
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

Data-Parallel Hierarchical Link Creation for Radiosity

Quirin Meyer1, Christian Eisenacher1, Marc Stamminger1, and Carsten Dachsbacher2

1University of Erlangen-Nuremberg
2University of Stuttgart

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

The efficient simulation of mutual light exchange for radiosity-like methods has been demonstrated on GPUs.
However, those approaches require a suitable set of links and hierarchical data structures, prepared in an expen-
sive preprocessing step. We present a fast, data-parallel method to create links and a compact tree of patches. We
demonstrate our approach for Antiradiance and Implicit Visibility. Our algorithm is able to create up to 50 M
links per second on an Nvidia GTX 260, allowing fully dynamic scenes at interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Parallel processing—
Computer Graphics [I.3.6]: Graphics data structures and data types—Computer Graphics [I.3.7]: Radiosity—

1. Introduction

Interactive global illumination has been an elusive goal for
a long time – and for fully dynamic scenes it still is. One
method of choice is radiosity, which recently gained more
attention again. Radiosity-like methods compute global illu-
mination by simulating the mutual light exchange between
the surface patches of a given scene. This works particularly
well for static scenes and involves two main steps:

• Discretize the scene into a hierarchy of patches and estab-
lish links between them.

• Simulate light transport using these links.

While efficient parallel implementations have been
demonstrated for the second step, link and patch creation
is more difficult: It is a recursive process, requiring expen-
sive ray casting operations to determine the mutual visibility
between patches. Thus, in previous work, the link and patch
creation was bound to be a costly preprocessing step on the
CPU. This prevented the use of radiosity methods for fully
dynamic, interactive scenes.

Recent approaches using Antiradiance [DSDD07] or Im-
plicit Visibility [DKTS07] do not need visibility computa-
tions during hierarchical link and patch creation. While both
papers only describe sequential algorithms, we propose a
non-recursive and efficient data-parallel algorithm to create
links and a patch hierarchy for these methods, running en-
tirely on the GPU.

Our method is fast enough to create links and a compact
patch hierarchy from scratch for every frame. Including the
simulation of light transport, we can render dynamic scenes
with indirect light at interactive frame rates (see Figure 1).

2. Related Work

There is a vast body of research on global illumination and
excellent text books cover the area, e.g. [DBB06]. Two main
approaches have been widely researched in the last decades:
ray tracing based methods and radiosity.

There have been many attempts to use GPUs to speed
up ray tracing. However, the hierarchical traversal of ac-
celeration structures requires special adaptations, such as
a stackless traversal or modified acceleration structures,
e.g. [HSHH07, PGSS07], so that GPU ray tracers achieve
a performance comparable to current CPU implementations.
Generating those structures directly on the GPU often relies
on space filling curves [AGCA08], and has recently been
demonstrated for real-time kd-tree construction [ZHWG08].
Several methods are based on ray tracing, and cache infor-
mation about the lighting situation. The most well-known
representatives are irradiance caching [WH92], photon map-
ping [Jen01, HOJ08], and instant radiosity [Kel97]. In par-
ticular the latter class of methods gained attraction as it cre-
ates sets of virtual point lights (VPLs), and thus maps easily
to graphics hardware, e.g. [DS05,DS06,LSK∗07,RGK∗08].

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/065-070

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/065-070


Q. Meyer, C. Eisenacher, M. Stamminger, C. Dachsbacher / Data-Parallel Hierarchical Link Creation for Radiosity

(a) Direct light only (b) Antiradiance (c) Antiradiance, different frame

Figure 1: We create hierarchical links and a compact patch tree at a rate of 50 M links per second on a Nvidia GTX 260. For
moderately complex scenes (280 k links and 4k patches in 1(a)) we can create links from scratch for each frame. Including the
simulation of mutual light exchange our method allows fully dynamic scenes with indirect light at 30-40 fps 1(b), 1(c).

The light cuts method [WFA∗05] clusters light samples, e.g.
VPLs, into a hierarchy to speed up rendering.

There have also been numerous attempts to port ra-
diosity computations to the GPU. The main problem is
the costly evaluation of a large number of mutual vis-
ibilities between surface patches. Earlier GPU radios-
ity solvers [CHL04, BSKS05] use rasterization inspired
by the hemicube method. More recent approaches, such
as [STK08], use ray tracing on the GPU to compute form
factors combined with an asynchronous update mechanism
for interactive rendering.

Recently, Dachsbacher et al. [DSDD07] introduced a re-
formulation of the rendering equation that replaces explicit
visibility by a recursive computation with negative light or
“Antiradiance”. Dong et al. [DKTS07] use a directional dis-
cretization and store only one link to the closest patch per
direction. Thus the visibility is constructed implicitly with
the link hierarchy. While both approaches avoid direct visi-
bility computation, they rely on a hierarchical link structure,
which is generated sequentially on the CPU.

3. Data-Parallel, Hierarchical Links

Radiosity methods discretize the scene into a hierarchy of
patches, generally using a quadtree, and connect patches that
exchange light by links. Starting with a pair of root patches,
an oracle decides whether sender and receiver see each other
and are sufficiently small to be connected. If not, sender
and/or receiver are subdivided and all combinations of child
pairs are considered recursively.

After patch hierarchy and links are created, light exchange
is simulated by iterating over all links and transporting light
from the sender to the receiver side, simulating one bounce
of light. This is repeated until the solution converges.

Antiradiance and Implicit Visibility discretize the (hemi-)
sphere of directions into n bins,
typically n = 64 to n = 512. This
allows non-diffuse materials at
the expense of n bins per patch.
Each link transports light from
one bin of the sender to one bin
of the receiver (see inset). These interacting bins have to be
determined during link creation (bin search).

While there is a recursive parent-child dependency be-
tween patches, the whole process can be reformulated as a
data-parallel breadth-first algorithm focusing on the links.
As outlined in Figure 2, we first refine the links, and then
create bins only for the linked patches and all their parents,
resulting in a compact patch tree representation.

Figure 2: We adaptively refine links breadth-first and mark
the linked patches in a perfect tree. We use this information
to create a compact patch hierarchy with directional bins.
Optionally we eliminate multiple links per bin.

3.1. Link Refinement

We create unidirectional links between the original faces, en-
coded as a pair of quadtree coordinates, and place them into
a link queue where all links are examined and split in paral-
lel. This is iterated until they are sufficiently refined.

c© The Eurographics Association 2009.

66



Q. Meyer, C. Eisenacher, M. Stamminger, C. Dachsbacher / Data-Parallel Hierarchical Link Creation for Radiosity

Figure 3: The oracle examines each link in parallel. It de-
termines how to refine the link, and the storage required. A
parallel prefix scan converts the latter into array indices.

Oracle: The oracle shown in Figure 3 examines each
link independently, decides whether and how to refine it
(DECISION), and computes storage required for the refined
links (MEM). A parallel prefix scan [Ble90, HSO07] con-
verts the latter into indices for the refinement kernel (MEM).
We cluster directions into bins with uniform solid angle Ωbin
as described in [DSDD07], and split patches whose solid an-
gle, as seen from their partner patch, is larger than Ωbin.

Refinement: The refinement kernel in Figure 4 uses the
decisions of the oracle to refine all links in parallel. This is
done by computing the quadtree coordinates for the child
patches and storing them at the prepared indices. Refining
links can imply refining one of the linked patches. We mark
child patches in the perfect tree (TREE) and create bins for
the marked patches when link creation is complete.

Figure 4: Links are refined according to the oracles decision
and stored at the indices prepared by the parallel prefix scan.

3.2. Compact Patch Hierarchy and Link Recoding

Compact Patch Hierarchy: As patches with n bins con-
sume considerable space, the hierarchy should only contain
the required patches. During link refinement we mark the
linked patches in TREE – a perfect tree stored breadth-first
(see Figure 5). A simple scan is sufficient to compute a map-
ping into the compact patch hierarchy (TREE). Note that
TREE stores one int per node, while the compact patch
hierarchy stores 4 kB per node for 256 bins. See Table 1.

Topology: After light exchange, we need to make the light
distribution consistent throughout the patch hierarchy. First
we push incident light from parent to child patches down to

Figure 5: Patch markers are stored breadth-first. A parallel
prefix scan computes indices for the compact hierarchy.

the leaf nodes. After the local pass convolved the light at the
leafs with the BRDF, we pull exitant light from the children
to the parents up to the root node. We simply use TREE to
determine whether a given patch has children and look up
their indices into the compact hierarchy in TREE. Similarly
we identify leaf nodes for the local pass.

Link Recoding: During link refinement, links between
patches are encoded as a pair of quadtree coordinates. For
the simulation of mutual light exchange we recode them us-
ing TREE. For each link we store the global indices of the
linked bins in the compact patch hierarchy and the form fac-
tor (without visibility).

Bin Search: During link recoding we need to determine
the actual bins linked. We use a simple hierarchical search.
Despite the slightly more complex code and memory access
patterns, link recoding time for 256 bins was reduced by a
factor of more than three compared to a linear search.

3.3. Link Reduction

The idea of Dong et al. [DKTS07] is to remove all but the
shortest link per bin to handle visibility implicitly. This re-
moves the danger of concurrent writes to the same bin and
promises increased performance.

To find the shortest link we write the distance between
the linked patches into the alpha channel of its receiver bin
during link recoding – if it is shorter than the stored value.
During link reduction we simply mark longer links and re-
move them using a standard compaction algorithm [Ble90].

As reported by Dong et al., situations might occur, where
child patches have shorter links than their parent in a given
direction. Due to the hierarchical nature of the approach, this
inconsistency leads to missing shadows, as incident light
from the parent patch will be pushed to the children. They
propose an additional consistency step combined with push-
ing the receiver end of all links to the leaf patches.

We skip both and handle consistency during the push
phase of the light transport instead: When pushing incident
light towards the child nodes, we compare the minimum
length stored at each bin. If the parent’s link for the given
bin is shorter, we propagate the parent’s light and update the
minimum length of the child. As we need to store four values
per bin for alignment reasons, this comes with no additional
storage and memory bandwidth cost.

c© The Eurographics Association 2009.

67



Q. Meyer, C. Eisenacher, M. Stamminger, C. Dachsbacher / Data-Parallel Hierarchical Link Creation for Radiosity

Compact Tree Antiradiance Implicit Visibility
Bins Amin NP MB NL LC IT 1 IT 2 IT 3 NL LC IT 1 IT 2 IT 3

64

1/16 m2 528 0.52 13k 1.2 2.8 3.2 3.5 6 k 1.4 2.7 3.0 3.2
1/64 m2 1620 1.58 32k 2.0 3.1 3.8 4.4 15 k 2.3 2.9 3.3 3.7

1/256 m2 3980 3.89 70k 2.7 3.8 4.9 6.1 32 k 3.1 3.2 4.1 4.7
1/1024 m2 10016 9.78 151k 5.1 5.2 7.7 10.2 63 k 5.9 4.2 5.7 7.2

256

1/16 m2 556 2.17 66k 1.9 3.4 4.3 5.2 27 k 2.5 3.0 3.4 3.9
1/64 m2 2220 8.67 204k 4.2 5.3 7.9 10.5 79 k 5.7 3.9 5.1 6.2

1/256 m2 7604 29.7 488k 9.7 10.0 16.7 23.5 187 k 13.0 6.7 10.1 13.5
1/1024 m2 21212 82.9 1090k 24.2 20.9 37.0 53.1 411 k 29.8 13.5 22.4 31.1

Table 1: We create links and compact patch hierarchy for a Cornell box (Figure 6) with side length 1m. We obtain NP patches
with minimal area Amin and NL links. We need LC ms for creation and IT ms for one to three light exchanges on a GTX 260.

4. Results

To test our approach, we create links and patch hierarchy for
a Cornell box with side length 1m, shown in Figure 6. Using
a closed scene with simple geometry makes it easy to study
the performance of our algorithm and the impact of different
parameters on the quality of the radiosity solution: We are
able to control the number of patches and links by defining
a minimum patch area Amin and the flat faces intensify arti-
facts common to hierarchical radiosity, like contact shadows
(compare Figures 6 (c) and (f)) or banding (see Figure 7).

We simulate mutual light exchange with Antiradiance or
Implicit Visibility and present results for 64 and 256 bins.
We allow the oracle to refine links until the mutual solid an-
gles are less than Ωbin, but skip link refinement if it would
produce patches smaller than Amin.

Table 1 lists timings for link creation (LC) on an Nvidia
GTX 260, running CUDA 2.1 on Windows XP. The com-
pact patch hierarchies contain NP patches that exchange light
over NL links. Example hierarchies are shown in Figure 6.
Overall we are able to create up to 50 M links per second.

For our largest example, 256 directional bins and refine-
ment until Amin < 1/1024 m2, we present a detailed break-
down for the time spent at the various stages in Table 2.
The timings for the link refinement kernels are accumulated
over all iterations needed. The time for “Recode Links” is
for computing form factors, looking up the patch index into
the compact hierarchy and storing a recoded link in order to
clarify the cost for bin and minimum search.

Kernels operating on links process all links independently
and do not need shared memory, hence we assign one thread
for each link. Kernels creating topology information, allo-
cate one thread for each node of the perfect quadtree. Differ-
ent block sizes have negligible impact on performance.

For ease of implementation we store one float4 (4×4
bytes) per bin and one float4 per quadtree coordinate. For
our largest example we need about 83 MB for 21 k patches
and 32 MB for 1088 k links.

Stage AR IV

Link
Refinement

Oracle 5.5 5.5
Scan 1.2 1.2
Refine 8.0 8.0
Mark Used Patches 2.9 2.9
Compute Topology 0.3 0.3

Bin
Encoding

Recode Links 5.1 5.1
Bin Search 1.2 1.2
Write Minimum - 3.6

Reduce
Links

Mark Longer Links - 0.8
Compact Links - 1.2

Total 24.2 29.8

Table 2: Detailed timings of the link creation in ms (1088 k
links Antiradiance (AR), 411 k links Implicit Visibility (IV)).

The actual light transport is implemented in CUDA. For
Antiradiance we use the global atomicAdd() to deal
with concurrent writes to the same bin. Currently those
are limited to integer arithmetic but the available dynamic
range was sufficient for our test scene. To search the short-
est links for Implicit Visibility we use the global atom-
icMin(__float_as_int(distance)).

5. Discussion

We have presented a complete system for global illumina-
tion with radiosity on the GPU: Link and hierarchy creation,
light transport and rendering. It allows dynamic scenes with
indirect lighting at interactive frame rates.

5.1. Performance

Link Creation: A direct comparison of our results with the
original papers is difficult. The link creation for Antiradi-
ance [DSDD07] was designed as offline preprocess involv-
ing clustering. Dong et al. [DKTS07] presented only open
scenes with environment lighting and did not elaborate on
the number of links they created.

c© The Eurographics Association 2009.

68



Q. Meyer, C. Eisenacher, M. Stamminger, C. Dachsbacher / Data-Parallel Hierarchical Link Creation for Radiosity

(a) 64 Bins, 1/16 m2 (b) 64 Bins, 1/1024 m2 (c) Antiradiance, 64 Bins, 1/1024 m2

(d) 256 Bins, 1/16 m2 (e) 256 Bins, 1/1024 m2 (f) Antiradiance, 256 Bins, 1/1024 m2

Figure 6: We test our algorithm for link creation with various parameters on the shown Cornell box. The illumination for the
image on the right is simulated with three bounces of Antiradiance and rendered with splatting.

However, we believe our approach to hierarchy creation
on the GPU is very competitive. Transferring 1 M links
plus topology information from the CPU to the GPU takes
13.2 ms on our system, compared to creating the same infor-
mation on the GPU in 24.2 ms.

Implicit Visibility: At moderate additional cost we can
avoid concurrent writes to the same bin. However this ac-
counts only for a fraction of the reduced cost, about 2 ms
for 1 M links. Most savings result from the reduced number
of links. In combination with the fact that Implicit Visibility
needs one bounce less (i.e. 2 bounces for indirect shadows)
it is about twice the speed of Antiradiance.

CUDA Atomics: Global atomics are surprisingly fast
with current drivers and only about 15% slower then non-
atomic versions in our case. Surprisingly our CUDA imple-
mentation of the global pass is almost 5× faster than using
the hardware blend stage via OpenGL on the same card. This
is not an entirely fair comparison, as the blend stage operates
with floats and can perform link filtering [DSDD07] at little
additional cost, but using global atomics seems to be an in-
teresting option, as they are much simpler to implement.

5.2. Quality

Implicit Visibility vs. Antiradiance: For our closed room
test scene, Implicit Visibility turned out to be very sensitive
to discretization and produced many sharp quantization ar-
tifacts. Antiradiance tended to overblur illumination but de-
generated with less objectable artifacts when the number of
bins and patches was reduced. Overall we have the subjec-
tive impression that both methods are tied in terms of image
quality for a given computational budget.

Push down links: While Dong et al. suggest to push the
receiver end of the created links to the leaf patches to avoid
scatter operations on the GPU, we observe that our imple-
mentation spends only 7% of the total time per bounce scat-
tering data. However, we found that pushing down the re-
ceiver side one or two levels, if child patches exist, drasti-
cally reduced banding artifacts, common to hierarchical ra-
diosity methods, at little extra cost: The number of patches
and bins remains unchanged, but while it almost quadruples
the link count, the time for link creation only doubles as the
push down is very simple. Most surprisingly, quadrupling
the number of links does not even double the time for light

c© The Eurographics Association 2009.

69



Q. Meyer, C. Eisenacher, M. Stamminger, C. Dachsbacher / Data-Parallel Hierarchical Link Creation for Radiosity

exchange. By pushing down links, we essentially cluster
links with neighboring receivers and the same sender. This
improves memory locality during light transport, and neigh-
boring threads even distribute light from the same sender
patch, sharing the same global memory read. The reduced
banding even allows us to use a reduced number of patches
for comparable visual quality as Figure 7 demonstrates.

Figure 7: Hierarchical radiosity methods are prone to band-
ing artifacts. By pushing down links on the receiver side we
can use fewer patches with better visual quality (left: 21 k
patches @ 13 fps; right, 7.6 k patches @ 30 fps; both ren-
dered with Antiradiance, 3 bounces and 256 bins).

6. Conclusion and Future Work

We have presented a method to produce links for hierarchi-
cal radiosity methods in parallel, and generate around 50 M
links per second for Antiradiance and 15 M links per sec-
ond for Implicit Visibility. This allows moderately complex
dynamic scenes with global illumination at 30 to 40 fps.

With the push down of links we presented a simple
method to reduce banding artifacts common to hierarchical
radiosity methods at moderate additional cost.

While the compact patch hierarchy and push down of
links allows to reduce memory consumption to some degree,
the memory required for the bins is still the most limiting
factor. However not all bins are linked: For 21 k patches and
256 bins per patch we generate 411k links (Implicit Visibil-
ity) for 5.4 M bins, indicating considerable opportunities to
save memory.

Overall, link creation is about as fast as one light trans-
port. An intriguing idea we want to explore, is to combine
both for BF-refinement. Also we experimented only with
subdividing faces. While the extension to the “surfel hier-
archy” of Dong et al. should be straight forward, an interest-
ing question would be how to handle self shadowing while
exchanging light only on the upper levels of the hierarchy.

References

[AGCA08] AJMERA P., GORADIA R., CHANDRAN S., ALURU
S.: Fast, parallel, GPU-based construction of space filling curves
and octrees. In SI3D ’08: Proceedings of the 2008 symposium on
Interactive 3D graphics and games (2008), pp. 1–1.

[Ble90] BLELLOCH G. E.: Vector Models for Data-Parallel Com-
puting. MIT Press, 1990.

[BSKS05] BARSI A., SZIRMAY-KALOS L., SZIJÁRTÓ G.:
Stochastic glossy global illumination on the GPU. In Spring Con-
ference on Computer Graphics 2005 (May 2005), pp. 187–193.

[CHL04] COOMBE G., HARRIS M. J., LASTRA A.: Radiosity
on graphics hardware. In Graphics Interface 2004 (May 2004),
pp. 161–168.

[DBB06] DUTRE P., BALA K., BEKAERT P.: Advanced Global
Illumination. AK Peters, 2006.

[DKTS07] DONG Z., KAUTZ J., THEOBALT C., SEIDEL H.-P.:
Interactive global illumination using implicit visibility. In PG
’07: Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications (2007), pp. 77–86.

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In I3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games (2005), pp. 203–231.

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect
illumination. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games (2006), pp. 93–100.

[DSDD07] DACHSBACHER C., STAMMINGER M., DRETTAKIS
G., DURAND F.: Implicit visibility and antiradiance for interac-
tive global illumination. ACM Transactions on Graphics 26, 3
(July 2007), 61:1–61:10.

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progres-
sive photon mapping. In SIGGRAPH Asia ’08: ACM SIGGRAPH
Asia 2008 papers (2008), pp. 1–8.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree GPU raytracing. In I3D ’07:
Proceedings of the 2007 symposium on Interactive 3D graphics
and games (2007), pp. 167–174.

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel
prefix sum (scan) with CUDA. In GPU Gems 3, Nguyen H.,
(Ed.). Addison Wesley, Aug. 2007.

[Jen01] JENSEN H. W.: Realistic Image Synthesis using Photon
Mapping. A. K. Peters, Ltd., 2001.

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques (1997), pp. 49–56.

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J.,
LEHTINEN J., AILA T.: Incremental instant radiosity for real-
time indirect illumination. In Proceedings of Eurographics Sym-
posium on Rendering 2007 (2007), pp. 277–286.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum 26, 3 (Sept. 2007), 415–424.

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. In SIGGRAPH
Asia ’08: ACM SIGGRAPH Asia 2008 papers (2008), pp. 1–8.

[STK08] SCHMITZ A., TAVENRATH M., KOBBELT L.: Inter-
active global illumination for deformable geometry in CUDA.
Computer Graphics Forum 27, 7 (2008). Pacific Graphics 2008
Conference Proceedings.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA
K., DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable
approach to illumination. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers (2005), pp. 1098–1107.

[WH92] WARD G. J., HECKBERT P. S.: Irradiance gradients. In
Eurographics Workshop on Rendering (1992), pp. 85–98.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
27, 5 (2008), 1–11.

c© The Eurographics Association 2009.

70


