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Abstract

Dimensionality reduction methods like Principal Component Analysis (PCA) have become commonplace for the
compression of large datasets in computer graphics. One important application is the compression of Bidirectional
Texture Functions (BTF). However, the use of such techniques has still many limitations that arise from the large
size of the input data which results in impractically high compression times. In this paper, we address these
shortcomings and present a method which allows for efficient parallelized computation of the PCA of a large BTF
matrix. The matrix is first split into several blocks for which the PCA can be performed independently and thus
in parallel. We scale the single subproblems in such a way, that they can be solved in-core using the EM-PCA
algorithm. This allows us to perform the calculation on current GPUs exploiting their massive parallel computing
power. The eigenspaces determined for the individual blocks are then merged to obtain the PCA of the whole
dataset. This way nearly arbitrarily sized matrices can be processed considerably faster than by serial algorithms.
Thus, BTFs with much higher spatial and angular resolution can be compressed in reasonable time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture G.4 [Mathematics of Computing]: Mathemati-
cal Software—Parallel and vector implementations

1. Introduction
One important challenge in photorealistic rendering is the
representation of the reflectance properties of materials.
Nowadays reflectance measurements provide a method to
faithfully reproduce the appearance of materials. One kind
of material representation is the Bidirectional Texture Func-
tion (BTF) introduced by Dana et al. [DvGNK97]. It is able
to cover a wide range of materials with complex mesostruc-
tures and spatially varying reflectance properties. To deal
with the large amounts of input data, several compression
methods have been proposed by now. Many of them rely
on dimensionality reduction methods like Principal Compo-
nent Analysis (PCA). However, a serious drawback of these
methods is that they are computationally very expensive be-
cause they require the factorization of large matrices. An-
other general issue is the huge data size which makes out-of-
core algorithms necessary. These are severly encumbered by
IO bottlenecks and thus get nearly unusable for large BTF
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datasets even if their in-core equivalents would suffice the
needs.

Because of the comparatively long measurement times
and the low resolution of older BTF acquisition setups, the
compression times of these techniques were acceptable so
far. However, the availability of high-resolution and low-cost
digital cameras has made the development of highly parallel
BTF acquisition devices possible. Modern devices are able
to capture a material sample with high dynamic range, an
angular resolution of more than 100 view and light direc-
tions and a spatial resolution of several megapixels in a few
hours. This corresponds to data sizes of several hundreds
of gigabytes. Current techniques do not scale well to these
large datasets. For example, with non-parallelized methods
the compression of a 512x512x95x95 BTF using an out-
of-core PCA on the full BTF matrix takes about 13 hours
which is in stark contrast to a few hours of measurement,
severely hampering the practical operation of a BTF acqui-
sition setup. Thus, the compression of high-resolution BTFs
is still a challenging problem of high practical relevance.
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In this paper, we propose a method for efficient and par-
allelizable factorization of large matrices and show its appli-
cation to BTF compression. The core operations of the al-
gorithm are performed on graphics hardware exploiting the
massive parallel computing power of modern GPUs. The al-
gorithm is designed to use only existing libraries for matrix
operations and is thus very easy to implement. We achieve
speed gains of up to a factor of 35 compared to implementa-
tions on a single CPU core.

Our basic idea is to subdivide the large BTF data matrix
into several smaller blocks that can be processed in-core and
then to use eigenspace merging to obtain the factorization
of the complete matrix. We use the EM-PCA algorithm of
S. Roweis [Row98] for the factorization of the small blocks.
The runtime of this iterative algorithm is primarily domi-
nated by matrix operations in its inner loop. By performing
most of these operations on the GPU, we are able to gain a
massive speed increase for the factorization of the individual
matrix blocks.

The rest of the paper is organized as follows: In Section 2
we give an overview about previous work on matrix fac-
torization and BTF compression. In Section 3 we introduce
necessary theoretical background on our method. The im-
plementation issues can be found in Section 4. The paper is
concluded with result in Section 5 and a discussion in Sec-
tion 6.

2. Previous Work
In this section we will given an overview on BTF compres-
sion and matrix factorization methods.

2.1. BTF compression

The Bidirectional Texture Function was introduced by
Dana et al. [DvGNK97]. It represents the appearance of
complex materials as a six-dimensional function ρ(x,ωi,ωo)
of surface position x, light direction ωi and view direction
ωo.

Most of previous BTF compression techniques rely on
matrix or tensor factorization, clustering, wavelets or the fit-
ting of analytical models to the texels of the BTF. The most
general approach of these are the factorization techniques,
which work for a broader range of material classes since they
are not based on fixed basis functions.

Several BTF compression techniques based on tensor
factorization have been proposed by now, e.g. Vasilescu
et al. [VT04], Wang et al. [WWS∗05] and Wu et
al. [WXC∗08]. Since the BTF is a six-dimensional func-
tion, a tensor is its canonical representation. However, com-
pression techniques which are based on tensor factorization
have several drawbacks when compared to PCA-based rep-
resentations of equal quality, as was reported by Müller in
[Mül08]. On the one hand, the compression times are quite

long with only small or no increase in compression ratio. On
the other hand, the reconstruction speed is very slow if only
one element of the tensor is to be reconstructed, which is the
standard case in BTF rendering.

In contrast to this high dimensional representation, Prin-
cipal Component Analysis (PCA) works only on two-
dimensional matrices. Thus, compression methods based on
PCA have to represent the six-dimensional dataset as matri-
ces. There exist two main approaches for this. The first is
to split the BTF data into several parts, for which PCA is
performed totally independently and the other one is to un-
roll the higher dimensional data. Several combinations of the
two methods exist, some of which achieve good compression
ratios and at the same time offer fast decompression speeds.

Sattler et al. [SSK03] grouped all images for one view
direction and then compressed them independently of each
other. Müller et al. [MMK03] used local PCA for BTF com-
pression by employing spatial clustering and applying PCA
on each cluster. Suykens et al. [SBLD03] applied a tech-
nique called chained matrix factorization to BTF matrices.
They factorize the data matrix repeatedly using a different
parametrization each time.

Factorization of the whole BTF data as one matrix was
used by Koudelka et al. [KM03] and Liu et al. [LHZ∗04].
The main problem here is the sheer size of the matrix and
the resulting processing times needed to factorize this ma-
trix. Therefore, only BTFs with quite low resolution could
be processed so far. Nevertheless, the main advantage of a
full-matrix factorization is the possible exploitation of cor-
relations throughout the full data set, which is not possible
in between totally independently processed parts. Thus, the
compression ratio of a full-matrix-factorization approach is
superior to all other matrix-factorization methods, that were
proposed to increase compression speed and make the ma-
trices that small that they can be factorized in-core. With our
method the good compression ratio becomes available even
for high-resolution BTFs.

2.2. Matrix factorization

Compression can be performed by first applying Principal
Component Analysis and then truncating after the first k
principal components. For most BTF materials, about 100
components are sufficient for very faithful reproduction. The
naive approach is to subtract the mean from the m× n data
matrix M to form the mean-centered matrix M and then to
perform a singular value decomposition (SVD) M = USVT

by calculating the eigenvectors and eigenvalues of the co-
variance matrix MMT . However, this is not the best ap-
proach with regard to numerical precision and there exist
algorithms that directly compute the SVD from M for all sin-
gular vectors and values at the same time (see e.g. [GL96]).
Unfortunately, they require O

(
mn2 +m2n+n3

)
time and
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are furthermore not well suited for out-of-core implemen-
tations.

Since for compression purposes only the first k eigenval-
ues and eigenvectors are needed, performing a full factor-
ization is not very efficient. To overcome this problem, sev-
eral techniques have been proposed by now, which allow to
calculate only the k largest eigenvalues and corresponding
eigenvectors in considerably smaller time and which are also
better suited to out-of-core implementation. In the incremen-
tal SVD algorithm from Brand [Bra02] the data is processed
column-wise by updating the eigenspace as new columns are
added. Its time complexity is O(mnk). Roweis [Row98] pro-
posed an iterative expectation-maximization (EM) algorithm
for PCA which also has a time complexity of O(mnk). A
different approach has been taken by Liu et al. [LWWT07].
They subdivided the data matrix into several blocks, per-
formed a traditional PCA on each block and then merged
the eigenspaces of the single blocks with the method of Skar-
bek [Ska03] to obtain the eigenspace of the whole matrix.

Block-wise processing is also the basic idea behind our
approach, as it allows to parallelize the computation of the
single blocks. Additionally, the blocks can be choosen in
such a way that they fit into the memory of a GPU and can
therefore be processed in-core. We decided to use the EM-
PCA algorithm from Roweis for these subproblems because
it can process one block of data at once with only a few ma-
trix operations. In contrast to the incremental SVD method
where each column must be added successively, this allows
for easy GPU acceleration.

3. Theory
Given a BTF ρ(x,ωi,ωo) as a six-dimensional table with a
RGB-triple in every entry, we can define a BTF data matrix
MBT F by unrolling the color channels c and the directions in
one dimension as well as the spatial position x in the other
one by defining indexing operators i and j. We end up with
the m× n matrix MBT F (i(ωi,ωo,c), j(x)) = ρ(x,ωi,ωo) [c]
with m as the number of light and view direction combina-
tions times the number of color channels and n as the number
of texels.

Given such a m× n BTF matrix MBT F , its PCA can be
calculated by first determining the mean m of MBT F and
then performing a singular value decomposition (SVD) of
the matrix M obtained by subtracting this mean from MBT F .
The full SVD of M is a decomposition M = U f S f VT

f , with
orthogonal matrices U f and V f and a diagonal matrix S f
containing the singular values sorted in descending order.
Here, U f is a m×m and V f is a n× n matrix, but for BTF
compression this representation is truncated, by only keep-
ing the first k columns of U f and V f corresponding to the
first k largest singular values of S f . In the following, we will
thus only consider the m×k matrix U the k×k matrix S and
the n× k matrix V obtained after this truncation.

For our algorithm, the matrix M is first subdivided into N
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Figure 1: Illustration of the algorithm. The matrix M is first
divided into blocks M1, · · · ,MN. For each of the blocks, an
independent SVD is calculated via the EM-PCA algorithm
to obtain Ui and Si. Then, the individual decompositions are
merged to obtain the final result U and S.

blocks M = [M1 · · · MN ] of the respective sizes m× si. On
each of these blocks, a SVD is performed independently re-
sulting in the matrices Ui,Si,Vi. This step thus can be easily
be performed in parallel. The SVDs for these blocks are then
merged to finally obtain the decomposition of the complete
matrix M. See Figure 1 for an illustration of this process. In
our implementation, we merge the matrices successively. In-
stead, the merging could also be performed in a binary tree,
as suggested by Liu et al. in [LWWT07]. As the results in
their paper show, tree structured merging does reduce the er-
ror, but only by a small amount (below 1% in all examples
given there). On the other hand, when using tree structured
merging, it is necessary to store more intermediate results,
increasing the memory requirements.

Since the matrix V contains the projections of M into the
U-space, parts of the data vectors orthogonal to this space
are not represented. In each merge step, however, the sub-
space spanned by the matrix U changes. Thus, if the vectors
in V are reprojected into this new U-space, only the part in
the intersection of the old and the new space can be repre-
sented and the orthogonal part is lost. This would lead to
an accumulation of errors during the merge steps. To avoid
this accumulation, we first compute only U. Instead of calcu-
lating and merging the individual matrices Vi, we calculate
V in an additional step by projecting the columns of M on
the subspace spanned by U. For the same reason, we also
recalculate the singular values in the final projection step,
even though we have to update S during the calculation of
U since it is needed to perform the merge steps. In addi-
tion to the improved accuracy, this reduces the complexity
of the implementation as well as the memory requirements.
The drawback of this approach is that we must spend ad-
ditional IO time for this final step since we have to load the
full matrix again. Thus, for applications where speed is more
important than precision, it might be advantegeous to instead
update V together with U during the merge steps.
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In the following sections, we will give a short overview
of the EM-PCA algorithm we used for the factorization of
the sub-problems and the technique we used to merge the
individual factorizations to obtain the full SVD.

3.1. EM-PCA

Instead of calculating a SVD of Mi directly, we approx-
imate it by first using the EM-PCA algorithm introduced
in [Row98] to find the subspace spanned by the first k princi-
pal components of Mi and then performing the SVD on the
projection of Mi into this subspace. This way, we only have
to compute the SVD for a (k +1)× si matrix, containing the
data vectors projected into the subspace spanned by the first
k principal components and the mean direction of M. This
factorization can be done very fast for small k.

The EM-PCA algorithm is an expectation-maximization
algorithm which allows to find the subspace spanned by the
first k principal components, without explicitly calculating
all principal components. After initializing the m× k output
matrix C with random values, it iterates between the follow-
ing two steps:

E-step:

X = (CT C)−1CT Mi

M-step:

Cnew = MiXT (XXT )−1

Here, Mi is a m× si input matrix with zero mean and X
is a k× si matrix of unknown states. After the iteration has
completed, the columns of C span the principal subspace. As
analyzed in [Row98], this EM algorithm always converges
and the number ni of necessary iterations is rather small and
independent from the size of Mi. In our experience, 15 iter-
ations were sufficient for good compression results.

Thus, only matrix multiplications and inversions are
needed for the calculation of the PCA. In practice, the run-
time is dominated by the two multiplications with the m× si
matrix Mi, since these require O(kmsi) operations. The al-
gorithm is therefore practically linear in the size of the input
data. This approach is thus very well suited for GPU im-
plementations, as the matrix multiplications are easily paral-
lelizable, especially for very large matrices like Mi. Matrix
inversions have a runtime which is cubic in the matrix di-
mension and are furthermore not easily parallelizable. How-
ever, the contribution of the two inversions in this algorithm
to the total runtime is negligible for small k, because the ma-
trices CT C and XXT are both only of size k× k.

When using EM-PCA to calculate the principle subspace
for the matrices Mi, it is important to keep in mind that, even
though the mean has been subtracted from the full matrix M,
the individual block matrices can have non-zero mean and
are therefore not directly suited as input data for the EM-
PCA. We thus calculate the mean mi for each block matrix

independently and subtract it from Mi to obtain the matrix
Mi which is then used for the calculation of the subspace.
Afterwards, we add the mean vector as an additional column
to the matrix C, obtaining the matrix Cm. This is necessary,
since the component of the mean vector, which is orthogonal
to the determined subspace would otherwise be lost when
projecting the data points into the space spanned by C and
thus neglected during the following SVD.

The actual SVD calculation is then performed on a projec-
tion of Mi into the subspace spanned by Cm. For this, Cm is
first orthogonalized, obtaining the matrix Co. The projection
can then be calculated as P = CT

o Mi. Since the columns of P
contain only k+1 entries, the SVD UPSPVT

P = P can be cal-
culated efficiently. To obtain the final result, we project the
matrix UP back into the original space by setting Ui = CoUP
and Si = SP.

3.2. SVD Merging

Let U1S1VT
1 and U2S2VT

2 be two singular value decomposi-
tions which have been truncated after c1 and c2 singular val-
ues respectively and let M̃1 = U1S1VT

1 and M̃2 = U2S2VT
2

be the matrices reconstructed from these. We have to find the
singular value decomposition USVT of the composed matrix
M̃ = [M̃1 M̃2]. For this, we generalized and adapted the up-
date step of the incremental SVD [Bra02] to the merging of
the two SVDs. Similar eigenspace merging techniques like
the one in [HMM00] could however be used instead.

The merging of the two SVDs is performed by first con-
structing an orthogonal space for the subspace spanned by
both U1 and U2 and then performing the SVD within this
subspace.

For this, the singular value decomposition of M̃2 is split
into the part which lies within the subspace spanned by U1
and the part orthogonal to this subspace. First, U2 is pro-
jected into this space, resulting in L = UT

1 U2. Then, the or-
thogonal part is computed as H = U2 −U1L. In the next
step, an orthogonal basis Q for the space spanned by H is
determined. Now, H is projected into this space by setting
R = QT H. U′ = [U1 Q] is thus an orthogonal basis for the
subspace spanned by both U1 and U2.

We can now consider the following identity:

M̃ = U′U′T M̃ (1)

=
[
U1 Q

] [U1
T

QT

] [
U1S1VT

1 U2S2VT
2
]

(2)

=
[
U1 Q

] [UT
1 U1S1 UT

1 U2S2
QT U1S1 QT U2ST

2

] [
V1 0
0 V2

]T

(3)

=
[
U1 Q

]
︸ ︷︷ ︸

U′

[
S1 LS2
0 RS2

]
︸ ︷︷ ︸

C

[
V1 0
0 V2

]T

︸ ︷︷ ︸
V′T

(4)

In this identity, (4) is already of similar structure as a
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SVD of M̃ because U′ and V′ are orthogonal matrices. How-
ever, C is not a diagonal matrix. Therefore, we have to per-
form a singular value decomposition U′′S′′V′′T = C which
is computationally not very expensive in our case since C is
a (c1 + c2)× (c1 + c2) matrix and c1,c2� m,n.

Since U′,U′′,V′,V′′ are orthogonal matrices, U =
U′U′′,S = S′ and V = V′V′′ is the singular value decom-
position of M̃:

M̃ = U′CV′T = U′U′′SV′′T V′T (5)

= USVT (6)

The calculation of the matrix U is thus possible from only
U1,S1 and U2,S2. Therefore, we do not need to calculate
and update V during the calculation of U, but can neglect it
first and then obtain V afterwards by projecting the data on
the basis U.

After the merge step, the new SVD has c1 + c2 singular
values and vectors. Since we always merge a matrix with
k + 1 columns to the already computed result this would
grow by k + 1 in each merge step. Therefore, it is neces-
sary to truncate after each merge step. To reduce the error
introduced by this truncation, we simply keep 2k singular
values and vectors instead of only k during the calculation.
In our experiments, this was sufficient for good BTF com-
pression results. However, an approach to further reduce the
error would be to instead use a threshold on the singular val-
ues to decide where to truncate the decomposition, as done
in [Bra02]. We avoid this, because the decomposition would
continue to grow during the merge operations, though to a
lesser degree.

4. Implementation
As can be seen in Pseudocode 1, our algorithm is based on
just a few basic matrix operations, most of which can be eas-
ily parallelized on the GPU. For this, we use the NVIDIA
CUBLASTMlibrary (for more information see [NVI08]),
which allows to perform many basic linear algebra opera-
tions efficiently on the GPU. For our algorithm, the most
important of these are the matrix multiplications, for which
we use the cublasSgemm function. Similarly, we also cal-
culate the column means, using a matrix-vector product, and
the mean subtraction, using the rank-1 matrix update func-
tion cublasSger, with the CUBLASTMlibrary, though
none of these operations has a very high contribution to the
total runtime. We also accelerated the matrix orthogonaliza-
tion on the GPU.

Thus, the only parts of the algorithm not accelerated on
the GPU are operations on the tiny matrices of size k× k
and (3k + 1)× (3k + 1) respectively. For BTF compression,
k is choosen quite small and therefore these operations are

Function:BlockSVD(M, m,ni,k)

// Subtract mean
ml := mean (M)
M := add-to-columns (M, −ml)

// EM-PCA
C := [k random unit column vectors]
foreach i ∈ {1, . . . ,ni} do

X := (CT C)−1CT M
C := MXT (XXT )−1

end

// Perform SVD in subspace
md := ml−m
Co := orthogonalize ([C md ])
M := add-to-columns (M, md)
U,S,V = svd (CT

o M)
return CoU,S

Function:MergeBlocks(U1,S1,U2,S2,k)

// Find orthogonal subspace for U2

L := UT
1 U2

H := U2−U1L
Q := orthogonalize (H)
R := QT H

// Merge the SVDs

C :=
[

S1 LS2
0 RS2

]
U′′,S′′,V′′ := svd ( C )
U := [U1 Q]U′′

return U1:m,1:2k, S′′1:2k,1:2k

Function:BlockwisePCA(M,k,ni)

m := mean (M)

// Calculate U
foreach i ∈ {1, . . . ,N} do

Mi = LoadBlock (i)
U′,S′ = BlockSVD (Mi, m, ni, k)
if i = 1 then

U := U′

S := S′
else

U,S = MergeBlocks (U,S,U′,S′,k)
end

end

// Project M into subspace
// to get S and V
V := (UT M)T

S := Diag(ColumnNorms(V))
V := VS−1

return U,S,V,m

Pseudocode 1: Our factorization method

c© The Eurographics Association 2009.

29



R. Ruiters, M. Rump & R. Klein / Parallelized Matrix Factorization for fast BTF Compression

mostly irrelevant for the total runtime. Thus, an GPU imple-
mentation of these parts is not necessary, reducing the imple-
mentation complexity considerable, since CPU implementa-
tions of these algorithms are readily available, for example
in the LAPACK library [ABD∗90].

The size of the invidual matrices Mi should be chosen
as large as the available GPU memory allows, because each
merge step introduces a certain error and we should strife to
minimize the number of merge steps. Since the matrix is pro-
cessed blockwise, the runtime can easily be further improved
by performing the IO asynchronously to the actual calcula-
tion. For this, we use an additional thread which preloads the
next block of the matrix while the current one is processed.

Using this technique, we can on the one hand directly
perform a factorization of the full BTF data matrices. How-
ever, we also applied our algorithm to the LocalPCA BTF-
compression algorithm of Müller et al. [MMK03]. This algo-
rithm first performs a clustering step in the spatial dimension
and then applies the PCA to each cluster independently. The
advantage of this method is, that a very low number of com-
ponents is sufficient to faithfully reproduce the data in the
single clusters. Therefore, the decompression speed is con-
siderably higher than for techniques based on a full matrix
factorization. We use our method to accelerate both the clus-
tering and the final projection steps of this algorithm. Fur-
thermore, we perform the clustering within the projection of
M into the U-space by first performing a factorization of the
full BTF matrix, as this further increases the performance by
reducing the time needed for the error calculations.

5. Results
To show the advantages of our parallelized factorization
method in the context of BTF compression, we applied it
to full BTF matrices of several materials. For the recon-
struction, we used the first 120 principal components. We
compare our runtimes and reconstruction errors to an out-of-
core implementation of the EM-PCA algorithm performed
on a single CPU core. For this, we simply used the average
ABRDF RMSE:

E =
1
n

n

∑
i=1

√∥∥Mi− M̃i
∥∥2

m
(7)

Here, Mi is the i-th column of the BTF matrix and M̃i is the
i-th column of the reconstructed matrix. Table 1 shows tim-
ings and the achieved reconstruction errors. All timings were
measured on a computer with Q6600 CPU, 8GB of main
memory and a GeForce 8800 GTX GPU with 768MB GPU
memory. Additionally we compared our extension of the Lo-
calPCA compression method of Müller et al. [MMK03] to a
CPU implemenation of the LocalPCA algorithm using the
full data matrix and the EM-PCA method.

Our method achieves roughly a speed increase by a factor
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Figure 2: Runtime of our algorithm for different matrix sizes
and k = 120 components. Runtime for the smaller matrices is
heavily influenced by the caching behaviour of the operating
system.
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Figure 3: Runtime of our algorithm for increasing number
of components k.

between 20 and 35. At the same time the increase in recon-
struction error does not exceed 0.11% for the full-matrix-
factorization. The relative error is more unstable for the Lo-
calPCA, but this is mainly due to the jitter of the clustering
step. In Figure 4 and 6 we compare renderings of the materi-
als compressed with both full-matrix techniques and in Fig-
ure 5 we make the same comparsion for the two LocalPCA
implementations. As it can be noticed, there is no visible dif-
ference between the version compressed with our techniques
and the serial CPU implementations.

It should be noted, that the runtimes in Table 1 include
the necessary IO times, which dominate the runtime of our
algorithm for large datasets since caching by the operating
system is no longer possible for them. For example for the
large dataset Leather1 with 26 GB matrix size one complete
IO pass required about 700 seconds. Thus, already more than
half of the 2398 seconds runtime is spent on read operations
during the mean calculation and the final computation to de-
termine V. The block factorizations have small additional
IO cost, because we perform the IO asynchronously. Only
the IO for the first block is performed synchronously, on the
26 GB matrix it takes about 40 seconds. Except for the sec-
ond block, where still 10 additional IO seconds are needed,
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Material Resolution
Size

#Blocks
Block-PCA EM-PCA

Speedup Rel. error
[GB] Time[s] RMSE Time[s] RMSE increase

Leather1 2562x952 6.61 12 317 0.0236689 11659 0.0236529 36.78 0.068%
Leather1 5122x952 26.44 48 2398 0.078524 47019 0.0785006 19.61 0.030%
Leather2 1282x1512 4.17 11 280 0.0113223 7711 0.0113162 27.54 0.054%
Leather3 2562x812 4.81 9 261 0.0143584 8109 0.0143554 31.07 0.021%

Pulli 2562x812 4.81 9 266 0.0282213 8129 0.0282085 30.56 0.045%
Fabric 2562x812 4.81 9 223 0.0060206 8146 0.0060141 36.53 0.108%

LPCA with Block-PCA LPCA with EM-PCA
Time[s] RMSE Time[s] RMSE

Leather1 2562x952 6.61 12 858 0.0368971 19104 0.0370494 22.27 -0.41%
Pulli 2562x812 4.81 9 546 0.0374273 13573 0.0373398 24.86 0.23%

Table 1: Upper part: Runtime and reconstruction error comparison between our method and a non-parallel EM-PCA with
k = 120. Lower part: Comparison between our modified LocalPCA method and LocalPCA based on EM-PCA.

the IO for all further blocks is completely asynchronous and
only one second is required after the calculation step to fetch
the data for the next block.

We investigated the runtime of our algorithm with increas-
ing matrix size m×n and increasing number of components
k. As it can be seen in Figure 2, the runtime is linear in m×n
as expected. Figure 3 shows the runtime in dependence on
k. We performed cubic regression to determine the contribu-
tion of the O

(
k3
)

operations to the total runtime. The coeffi-
cients for the quadratic and cubic part are very low compared
to the linear part. This shows that the matrix multiplications
with the large matrices dominate the total runtime of the al-
gorithm as it was stated in Section 3.

6. Conclusion
We presented a method which accelerates the factorization
of large data matrices, as they can be found in BTF compres-
sion, by exploiting the massive parallel computing power of-
fered by modern GPUs.

This is achieved by first subdividing the input matrix into
blocks, which are factorized independently using the EM-
PCA algorithm, and then merging the resulting eigenspaces
to obtain the final result. This technique allows to process
matrices of nearly arbitrary size. We evaluated our technique
by applying it to the compression of full BTF matrices. Here,
it achieves speedups between 20-35, without increasing the
reconstruction error by more than 0.11%, when compared
to a out-of-core CPU implementation of the EM-PCA algo-
rithm. This considerable accereleration enables the practical
processing of BTF datasets with high angular and spatial res-
olution.

The computation time for each block is not dependent
on the contained data and the individual blocks can be pro-
cessed independently and in arbitrary order. Therefore, we
think it will be quite easy to parallelize the algorithm to
multiple GPUs, because the load balancing between the ex-
ecution threads should not be too complex. However, at the

moment this would require to implement the basic linear al-
gebra functions in CUDA since CUBLAS does not support
the execution on multiple GPUs at the moment.

Though our technique has been developed for the com-
pression of BTFs, the factorization of big matrices is a
problem that arises in a large number of applications and
thus its use in other areas might be worth further investiga-
tion in the future. Therefore, the source code is available at
http://cg.cs.uni-bonn.de.
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