Eurographics Symposium on Parallel Graphics and Visualization (2009)

J. Comba, K. Debattista, and D. Weiskopf (Editors)

Hybrid Parallelization for Multi-View Visualization of
Time-Dependent Simulation Data

Bernd Hentschell, Marc Wolterl, Peter Renzez, Wolfgang Schroder? , Christian Bischof® , and Torsten Kuhlen!

Virtual Reality Group, RWTH Aachen University, Germany
2Institute of Aerodynamics, RWTH Aachen University, Germany
3nstitute for Scientific Computing, RWTH Aachen University, Germany

Abstract

Interactive analysis using multiple linked views has been successfully applied to time-dependent simulation data.
In this paper we extend previous work by embedding multiple views in a virtual environment. Here, we combine 3D
scatterplots with direct interaction and natural stereoscopic viewing. In order to deal with today’s simulation data
effectively, we propose a hybrid parallelization scheme based on distributing the workload between a powerful
compute back-end and a rendering client. It minimizes the amount of latency introduced by the distributed setup,
which is vital in order to facilitate highly interactive operations such as brushing. We illustrate the effectiveness
of our approach in a case study from the field of flow visualization.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.6]: Interaction Techniques—
Computer Graphics [1.3.7]: Virtual Reality—Simulation and Modelling [1.6.6]: Simulation Output Analysis—

1. Introduction

Interactive data exploration has been found highly beneficial
for the analysis of complex, multi-dimensional data. This
is particularly true, if the phenomenon to be found is not
known a priori or if the researcher wants to gain insight into
a complex process which has not yet been sufficiently ex-
plained by an analytical model. According to Spence, in-
teractive exploration helps to build a mental model of the
data in these cases [Spe06]. The concept of brushing multi-
ple linked views has been established as a method to quickly
identify multi-dimensional relationships for both quantita-
tive data and simulation data [BC87,DGHO03]. However, two
problems arise when using this approach for the analysis of
simulation data in a desktop-based environment: First, work-
stations only provide limited computational resources, re-
stricting the amount of data that can be analyzed. Second,
it is often hard to understand the shape of intricate three-
dimensional structures. In this paper, we extend previous
work by a) distributing the workload between a parallel com-
pute server and a visualization client and b) by embedding
the exploration process into an immersive virtual environ-
ment and adding three-dimensional scatterplot views.

(© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/079-086

In order to enable an interactive exploration in this set-
ting, two main requirements have to be fulfilled: First, we
need to provide users with an efficient way to interact with
their data in 3D. This is done by allowing direct interaction
on each of the scatterplots as described in Section 3.1. Sec-
ond, the system has to be capable of handling large simula-
tion data sets. This is facilitated by exploiting the underlying
structure of the update computations which readily lends it-
self to parallelization. In particular, a remote compute server
is used to handle large data (cf. Section 3.2) and the data
is reduced to a manageable and displayable size in the pro-
cess (cf. Section 3.3). A key point is the minimization of
the latency penalty resulting from the remote computation
scheme, which is vital in order to enable a highly interactive
operation such as brushing. This is achieved by employing
parallelization on different levels and limiting the amount of
data that has to be transmitted for each update.

Please note that we do not target high end, tera-scale data
sets here, which cannot be handled interactively in their raw
form. We rather focus on mid-sized problems, that regularly
arise in daily research work but cannot be dealt with in an
interactive way using standard desktop-based methods. In

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/079-086

80 B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization

Figure 1: A user is interactively brushing values of high streamwise vorticity in a 3D scatterplot inside a CAVE-like virtual
environment. Starting with an empty selection box, he drags the the input device to create a new selection (left). Points influenced
by this selection are locally highlighted in real-time (center). After the selection has been fixed by releasing the device’s button,
the update is remotely computed and selected points are depicted in red for all linked views (right).

Section 4, we present a set of runtime measurements and a
case study for such a data set. The study has been carried out
in collaboration with fluid mechanics engineers. It therefore
reflects the findings of domain experts on real-world data.

In summary, we present the following contributions: First,
we describe a scalable visualization approach which com-
bines multiple linked views and a VR-based user inter-
face. Second, we describe a distribution and parallelization
scheme which facilitates interactive brushing updates. Third,
we validate the overall method in a case study.

2. Related Work

Parallel computation has been widely used in visualization,
e.g., by Ahrens et al. in order to handle large simulation
data [ABMT01]. Bryson et al. employed a distributed, paral-
lel approach in their Windtunnel system in order to speed-up
costly visualization computations [BGY92]. Later Schirski
et al. presented the ViSTA FlowLib system, which follows a
similar approach but specifically aims at the VR-based anal-
ysis of time-dependent flows [SGVR'03]. More recently,
Schirski et al. discuss the problem of resource allocation
in distributed/parallel visualization scenarios [SBKO7]. They
particularly mention the latency penalty, which results from
offloading visualization computations to a remote system.
While this penalty is tolerable for a wide range of standard
visualization techniques, direct user feedback is mandatory
for highly interactive operations such as the remote brushing
updates described in this paper. Moreover, the usability of
a VR-based visualization system strongly depends on well-
designed interaction techniques, as pointed out by De Haan
et al. and Kreylos et al. [dHKP02, KBB™06].

Linked views are a key concept of information visual-
ization [Spe06]. Combined with interactive brushing multi-
view visualizations provide a very powerful tool to dis-
cover and assess multi-dimensional relationships in the
data [BC87]. Recently, the use of information visualization
methods for the analysis of scientific data sets has been an
active area of research [DGHO03, BWO08, JBS08]. Here, we

specifically build on concepts introduced by Doleisch et al.
who use brushing of multiple linked views to analyze un-
steady simulation data [DGHO3]. We extend this work by in-
corporating immersive visualization, direct interaction with
the data in three dimensions and a parallel compute server
for large data processing. Conceptually, this work is similar
to query-driven visualization [SSWBO0S5]. However, brushing
linked views provides a graphical interface for query speci-
fication.

Various renderings of three dimensional scatterplots have
been presented, e.g., by Piringer et al., but these are still
limited to 2D renderings of 3D data [PKHO4]. The use of
three-dimensional scatterplots embedded into a virtual en-
vironment has been evaluated by Arns et al., as well as
Raja et al. [ACN99, RBLNO4]. Both studies conclude that
immersion can be beneficial for information visualization.
However, the techniques were only evaluated for rather small
data sets and the authors conclude that further investigations
into VR-based information visualization are warranted.

3. Multiview Visualization in Virtual Reality

In general, our visualization approach relies on multiple
linked three-dimensional scatterplots which are presented
and interacted with in a virtual environment, as shown in
Figure 1. Each plot shows an arbitrary combination of three
data attributes which are recorded per grid point. Time-
dependent data is handled by animating the plots.

The overall method’s fundamental idea is to quickly gen-
erate and check hypotheses about the data by iteratively
marking interesting data ranges and then cross-reference
to the spatial plots in order to find out, where exactly the
marked values occur in the data set. Interactive brushing
allows one to highlight a set of points by marking them
with a three-dimensional selection box. In effect, this box
is a directly manipulable visual representation of three one-
dimensional range queries. Based on the range queries, a se-
lection status is computed for each point using a logical op-
eration over all active queries. As stated above, linking en-

(© The Eurographics Association 2009.

B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization 81

— information

=== interaction

raw data augmented selection

reduced

- User

Parallel HPC

Vis front-end

Figure 2: Pipeline model for the data flow during the analysis process. It facilitates the distribution of compute intensive tasks
to a parallel high performance computer (HPC) which in turn enables an interactive work process on large data. Moreover, an

explicit reduction step makes data reduction user-controllable.

sures that a change to the selection in either plot is directly
reflected in all other plots.

The underlying computations are organized along the
pipeline model depicted in Figure 2. It consists of five con-
secutive stages, each of which may be influenced by user
interaction. First the data has to be loaded from secondary
storage. This stage contains a data management facility,
which loads the data with respect to the data requests from
downstream pipeline stages. For transient data, caching and
prefetching strategies help to reduce overall runtimes by
overlapping storage access with computations. Based on the
raw data, the user may choose to perform a calculation of
derived attributes. These may range from simple magni-
tude operations for vector valued attributes to complex fea-
ture indicators. In the following selection step, we do not
filter out unselected points but rather compute a continu-
ous degree of interest (DOI) value as proposed by Doleisch
et al. [DGHO3]. The current selection computation tests all
points in a linear pass over the data, i.e., it does not rely
on any kind of indexing. This strategy is readily paralleliz-
able. The selection phase is followed by a data reduction
stage, where the data is brought down to a manageable and
notably a displayable resolution. The rationale behind this
lies in the fact, that today’s data sets have a resolution that
by far outreaches the resolution of even state-of-the-art dis-
plays. Therefore, displaying this data always implies a reso-
lution reduction. We incorporate this step explicitly in order
to make it user controllable. Moreover, this stage will sort
out all attributes which are not needed for the current display
setup. After this step the data is finally prepared for drawing.

In our system, the pipeline is split up into two parts. In
order to process data sets of meaningful size, all compute
intensive operations are out-sourced to a parallel machine
which provides enough computing resources. Only the final
display in a virtual environment and the interaction therewith
are done on a visualization workstation. This separation fa-
cilitates scalability in two ways: The parallel machine may
be scaled from a small cluster to a super-computer depend-
ing on data set sizes and user needs. Much in the same way,

(© The Eurographics Association 2009.

the visualization front-end may range from a desktop-based
fishtank VR solution to a CAVE-like display.

In the next three subsections we will first show how direct
3D-interaction with the data is implemented, then discuss the
details of the parallel data processing and finally describe the
data reduction scheme.

3.1. Brushing 3D-Scatterplots via Direct Interaction

As outlined above, a rectangular brush may be created on
each scatterplot. This brush is represented by a box-shaped
widget, which we call drag box. The widget is defined via a
6-DOF tracked wand with — at least — one button. Three dif-
ferent forms of manipulation are implemented, as depicted
in Figure 3. First, an initial box is defined by pressing the
device’s button, then dragging the device along the desired
box’s body diagonal and releasing the button again. The pro-
cess is illustrated in Figure 1. Whenever the user positions
the 3D-cursor outside of this box and presses the button, a
new box is created. Throughout this process the previously
defined box remains visible in addition for reference. Sec-
ond, each of the range queries represented by the box may be
exclusively edited. This is done by placing the cursor next to
either of the box’s faces and pressing the button. Third, when
the user positions the device inside the box and presses the
button, the entire box can be moved around freely.

During interaction, a small crosshair cursor, which is
slightly offset from the device’s center, serves as reference
in the data. Each of the three actions is indicated by a small
tooltip which pops up next to the cursor. Moreover, the entire
box is highlighted whenever the cursor is inside, whereas a
face will be highlighted, whenever the user is close enough
to move it. This style of interaction is very direct because it
does not rely on any form of picking ray and thus all selec-
tions are made within arms reach.

Regardless of the data’s size, immediate visual feedback
is key to interactive brushing. Although we will show below
how remote computation helps to minimize system latency,
we additionally guarantee immediate user feedback by using
the GPU to highlight all points in a plot which are affected

82 B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization

- -

Ay
click&drag .
//

Figure 3: lllustration of the drag box’s possible interac-
tions. A selection box is defined by dragging its body diago-
nal (top). Once a box is defined, either a single face can be
changed (center) or the entire box may be moved (bottom).

by the current operation. However, this feedback only af-
fects the active plot, i.e, the GPU-based highlighting cannot
be linked to the other plots. For these, a small traffic light
metaphor indicates the update status by turning red or green
depending on whether the plot’s information is current.

3.2. Task Distribution and Parallelization

In order to provide near real-time updates even in the face of
multi-gigabyte data sets, we use a client-server setup com-
prising two systems. The server typically is a parallel com-
puter with enough main memory to load the raw data. As
outlined above, all computations that directly involve the raw
data are done on this system. The client system is responsible
for managing user input and image generation. User interac-
tions trigger update requests which are sent to the server,
where the corresponding result is computed and sent back
for immediate display. A streaming protocol is used in order
to help keep the client-side memory footprint small. At any
given time, the client only stores the displayable data for a
few time steps.

In order to obtain good scaling, we exploit a natural de-
composition of the underlying computations at three differ-
ent levels. First, each time step can be handled indepen-
dently. Thus, we distribute updates for different time steps to
different processes using MPI [GSL99]. A dynamic schedul-
ing is employed in order to minimize waiting times for vis-
ible results and maintain a good load balancing. Whenever
possible, an update request is assigned to a free process that
has already loaded the necessary raw data. This may either
be a process which has already completed a previous update
for the requested time step or one which has just prefetched
the raw data using the underlying data management system.
A message passing approach was chosen in order to be able
to use distributed memory systems. The pipeline instance in

each process is executed for the assigned time steps one at
a time. Second, we use threads to decouple tasks such as
data loading, communication, and pipeline execution from
each other. This ensures a pipelined execution of indepen-
dent tasks for successive time steps. Third, each filters’ ex-
ecution is internally parallelized. Most filters’ computations
require at least one pass over the entire point set for a single
time step. Because the computations for each data point are
independent of each other, this can be efficiently parallelized
using shared memory parallelization with OpenMP [CJPO7].
This results in a faster update without requiring explicit data
distribution or extra inter-process communication.

Data transfer between the server and the client machines
is a major bottleneck, both in terms of total time and latency.
In order to minimize the effect, we carefully track the data
which is present on the client side at any given time. Based
on this information we use minimal re-transmissions of data.
There are two different transmission formats: First, when the
user creates a new plot, meta information and full data at-
tributes for the entire time-dependent data set have to be sent.
Meta information includes, for instance, the total ranges for
each attribute over the entire time range. Second, for each
change of a query, we only transmit the updated selection
information. This is by far the most frequent form of trans-
mission, because the point positions in every plot remain
constant once the data attributes have been fixed. Selection
values are conveniently encoded using 8 bit per point, which
provides a good trade-off between continuous DOI values
and space requirements. The visualization client handles in-
coming data with a set of dedicated threads. This helps to
provide constant frame rates in the immersive environment
even during data reception.

3.3. Data Reduction

In order to reduce the data we employ a straightforward
quantization scheme which bins the input point cloud to
a Cartesian grid of limited resolution. Each input point is
mapped to its corresponding cell in this grid. The number
of hits per cell is counted and later serves as density field
over the entire quantization grid. After the mapping, a sin-
gle output point is created for each grid cell which contains
at least one input point. In order to speed up the process,
we only execute the binning process when the attribute data
has changed. For the more frequent case where only the se-
lection status for points changes, we keep an index which
directly maps input points to output points. It is computed
on-the-fly during the initial binning pass. Based on the in-
dex, the selection status of output points can be determined
with only a single pass over the input data. This results in a
significant speed-up of selection updates.

4. Results

The system’s evaluation includes the discussion of a set of
runtime measurements and an application case study con-

(© The Eurographics Association 2009.

B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization 83

Update latency
600

500 -

400

@1 process

W2 processes
W4 processes
@6 processes
W8 processes

latency [ms]
@
S
3
.

200

100 4

1 2 4 6 8
#OpenMP threads

Update total runtimes
24

20 4

runtime [s]
© >

@

1 2 4 6 8
#0OpenMP threads

Figure 4: Overview of update latencies (left) and total runtimes (right) for the crossflow data set.

ducted in collaboration with domain scientists. All tests were
based on a 3D unsteady simulation data set. An overview
of the simulated phenomenon, a so-called jet-in-a-crossflow,
follows in Section 4.2. The data set resulted from a large-
eddy simulation (LES). It comprises 100 time steps, each
of which is given on an unstructured grid with 2.9 million
points. The result contains 10 scalar and 5 vector attributes
and consumes a total of 54 GB of disk space.

For the runtime measurements we used a compute clus-
ter of eight nodes, each equipped with 2 Intel Xeon E5450
CPUs (4 cores, 3.0 GHz) and 32 GBytes RAM. The client
application ran on a workstation equipped with an Intel
Core 2 Q6600 (4 cores, 2.4 GHz), 8 GB RAM, and an
NVIDIA Quadro FX 4600 graphics board. It has a 1 GBit
non-dedicated Ethernet connection to the server. The case
study has been performed in a five-sided CAVE-like envi-
ronment driven by an 11-node LINUX cluster. Each node
features two AMD Opteron 2218 CPUs (2 cores, 2 GHz),
8 GB RAM, and an NVIDIA Quadro FX 5600 graphics
board. GBit Ethernet is used for both, the internal cluster
network, and the link to the server. The frame rate continu-
ously exceeded 40 fps during all visualization sessions.

4.1. Performance

In order to get comparable results for all different configura-
tions of MPI processes and OpenMP threads, we restricted
the runtime measurements to 48 equally spaced time steps.
These fit into the 32 GB of memory provided by a single
node and therefore this setup allows in-core measurements
using a single system. The performance measurements ac-
count for selection update times only, i.e., they include nei-
ther the time to load the data from secondary storage nor the
initial full update. Both are carried out during system ini-
tialization. We conducted in-core measurements, as the ef-
ficiency of the data management is not evaluated here and
otherwise would have affected the runtime measurements.
For the measured setup, we executed a worst case query

(© The Eurographics Association 2009.

which switched the selection status of all data points from
unselected to selected. Three plots had to be updated, which
were configured in the same way as for the case study. The
selection update for all three plots totalled 624 KB per time
step. Compared to 10,612 KB for a full attribute update per
time step, the selection-only transmission reduced commu-
nication to 5.8% of the original size.

During exploration, two different update times are rele-
vant: On the one hand we have to minimize fotal computa-
tion times and on the other hand we have to reduce update
latencies, i.e., the time to arrival for the first results as much
as possible. While reducing overall run-times is generally
desirable, cutting latency is particularly important in an in-
teractive setup in order to provide immediate feedback to
the user. Both times are evaluated in an end-to-end fashion,
i.e., we measure the time between the user interaction, which
triggers the update, and the point where the updated data is
first rendered. Notably, the restriction to 48 time steps only
influences total runtime but not latency, because this only ac-
counts for the first time step update and all time steps share
the same size.

The measurements were conducted to analyze whether the
system is suitable for interactive use and if so, which config-
urations of MPI processes and OpenMP threads are particu-
larly effective. The basic hypothesis is, that a larger number
of MPI processes reduces overall runtimes whereas a higher
number of OpenMP threads leads to shorter latency times.

Figure 4 (left) shows the latency times for various config-
urations of threads and processes. It is evident, that a larger
number of threads in fact leads to a significant reduction of
latency, up to the point where interactive updates with re-
action times below 100 ms become possible; for the eight
processes/eight threads configuration the average latency is
85 ms. As hypothesized, no significant effect of the number
of processes on the reaction time can be seen, although the
results for a single process are up to 38% slower than those

84 B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization

vorticity[0]

A:nt

A:nt

Figure 5: Analyzing the formation of the counter-rotating vortex pair on both sides of the injection hole. Each of the scatterplots
in the top row shows the current selection box. Selected points, i.e., points which lie inside both boxes, are highlighted in red.
Unselected points (blue) are not shown in the spatial plots. Points with low temperatures are selected in the right plot of both
top images. The top left image shows points which additionally feature positive streamwise vorticity, the top right one those
showing negative streamwise vorticity. The lower images show the resulting point sets inside the simulation’s domain boundary.

of the other setups for a larger number of threads. The exact
reason for this behavior has yet to be determined.

In Figure 4 (right) the overall runtimes are compared to
each other. Again, the predicted behavior is immediately ap-
parent. A larger number of MPI processes leads to a reduc-
tion in overall runtimes, as more time steps are processed in
parallel. Because there is only very little communication be-
tween processes, the scaling is almost ideal when switching
from one to two processes. Overall update times reach 2.7 s
for all configurations with eight processes and more than two
threads. However, as the overall number of utilized CPUs in-
creases, the scaling significantly degrades. This is due to the
fact, that the visualization client is no longer able to process
even the reduced amount of incoming data. Moreover, com-
munication becomes a limiting factor.

Overall runtimes even increase for one and two MPI pro-
cesses, when increasing the number of OpenMP threads per
process from six to eight. This again results from a commu-
nication bottleneck: Each process has one additional thread
for sending results off to the client machine. In the afore-
mentioned cases, this thread is overloaded resulting in an
increase of transmission times. Note, that the first package
to be sent off is not affected by this and thus latency times
still do decrease.

In order to prove that scalability to a larger number of
time steps, we conducted another measurement with 16 MPI
processes and four OpenMP threads and used 96 out of the
100 time steps for this. In this measurement, latency was
157 ms while the overall update took 5.5 s. Assuming a data

animation which shows ten simulation time steps per sec-
ond user time, each animation cycle will take approximately
10 s of real-time. Therefore, the system is able to update
time steps within one animation cycle and thus the user will
hardly notice the computation.

In conclusion, we can say that the proposed combination
of MPI and thread-level parallelization is well suited for
the given visualization problem. While being quite heavy
weight, the MPI paradigm enables the use of distributed
memory systems, e.g., compute clusters. Handling time
steps independently in such a setup significantly reduces
memory demands on the individual systems. For example
when using eight processes in the given example, each node
had to store six time-steps resulting in a footprint of only 3.3
GBytes. Hence, an increase of processes is favorable for data
containing more time steps. On the other hand, shared mem-
ory parallelization with OpenMP brings a good speed-up for
low-level tasks at virtually no cost for the developer. It there-
fore helps to utilize the individual cores of each sub-system
in a cluster. This results in a faster computation of results for
individual time steps, which is favorable if these time steps
are rather large. In our measurements, configurations with
eight OpenMP threads minimized latency. However, scaling
for both strategies is limited by communication: in the for-
mer case because the front-end is eventually saturated with
incoming data, in the latter because the data cannot be sent
off in a timely fashion. It is therefore important to note, that
a system like the proposed one has to be carefully optimized
in an end to end fashion.

(© The Eurographics Association 2009.

B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization 85

vorticity([1]

vorticity[0]

= e 'jﬂ

/r:

Figure 6: Left: Marking high temperature gradients (top) reveals the shear layer in front of the injection hole (bottom). Right:
An artificially created close-up overlaying the three different selections: CVP (red, green) and shear layer (light blue).

4.2. Case Study

We have shown in the last section, that the parallelization fa-
cilitates interactive working on the example data set. We now
discuss observations from an exploration session, which has
been carried out by researchers from the field of fluid me-
chanics. The jet-in-a-crossflow simulation underlying this
study describes the injection of a coolant into a turbulent
flow of hot fluid. It is motivated by the fact that in gas tur-
bine engines a high thermal efficiency is generally reached
by high inlet gas temperatures. Film cooling techniques are
investigated to protect the turbine components from the in-
duced thermal stresses. These techniques generate a thin film
layer between the surface and the hot combustion gases.
Since the technical design process of film cooling systems
depends on the exact knowledge of the generated flow field,
a detailed understanding of the flow physics is crucial in or-
der to improve existing cooling techniques.

In the presented case, the cooling film is generated by
an injection of a cooling fluid through a row of staggered
holes. Under the assumption of symmetry the simulation is
restricted to a single jet hole. The flow field resulting from
the interaction of the inclined cooling jet and the turbu-
lent boundary layer is governed by complex vortex dynam-
ics, which is hard to predict in advance. The averaged flow
field downstream of the jet hole is dominated by a counter-
rotating vortex pair (CVP), which is the leading mechanism
in the mixing process between the hot gas and the coolant.
A detailed description of the numerical method can be found
in Renze et al. [RSMO08].

Here, we focus on the analysis of the CVP in the instan-
taneous flow field in order to understand the coherent struc-
tures in the averaged flow field. It is of particular interest,

(© The Eurographics Association 2009.

where exactly the vortices form and how they influence the
mixing process right after leaving the injection hole. This is
one example for an analysis task where the exact outcome is
not known in advance and therefore cannot be described by
an analytical model suitable for automatic extraction. To an-
alyze the CVP’s behavior, we set up three different plots, as
shown in Figure 5: The first one shows the three components
of vorticity ®. Here the streamwise and spanwise compo-
nents, i.e., Wy and ®y, are of central interest. The second plot
contains the temperature 7', the magnitude of the temper-
ature gradient|| V7| and the vorticity magnitude ||®||. The
third plot shows the three coordinate axes. For additional
spatial context a polygonal model of the simulation domain
is provided. Generally, selected points are highlighted in red,
whereas unselected points are shown in blue. While the first
two plots show all the data points regardless of their selec-
tion status, the third plot is restricted to the selected points,
to prevent a cluttered visualization in the spatial domain.

It was known in advance, that the CVP forms right at the
edges of the injection hole. Points in this region are char-
acterized by low temperature, which resulted in a first selec-
tion criterion. The vorticity distribution exhibited an interest-
ing shape in the (@, ®y)-plane, which resembles a mirror-
inverted integral sign. Marking the upper leg of this struc-
ture, i.e., points where @y > 0 shows a vortex on the right
hand side of the injection hole (cf. Figure 5, left). Setting
the selection to the lower leg shows the matching counter-
rotating vortex on the other side of the hole (cf. Figure 5,
right). From the images it is evident, that the strong vorticity
is generated at the edges of the jet hole, which has a strong
impact on the flow field’s instantaneous turbulent structures.
It can be recognized as the CVP in the averaged flow field.

86 B. Hentschel et al. / Hybrid Parallelization for Multi-View Visualization

Since these vortices are the driving factor of the mixing
process further downstream, it is interesting to see them in
correlation to the shear layer, where the turbulent hot in-
flow first hits the coolant. This layer is characterized by high
temperature gradients. Marking these in the right plot, it be-
comes obvious that the layer passes above the formation re-
gion of the CVP (cf. Figure 6, left). Interestingly, all of these
points lie in the central part of the vorticity plot, i.e., they
share low vorticity in all of the components. An artificially
created overlay of the three different selections clarifies the
relative positions of all three structures (cf. Figure 6, right).

5. Summary and Future Work

In this paper we have described an interactive data analysis
method, which combines the expressiveness of a VR user
interface with the processing power of parallel computers.
Both main requirements stated in the introduction have been
fulfilled. First, the drag box widget’s design allows the user
to intuitively interact with the data. In the case study, the use
of Virtual Reality has not only been proven to work but was
reported to help domain experts to correlate different flow
variables in a readily accessible way. Second, the shift of all
major compute tasks to a parallel system enables interactive
work on data which would not be manageable on a standard
workstation. The explicit inclusion of data reduction before
transmission is an important step in order to bring the data
down to a displayable resolution. Moreover, data reduction
and minimal retransmission help to reduce system latency
which is mandatory to facilitate interactive brushing.

Regarding future work, we see two main issues: First, we
have to acknowledge the fact that we are dealing with con-
tinuous data rather than isolated points. A straightforward
way of displaying data points may lead to overdrawing prob-
lems and even misinterpretations, as was recently pointed
out by Bachtaler and Weiskopf [BWOS]. Second, a more for-
mal evaluation would be beneficial. However, here we face
the problem of weighing a reasonably complex exploration
task against a meaningful number of qualified participants.

Acknowledgements

This work has been partially funded by the German Research
Foundation (DFG) under grant WE 2186/5. The crossflow-
data set has been simulated as part of the Collaborative Re-
search Centre (SFB) 561.

References

[ABM*01] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C.
Law, and M. Papka. Large-Scale Data Visualization using Paral-
lel Data Streaming. IEEE Computer Graphics and Applications,
21(4):34-41, 2001.

[ACN99] L. Arns and C. Cruz-Neira. The Benefits of Statistical
Visualization in an Immersive Environment. In Proceedings of
IEEE VR, pages 88-95, 1999.

[BC87] R. A.Becker and W. S. Cleveland. Brushing Scatterplots.
Technometrics, 29(2):127-142, May 1987.

[BGY92] S. Bryson and M. Gerald-Yamasaki. The Distributed
Virtual Windtunnel. In Proceedings of of the IEEE Supercomput-
ing '92, pages 275-284, 1992.

[BWOS] S. Bachthaler and D. Weiskopf. Continuous Scatter-
plots. IEEE Transactions on Visualization and Computer Graph-
ics, 14(6):1428-1435, 2008.

[CJPO7] B. Chapman, G. Jost, and R. Van Der Pas. Using
OpenMP: Portable Shared Memory Parallel Programming. MIT
Press, December 2007.

[DGHO3] H. Doleisch, M. Gasser, and H. Hauser. Interactive Fea-
ture Specification for Focus+Context Visualization of Complex
Simulation Data. In Proceedings of the Joint EUROGRAPHICS -
IEEE TCVG Symposium on Visualization, pages 239-248, 2003.

[dHKP02] G. de Haan, M. Koutek, and F. H. Post. Towards Intu-
itive Exploration Tools for Data Visualization in VR. In H. Sun
and Q. Peng, editors, Proceedings of the ACM Symposium on Vir-
tual Reality Software and Technology (VRST), pages 105-112,
2002.

[GSL99] W. Gropp, A. Skjellum, and E. Lusk. Using MPI:
Portable Parallel Programming with the Message Passing Inter-
face. MIT Press, 2nd edition, November 1999.

[JBSO8] H. Jdnicke, M. Bottinger, and G. Scheuermann. Brushing
of Attribute Clouds for the Visualization of Multivariate Data.
IEEE Transactions on Visualization and Computer Graphics,
14(6):1459-1466, 2008.

[KBBT06] O. Kreylos, T. Bernardin, M. L. Billen, E. S. Cowgill,
R. D. Gold, B. Hamann, M. Jadamec, L. Kellogg, O. G. Staadt,
and D. Y. Sumner. Enabling Scientic Worksflows in Virtual Re-
ality. In Proceedings of the ACM SIGGRAPH International Con-
Jerence on Virtual Reality Continuum and Its Applications (VR-
CIA2006), 2006.

[PKHO04] H. Piringer, R. Kosara, and H. Hauser. Interactive
Foxus+Context Visualization with Linked 2D/3D Scatterplots. In
Proceedings of the 2nd Int. Conference on Coordinated & Multi-
ple Views in Exploratory Visualization, pages 49-60, 2004.

[RBLNO4] D. Raja, D. A. Bowman, J. Lucas, and C. North. Ex-
ploring the Benefits of Immersion in Abstract Information Visu-
alization. In Proceedings of the 8th IPT Workshop, pages 61-69,
2004.

[RSMO8] P. Renze, W. Schroder, and M. Meinke. Large-Eddy
Simulation of Film Cooling at Density Gradients. Int. J. Heat
Fluid Flow, 29:18-34, 2008.

[SBKO7] M. Schirski, C. Bischof, and T. Kuhlen. Interactive Ex-
ploration of Large Data in Hybrid Visualization Environments.
In Proceedings of the 13th EGVE and 10th IPT Workshop, pages
69-76, 2007.

[SGVRT03] M. Schirski, A. Gerndt, T. van Reimersdahl,
T. Kuhlen, P. Adomeit, O. Lang, S. Pischinger, and C. Bischof.
ViSTA FlowLib - A Framework for Interactive Visualization and
Exploration of Unsteady Flows in Virtual Environments. In Pro-
ceedings of the 9th EGVE and 7th IPT Workshop, pages 77-85,
May 2003.

[Spe06] R. Spence. Information Visualization: Design for Inter-
action. Prentice Hall, 2nd edition, December 2006.

[SSWBO05] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes
Bethel. QueryDriven Visualization of Large Data Sets. In Pro-
ceedings of IEEE Visualization, pages 167-174, 2005.

(© The Eurographics Association 2009.

