors 1 and

3 occludes rendering from processors 2 and 4, respectively.

• Inside a given node, all processors render in a front-to-
back fashion to a shared buffer. Since rendering is sorted
front-to-back, it is trivial to add cross-processor occlusion
at this level by considering the opacity value of the current
pixel in the shared buffer and discarding the ray compu-
tation if the opacity is maximal. Before casting a ray for
each pixel of a given brick, the render threads read the
current render buffer opacity. If it is currently opaque, the
pixel computation is skipped entirely. This is depicted on
Figure 3.

• Between different nodes, processors exchange occlusion
information and use it to cull away rendering work which
would otherwise result in invisible contributions. The
occlusion information exchange is realized by having
the render threads send messages to the communication
threads as they find opaque pixels. After a number of such
messages (we use a threshold of 100 messages in our im-
plementation), the communication thread in turn sends the
occlusion information to other nodes. To do this, the com-
munication thread packs together the occlusion informa-
tion from multiple pixels by iterating the shared render
buffer and creating occlusion spans (horizontal lines of

Figure 3: Propagating occlusion information inside a single

node. One processor writes the opacity information to the

shared buffer, and other processors can read this information

directly and discard their rendering work accordingly.

occluding pixels encoded using the screen-space coordi-
nates of the first pixel and the length of the span). These
occlusion spans are in turn sent to all concerned nodes, i.e.
nodes which render a part of the data which falls into the
footprint of the spans. The other communication threads
then receive this occlusion information and update the
node’s render buffer accordingly, by writing a maximal
alpha value for every pixel in the span footprint. The oc-
clusion information is then available to the render threads,
and will be used next time they look at the render buffer.
Figure 4 depicts this situation.

Figure 4: Propagating occlusion information across differ-

ent nodes of a cluster. The communication thread receives

messages from the render thread. After a number of mes-

sages, the communication thread reads the occlusion infor-

mation from the render buffer and sends it in the form of a list

of occluded spans to other nodes. This information is picked

up by the communication thread which writes it to the ren-

der buffer by making the corresponding pixels opaque. The

render threads can then read the occlusion information from

the render buffer the same way as with intra-node occlusion.

4. Results

We first benchmarked our volume rendering system on a sin-
gle node using a simple scene (256×256×256 voxels and a

c© The Eurographics Association 2010.

14



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

step size of 0.5 voxels) to assess the scalability of the intra-
node volume rendering and load-balancing technique. We
have observed good scalability on a small-size shared mem-
ory system with two Xeon E5345 2.33 Ghz processors (for a
total of 8 cores): on 1 core, we get a rendering time of 1981
ms, on 2 cores, we get a time of 994 ms (a speedup factor
of 1.99); on 4 cores we get 498 ms (a speedup of 3.97); on
8 cores, 249 ms (a 7.95 speedup factor) is observed. Using
one of the dual Opteron 252 2.6 Ghz processor nodes from
our visualization cluster, we go from 2140 ms on 1 proces-
sor to 1074 ms on 2 processors, which is a speedup factor of
1.99. This technique is therefore suitable for use inside a sin-
gle node of a cluster as it scales well for a small number of
processors, ensures intra-node load balancing and does not
incur additional communication costs as more processors are
added to the node. On top of this, skipping gradient interpo-
lation on fully transparent contributions leads to a speedup
factor of approximately 1.5 times (timings on 4 Xeon cores
go from 498 ms per frame using naive tri-linear interpolation
down to 330 ms per frame when skipping gradient interpo-
lation when possible, for reference rendering using nearest
neighbour interpolation takes 219 ms on the same scene).

We have implemented our parallel renderer in C++ and
OpenGL. Tests were conducted using 64 processors (32 dual
processor nodes) of a Linux cluster. The configuration of a
single node is given on Table 1. All renderings were per-

Component Type

CPU 2×Opteron 252, 2.6Ghz
Memory 4GB

Interconnection Gigabit Ethernet
Network card Broadcom BCM5704

Table 1: Hardware configuration of a cluster node

formed at a 1024× 768 screen resolution. To compare per-
formance on the visualization cluster, we have experimented
with three different datasets: the first one is the time step
1354 of the entropy variable from the supernova dataset
(8643 voxels), the second one is the beetle dataset (5123 vox-
els) and the last one is a head CT (2563 voxels). All these
datasets were ray-cast using a 0.25 voxel step size. Figure
13 shows the final renderings obtained using these datasets.

Figures 5, 6, 7 and Table 2 show the scalability of our high
quality volume rendering pipeline for three different datasets
with and without LZO compression of the direct-send com-
munications. For the larger dataset, we obtain a speedup fac-
tor of 45 over 64 processors using compression and of 40
without enabling compression. Notice that both the smaller
datasets (5123 beetle and 2563 head CT) see a 15% frame
rate improvement with the addition of compression, which
is not seen with a bigger dataset. This is explained by the
fact that rendering for these datasets using 64 processors
is limited by the 1Gb network bandwidth. Notice that the

gap gained from compression increases with the number of
nodes, as in that case the network becomes the bottleneck.

Figures 8, 9, 10 and Table 2 demonstrate the speed im-
provement from using cross-node occlusion information to

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

12 4 8 16 32 64
F

ra
m

e
s
 p

e
r 

s
e

c
o

n
d

 

864^3 dataset, no compression, float
864^3 dataset, compression, float

Figure 5: Comparison of performance with and without

compression using the 8643 supernova dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

512^3 dataset, no compression, float
512^3 dataset, compression, float

Figure 6: Comparison of performance with and without

compression using the 5123 beetle dataset.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

256^3 dataset, no compression, float
256^3 dataset, compression, float

Figure 7: Comparison of performance with and without

compression using the 2563 head CT dataset.

c© The Eurographics Association 2010.

15



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

864^3 dataset, with occlusion
864^3 dataset, without occlusion

Figure 8: Comparison of performance with and without

cross-processor occlusion using the 8643 supernova dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

512^3 dataset, with occlusion
512^3 dataset, without occlusion

Figure 9: Comparison of performance with and without

cross-processor occlusion using the 5123 beetle dataset.

cull away invisible areas. Notice that, as opposed to the use
of compression, occlusion leads to consistent speedups for
any number of processors; in particular, cross-node occlu-
sion contributes to helping performance with as few as two
processors. Using cross-node occlusion, we observe consis-
tent speed-ups despite the lack of global load balancing. In-
tuitively, one could think that because of the lack of global
load balancing the speed of the slowest node should remain
a limiting factor despite the use of cross-node occlusion, and

Dataset Supernova Beetle Head

With compression, 40 25.5 9.5
without occlusion

Without compression 41 27.6 10.5
with occlusion

With compression 45 30 12.3
and occlusion

Table 2: Speedup factors using different datasets on 64 pro-

cessors.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

256^3 dataset, with occlusion
256^3 dataset, without occlusion

Figure 10: Comparison of performance with and without

cross-processor occlusion using the 2563 head CT dataset.

 0

 0.5

 1

 1.5

 2

 2.5

12 4 8 16 32 64

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

864^3 dataset, with occlusion, high opacity transfer function
864^3 dataset, with occlusion, low opacity transfer function

864^3 dataset, without occlusion, low opacity transfer function

Figure 11: Impact of the transfer function opacity on

the final rendering performance using the 8643 supernova

dataset. Two transfer functions are used: one with multiple

transparent isosurfaces at 8% opacity and one with multi-

ple transparent isosurfaces at 15% opacity. For reference,

results without cross-processor occlusion are also shown.

would therefore prevent any type of speedup from our al-
gorithms. However, the nodes which finish their work last
will benefit more from the occlusion information than the
other nodes, and therefore our scheme can improve unbal-
anced situations. The impact of the nature of the transfer
function on the final results is shown in Figure 11. We mea-
sured the performance and scalability of our technique us-
ing the same dataset and two transfer functions featuring the
same transparent isosurfaces but with different opacities (re-
spectively of 8% and 15%). This figure shows that our cross-
processor occlusion algorithm is highly sensitive to different
transfer functions, in particular when the opacity changes.
In this case, increasing the opacity of the isosurfaces from
8% to 15% increases the frame rate by 30%. The amount of
occlusion information exchanged between the processors is
shown on Figure 12. These curves are not regular because
as the number of nodes increases, the data subdivision fol-

c© The Eurographics Association 2010.

16



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

12 4 8 16 32 64

P
ix

e
ls

 

864^3 dataset, low opacity transfer function
864^3 dataset, high opacity transfer function

Figure 12: Amount of occlusion information exchanged over

the network (in pixels) for the Supernova dataset using the

two different transfer functions.

lows a KD-tree pattern alternating the splitting dimensions;
whenever the added splitting direction is parallel to the view-
ing plane, this results in a lot of additional communication
between the nodes to exchange the corresponding occlusion
information.

5. Conclusions and future works

We have presented a high quality volume rendering pipeline
making use of multi-level parallelism, intra-node load bal-
ancing and inter-processor occlusion to improve the frame
rendering times.

We think our work could see many relevant future en-
hancements. First, we would like to extend the occlusion
framework to support a distributed level of detail approach:
if an area is partially occluded and therefore contributes only
little information to the final pictures, a lower level of render-
ing detail can definitely be used while keeping a controlled
level of rendering quality.

Second, we would like to experiment with strategies to
compute the contributions for the areas most likely to oc-
clude other parts of the data first. This is not taken into ac-
count in our current algorithm and would lead to better effi-
ciency in our rendering pipeline.

Finally, we would like to conduct larger scale testing, in
particular using a bigger number of processors per node and
more importantly a better interconnection network. We have
shown that our intra-node volume rendering algorithm scales
up to 8 processors, and we think that multi-level volume ren-
dering algorithms like the one we presented can lead to bet-
ter scalability at large scales because they are better suited
to the actual hardware architecture. However, increasing the
number of nodes may require improvements to the commu-
nication schemes used, especially for the occlusion informa-
tion exchange stage. Instead of sending occlusion informa-
tion to all the potentially occluded nodes, we would like to
find scalable, hierarchical schemes which gradually propa-

gate the occlusion information throughout the whole cluster
without incurring too much additional communication.

6. Acknowledgments

This research was supported in part by the U.S. Na-
tional Science Foundation through grants OCI-0325934,
OCI-0749217, OCI-0749227, and OCI-0905008, and the
U.S. Department of Energy through the SciDAC program
with Agreement No. DE-FC02-06ER25777. The supernova
dataset was provided by John Blondin at North Carolina
State University.

References

[CH92] COX M., HANRAHAN P.: Depth complexity in object-
parallel graphics architectures. In Proceedings of the Seventh

Workshop on Graphics Hardware, Eurographics Technical Re-

port Series, ISSN (1992), pp. 1017–4656.

[CH93] COX M., HANRAHAN P.: Evenly Distributed Depth is

the Worst for Distributed Snooping. Tech. rep., 1993.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

(2001), ACM Press, pp. 9–16.

[GBKG04] GRIMM S., BRUCKNER S., KANITSAR A.,
GRÖLLER M. E.: Memory efficient acceleration structures
and techniques for cpu-based volume raycasting of large data.
In Proceedings IEEE/SIGGRAPH Symposium on Volume Visual-

ization and Graphics (Oct. 2004), D. Silver T. Ertl C. S., (Ed.),
pp. 1–8.

[GHSK03] GAO J., HUANG J., SHEN H.-W., KOHL J. A.: Vis-
ibility culling using plenoptic opacity functions for large volume
visualization. In VIS ’03: Proceedings of the 14th IEEE Visu-

alization 2003 (VIS’03) (Washington, DC, USA, 2003), IEEE
Computer Society, p. 45.

[GS01] GAO J., SHEN H.-W.: Parallel view-dependent isosur-
face extraction using multi-pass occlusion culling. In PVG ’01:

Proceedings of the IEEE 2001 symposium on parallel and large-

data visualization and graphics (Piscataway, NJ, USA, 2001),
IEEE Press, pp. 67–74.

[GS04] GUTHE S., STRASSER W.: Advanced Techniques for
High-Quality Multi-Resolution Volume Rendering. Computers

& Graphics 28, 1 (Feb. 2004), 51–58.

[Hsu93] HSU W. M.: Segmented ray casting for data parallel vol-
ume rendering. In PRS ’93: Proceedings of the 1993 symposium

on Parallel rendering (New York, NY, USA, 1993), ACM Press,
pp. 7–14.

[LHJ99] LAMAR E., HAMANN B., JOY K. I.: Multiresolu-
tion techniques for interactive texture-based volume visualiza-
tion. In Proceedings of the IEEE Visualization conference (1999),
D. Ebert M. G., Hamann B., (Eds.), pp. 355–362.

[LHJ03] LAMAR E. C., HAMANN B., JOY K. I.: Efficient Error

Calculation for Multiresolution Texture-Based Volume Visualiza-

tion. Springer-Verlag, Heidelberg, Germany, 2003, pp. 51–62.

[LMS∗01] LOMBEYDA S., MOLL L., SHAND M., BREEN D.,
HEIRICH A.: Scalable interactive volume rendering using off-
the-shelf components. In PVG ’01: Proceedings of the IEEE

2001 symposium on parallel and large-data visualization and

graphics (Piscataway, NJ, USA, 2001), IEEE Press, pp. 115–
121.

c© The Eurographics Association 2010.

17



S. Marchesin & K.L. Ma / Cross-Node Occlusion in Sort-Last Volume Rendering

Figure 13: Sample renderings of the 8643 supernova dataset with both transfer functions, 5123 beetle dataset and 2563 head

CT dataset used for the performance comparisons.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Comput.

Graph. Appl. 14, 4 (1994), 23–32.

[MMD06] MARCHESIN S., MONGENET C., DISCHLER J.: Dy-
namic Load Balancing for Parallel Volume Rendering. In Eu-

rographics Symposium on Parallel Graphics and Visualization

(EGPGV) (2006), Eurographics Association, pp. 43–50.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH

M. F.: Parallel volume rendering using binary-swap composit-
ing. IEEE Comput. Graph. Appl. 14, 4 (1994), 59–68.

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized
Volume Raycasting for Graphics-Hardware-based Cluster Sys-
tems. In Eurographics Symposium on Parallel Graphics and Vi-

sualization (EGPGV) (2006), Eurographics Association, pp. 59–
66.

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-
W., THAKUR R.: A configurable algorithm for parallel image-
compositing applications. In SC ’09: Proceedings of the Confer-

ence on High Performance Computing Networking, Storage and

Analysis (New York, NY, USA, 2009), ACM, pp. 1–10.

[PYRM08] PETERKA T., YU H., ROSS R., MA K.-L.: Paral-
lel volume rendering on the ibm blue gene/p. In Proceedings

of Eurographics Parallel Graphics and Visualization Symposium

(EGPGV 2008) (April 2008), pp. 73–80.

[RKE00] RÖTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering based on cell-
projection. In VIS ’00: Proceedings of the conference on Visu-

alization ’00 (Los Alamitos, CA, USA, 2000), IEEE Computer
Society Press, pp. 109–116.

[Sab88] SABELLA P.: A rendering algorithm for visualizing 3d

scalar fields. In SIGGRAPH ’88: Proceedings of the 15th annual

conference on Computer graphics and interactive techniques

(New York, NY, USA, 1988), ACM, pp. 51–58.

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J.,
PATCHETT J.: SLIC: Scheduled linear image compositing for
parallel volume rendering. In PVG ’03: Proceedings of the 2003

IEEE Symposium on Parallel and Large-Data Visualization and

Graphics (Washington, DC, USA, 2003), IEEE Computer Soci-
ety, p. 6.

[SMW∗04] STRENGERT M., MAGALLÓN M., WEISKOPF D.,
GUTHE S., ERTL T.: Hierarchical visualization and compres-
sion of large volume datasets using gpu clusters. In Eurograph-

ics Symposium on Parallel Graphics and Visualization (EGPGV)

(2004), pp. 41–48.

[WGS04] WANG C., GAO J., SHEN H.-W.: Parallel multireso-
lution volume rendering of large data sets with error-guided load
balancing. In Eurographics Symposium on Parallel Graphics and

Visualization (EGPGV) (2004), pp. 23–30.

[WPLM01] WYLIE B., PAVLAKOS C., LEWIS V., MORELAND

K.: Scalable rendering on pc clusters. vol. 21, IEEE Computer
Society Press, pp. 62–70.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM-
MERMANN K., ERTL T.: Level-of-detail volume rendering via
3d textures. In VVS ’00: Proceedings of the 2000 IEEE sympo-

sium on Volume visualization (New York, NY, USA, 2000), ACM
Press, pp. 7–13.

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel vol-
ume rendering using 2-3 swap image compositing. In SC ’08:

Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting (Piscataway, NJ, USA, 2008), IEEE Press, pp. 1–11.

c© The Eurographics Association 2010.

18


