
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

Dynamic Grid Refinement for Fluid Simulations on

Parallel Graphics Architectures

Marco Ament1 Wolfgang Straßer1

1WSI/GRIS, Universität Tübingen, Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

We present a physically-based fluid simulation with dynamic grid refinement on parallel SIMD graphics hardware.

The irregular and dynamic structure of an adaptive grid requires sophisticated memory access patterns as well

as a decomposition of the problem for parallel processing and the distribution of tasks to multiple threads. In this

paper, we focus on the representation and management of the dynamic grid on the graphics device for an efficient

parallelization of the advection step and the iterative solving of the Poisson equation. In order to achieve high

performance, we utilize the hardware’s capabilities like fast cache access and trilinear filtering. Furthermore,

expensive data transfer between host and device is minimized to avoid a major bottleneck. We report results on the

inherent overhead of the dynamic grid compared to an equivalent Cartesian grid. In addition, a visual simulation

of smoke is presented with radiosity-based illumination and volume ray casting at interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

In computer graphics animation and special effects industry,
fine-scaled fluid simulations like swirling smoke or spraying
water remain a challenging task which originates from the
complex and turbulent motion of these phenomena. Realistic
animations require rich visual details like high-resolved vor-
tices and small droplets as well as adequate interactions with
the environment and convincing illumination techniques for
a plausible impression. However, the computational com-
plexity of current methods is very high, especially for the
desired small features which encouraged the development of
adaptive techniques to address this issue.

In the recent past, a new class of parallel high perfor-
mance graphics devices emerged with attractive capabilities
for general purpose computations. However, these architec-
tures differ significantly from current CPU hardware and re-
quire specific patterns in the processing to achieve high peak
rates. To the best of our knowledge, all current fluid sim-
ulations on GPUs rely either on pure particle-based meth-
ods like SPH or on regular grids which are well-suited for
fast processing on these architectures. A major drawback of
regular grids is the waste of computation time in empty or

uninteresting regions of the domain. This holds true in par-
ticular for computer graphics because the main focus lies
on visual appearance, not on rigorous physical correctness.
We propose to utilize the power of current GPUs in float-
ing point calculations and memory bandwidth in conjunction
with adaptive Eulerian grid methods.

One of the main problems with adaptive grids is their dy-
namic and irregular structure which is contrary to the design
of SIMD graphics hardware. In this paper, we present a prob-
lem decomposition that takes advantage of the specific prop-
erties of the hardware while reducing expensive hierarchy
traversals. The data representations of the fluid’s quantities
greatly affect the overall performance. We suggest to distin-
guish between the storage of the velocity for the advection
step and the storage of the pressure for the Poisson solver to
account for the different memory access patterns.

Our work results in a flexible smoke and nebular simula-
tion that handles complex scenes and adapts itself dynami-
cally according to local refinement conditions. The integra-
tion in our radiosity-based visualization module offers pho-
torealistic rendering and interactive frame rates while walk-
ing through the scene.

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/009-015

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/009-015

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

2. Related Work

In the computer graphics context, Foster et al. [FM96] were
the first who simulated the full three-dimensional Navier-
Stokes equations with finite differences. The seminal work
of Stam [Sta99] laid the ground for unconditionally sta-
ble fluid simulations with the Semi-Lagrangian advection
scheme. Selle et al. [SFK∗08] achieved second-order ac-
curacy with a modified MacCormack method and BFECC.
Fedkiw et al. [FSJ01] introduced vorticity confinement to
tackle the problem of numerical diffusion and preserve fine-
scaled details. Numerous authors used hybrid approaches
with particles like [FF01] and [EMF02] for level-sets. Selle
et al. [SRF05] presented a vortex particle method for smoke
and water simulations. In CFD, adaptive mesh refinement
(AMR) was introduced by Berger et al. [BO83], [BC89]
for compressible flows with shock waves by utilizing over-
lapping grids of various sizes. Lossaso et al. [LGF04] de-
veloped an adaptive discretization on an octree data struc-
ture in the graphics context while keeping a symmetric posi-
tive definite linear system for fast PCG solvers. Another ap-
proach to fluid simulations are pure particle-based methods
like SPH [MCG03], for example.

Previous works of fluid simulations on GPUs include SPH
methods like [KC05] and [ZSP08]. Simulations with regu-
lar Eulerian grids include [WLL04] and [LLW04], for ex-
ample. Harris et al. [HBSL03] introduced flat 3D textures
to simulate cloud dynamics on a regular Cartesian grid and
presented another implementation in [Har04]. A real-time
simulation of smoke and water was presented by Crane et
al. [CLT07].

Other GPU-related works include linear algebra opera-
tions by Krüger et al. [KW05] and iterative solvers for sys-
tems of linear equations like the Multigrid and the Conjugate
Gradient (CG) method by Bolz et al. [BFGS03]. Adaptive
GPU data structures were studied by Lefohn et al. [LSK∗06].

3. Physically-based Fluid Simulation

3.1. Equations of Fluid Dynamics

For the physical model, we rely on the inviscid, incompress-
ible Navier-Stokes equations for the conservation of mass
and momentum:

∂u

∂t
+(u ·∇)u = −

1

ρ
∇p+ f

∇·u = 0

The PDE describes the motion of fluids in a continuum
where u denotes the velocity field, ρ the density, p the pres-
sure field and f external forces.

3.2. Advection

The momentum equation is splitted into an advection step
and a pressure solving procedure. At first, an intermediate

velocity u∗ is calculated that only accounts for the non-linear
advection. We use the modified MacCormack method from
Selle et al. [SFK∗08] with back and forth error compensa-
tion and correction (BFECC). The method can be employed
to an adaptive grid in a straightforward manner as long as
the destinations of the particle trajectories can be determined
and trilinear interpolation is handled correctly at resolution
borders which is shown in section 4.2.

3.3. The Discrete Pressure Equations

The second step accounts for the pressure gradient. The
Helmholz-Hodge decomposition leads to:

u
n+1 = u

∗

−∆t
1

ρ
∇p

The incompressibility constraint ∇·un+1 = 0 yields the fol-
lowing Poisson equation:

∆p =
ρ

∆t

(

∇·u
∗
)

We follow Losasso et al. [LGF04] with their discretization
of the divergence and the pressure gradient on an octree data
structure. Invoking Gauss Divergence Theorem on the inte-
gral form of the divergence yields:

Vcell∇·u
∗ = ∑

faces

(

u
∗

face ·n
)

Aface

where n is the outward unit normal, Aface the area of a cell
face and Vcell the volume of a cell. In the same way, the the-
orem is applied to the Laplacian of the pressure which actu-
ally is a div(grad(p)) term:

Vcell
∆t

ρ
∇· (∇p) =

∆t

ρ ∑
faces

(

(∇p)face ·n
)

Aface

The remaining discretization of the pressure gradient
(∇p)face is carried out in such a manner that the resulting
matrix is symmetric. It was shown that the system still yields
a consistent approximation when the gradients are calculated
with standard central differences applied to the direct neigh-
bour cells as long as the perturbation in the pressure location
is O(∆x).

Figure 1: Pressure discretization on octree

Figure 1 shows a 2D example. The pressure gradient of
the large cell is:

∑
faces

((∇p) ·n)Aface =
(

p1 − p0

∆x
+

p2 − p0

∆x

) 1

2
∆x = p̄− p0

c© The Eurographics Association 2009.

10

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

In this notation, p̄ is the arithmetic average of p1 and p2

which comes in handy later. The discretization yields a large
and sparse linear system with an equation for every cell of
the grid. Fast iterative solvers like the CG-method [She94],
[BFGS03] can be applied due to the symmetric positive def-
inite matrix.

4. Parallel Simulation on SIMD Graphics Hardware

In this section, we describe our parallel implementation on
graphics hardware with CUDA [NVI08].

4.1. Problem Decomposition

In order to decompose the problem appropriately for parallel
processing on current graphics hardware, we suggest to em-
ploy a hierarchical grid with subdivisions of 43 cells instead
of a classical octree with 23. In this way, regions of con-
stant resolution are more likely and the hierarchy depth is
usually smaller than with octrees which reduces expensive
memory traversals. An octree implementation also suffers
from either poor occupancy when a thread block is assigned
to only 8 nodes or from a complex task distribution scheme
with space filling curves, for example. With our decomposi-
tion structure, a block of 64 threads is assigned to a single
sub-grid. For each grid cell one thread computes the inter-
mediate velocity u∗ in the advection and the pressure p in
the projection step in a SIMD manner for the next time step.
The parent cells that contain a sub-grid are also simulated
to avoid expensive branching operations. The overhead of
this procedure is only about 1.5%. Note that the above dis-
cretization of the divergence and the pressure gradient is also
applicable for such a grid.

4.2. Hierarchical Grid Structure for the Advection

The advection step with the MacCormack or the Semi-
Lagrangian method implies several requirements to the data
structure of the hierarchical grid for efficient processing. The
dominant operation is random-like read access within a spa-
tially local area in the surrounding of each grid cell for the
destinations of the particle trajectories. The second operation
is trilinear interpolation of the velocity at arbitrary locations
in the grid. These observations encourage a texture-based
storage of velocities because read access benefits from fast
texture cache as long as the access is within a local area. In
addition, the texture unit also supports fast trilinear interpo-
lation.

The basic idea is to use a pyramid of 3D texture volumes
to map the grid hierarchy to memory. In contrast to a 3D
mipmap only those texels that correspond to a cell in the
grid domain contain valid information and are currently sim-
ulated. Figure 2 depicts a 2D example of a hierarchical grid
with a staggered arrangement and the corresponding texture
layout. Besides the three velocity components, a type field is

stored in the alpha channel that provides auxiliary informa-
tion about a grid cell, e.g. sub-grid containments or inflow
and solid boundary conditions.

Figure 2: Left: Hierarchical grid. Right: Corresponding tex-

ture layout.

block u v level block u v level
0 0 0 0 4 4 8 1
1 4 0 1 5 8 8 1
2 12 0 1 6 4 12 1
3 12 4 1 7 8 12 1

Table 1: Dynamic topology table

The light and medium grey texels represent the actual grid
whereas the dark grey shaded elements describe the aver-
aged values in the parent nodes. The arrangement of the ac-
tive grid blocks within the texture pyramid is listed in a dy-
namic topology table (DTT). There is a row for every block
of the grid with the corresponding texture coordinates of the
first cell and the refinement level. The grid topology is com-
pletely defined with this table and is managed by the CPU
which also takes care of distributing tasks to GPU thread
blocks. The assignment of grid cells to the individual threads
is achieved by reading the texture coordinates from the table
entry and by adding the thread-id as an offset. The white
texels in the above figure are not used and represent memory
overhead but allow a fast rearrangement of the topolgy with-
out (de)allocating memory at run time. Furthermore they are
partially used to correctly handle interpolation at resolution
borders on the fine level.

Trilinear interpolation requires an additional surrounding
of one grid cell in areas of changing resolution levels as in
the 2D example of figure 3. In the case of the coarse cell,
we use the averaged velocity from the fine block which is
shaded in dark grey. In this way, the interpolation is carried
out solely on the coarse level. For the fine border cells, a hi-
erarchical update is necessary. The thread block of the coarse
grid fills the child-cells with interpolated values from the
parent-cell which is indicated with the black dashed lines.

c© The Eurographics Association 2009.

11

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

This procedure allows the use of fast trilinear interpolation
by the texture unit in a natural manner because the correct
adjacency is guaranteed on both levels.

Figure 3: Bilinear interpolation near resolution borders.

Due to the staggered arrangement, a component-wise inter-

polation is necessary. Left: On coarse cell. The blue values

are the averaged velocities from the fine cells Right: On fine

cell. The dashed values are the interpolated velocities from

the coarse cell.

The MacCormack method requires the determination of
the appropriate resolution level at the destinations of the par-
ticles. Lefohn et al. [LSK∗06] proposed a page table that
maps an arbitrary position from the virtual domain to the
physical domain. We have found that it can be faster to as-
sume that the resolution level at the destination is the same
as at the starting point. As long as the hierarchy depth is not
too high, e.g. only 2-3 levels, and heterogeneous areas are
rare it is likely that the assumption is true in many cases and
amortizes potential hierarchy traversals when the assump-
tion fails. Furthermore, there is no need to keep the spatial
layout of the page table up to date.

4.3. Hierarchical Grid Structure for the Pressure

The drawback of a texture-based data storage is the lack of
a direct write access which necessitates a device-to-device
copy operation of the whole grid. In the advection step,
the advantage of fast read operations amortizes this prob-
lem. For example, the MacCormack method in conjunction
with a second-order Runge-Kutta implies a total number of
five read operations per grid cell but only one write opera-
tion. In the case of iterative solvers, write operations carry
more weight. Experiments with a non-adaptive Cartesian
grid have shown that a texture-based approach is signifi-
cantly slower than the direct access to global device memory
with coalesced read and write patterns.

However, there are several constraints which must be kept
in order to achieve high performance, e.g. data elements
must be accessed in sequence by the threads. For this rea-
son, we map the hierarchical grid to an array structure and
store the pressure values in it as shown in figure 4.

With a discretization as described above, almost all ele-
ments of a row in the matrix are zero except at the loca-
tions of the direct neighbour cells. Typical iterative solvers

Figure 4: Mapping of the hierarchical grid to an array

structure. Pressure values are stored in sequence for every

block. We calculate the averages of the pressure values on

each face and store them in an additional array (dark grey)

require these non-zero elements to be read from memory. For
blocks of constant resolution, pressure values can be read
coalesced into shared memory for further processing but the
regular pattern is broken at resolution borders. Figure 5 de-
picts the two possibilities. Due to the discretization, the pres-
sure of the large cell is needed in the four adjacent fine cells
(medium grey) and vice versa. The left image shows the ac-
cess to the coarse cell by replicating the value on the finer
level (light grey) and reading it in a coalesced manner. The
replication is carried out by the thread block of the coarse
cell in a cooperative and coalesced manner. The right image
depicts the access to the fine cells which requires a different
approach. To reduce excessive non-coalesced access, we cal-
culate the means of the pressure values (dark grey) on each
cell face and store them in an additional array as can be seen
in figure 4. We use them instead of reading the pressure val-
ues from the fine cells. This procedure goes perfectly along
with the discretization of the pressure gradient.

Figure 5: Left: Access to coarse cell with replication (light

grey). Right: Access to fine cells with averaged pressure

(dark grey)

We have implemented these access patterns in conjunc-
tion with the Jacobi method to solve the system for the
pressure but more sophisticated solvers like the CG-method
would also benefit from this procedure in the matrix-vector
products.

c© The Eurographics Association 2009.

12

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

Figure 6: Tracking a vortex with dynamic grid refinement in real-time

4.4. Dynamic Grid Refinement

We used three common criteria [LGF04] to decide whether a
cell is refined or a block is coarsened in the next time step. At
solid obstacles, the grid is fully refined to capture the geome-
try of the scene and reduce visual artifacts when the fluid in-
teracts with the objects. The second criterion concerns high-
vorticity areas. When the magnitude reaches a certain thresh-
old, the grid is refined. In addition, the third rule refines the
grid within in a band of smoke density. The lower threshold
excludes non-visible density values from high refined areas
whereas the upper threshold accounts for very dense regions
which are totally opaque and contribute only few visual de-
tails. Figure 6 shows an example of a vortex that is tracked
with dynamic grid refinement.

The refinement and coarsening procedures are performed
in parallel but as the GPU cannot administrate its own re-
sources, data must be transferred to the CPU in order to
manage the grid. For this reason, every thread block informs
the CPU with the decision which cells are refined or which
blocks are coarsened. With this data, the CPU is able to re-
organize the dynamic topology table (DTT) and distribute
tasks to thread blocks in the next time step. The DTT and
the result from the decision is the only data which is trans-
ferred between host and device within one time step. Our
measurements with grid sizes of about 1283 showed that the
resulting overhead is negligible (<1%) compared to a regular
Cartesian grid which does not need these transfers.

5. Simulation of Smoke

We integrated the adaptive fluid simulation in our visualiza-
tion module to demonstrate its application in a realistic en-
vironment. Global illumination is calculated with radiosity
which allows photorealistic scenes to be walked through in
real-time. In this context, we focus on smoke and nebular
simulations in conjunction with realistic lighting conditions
like self-shadows and indirect light while keeping interactive
frame rates.

We use a standard approach with a scalar density field
ρs to represent the smoke particles. The motion of smoke
is modelled with the linear advection equation:

∂ρs

∂t
+(u ·∇)ρs = 0

The density domain is discretized with the same dynamic
grid structure as the velocity and the advection is solved
again with the MacCormack method. In addition, vorticity
confinement [FSJ01] is added to the velocity field.

5.1. Preprocessing with Radiosity

The illumination of the density field with radiosity is car-
ried out in a preprocessing step on a regular Cartesian grid
with a resolution equal to the highest refinement level of
the dynamic simulation grid to cover all possible configu-
rations. Every grid cell gathers radiosity by aligning virtual
normals in the direction of the current light source during
the progressive refinement procedure. Occlusion is handled
with ray tracing which offers static and volumetric shadows
in the later smoke rendering process. To account for self-
shadowing in the next section, we store the radiosity of the
k strongest light sources separately for each voxel. The re-
maining radiosity is stored as a sum and is later used as an
ambient-like term. The gathered radiosity is uploaded on the
device before the simulation begins.

5.2. Dynamic Self-Shadowing

Self-shadowing produces rich contrast in the density distri-
bution and is mandatory for photorealistic rendering. The
self-shadowing changes dynamically with the motion of
the smoke and depends on the integrated density along the
shadow ray, hence a recalculation is necessary after each
time step. For this reason, the method proposed by Fedkiw et
al. [FSJ01] is applied to the gathered radiosity on the GPU.

The radiosity grid is ray-traced from the k brightest light
sources towards each grid cell in parallel. Initially, the trans-
parency of each ray is set to Tr = 1. Along the ray, samples
are taken from the density texture and a local transparency
is calculated with Ts = 1−ρs. For every sample, the trans-
parency of the ray is updated to Tr = Tr · Ts. When the ray
reaches the grid cell, the gathered radiosity of the corre-
sponding light source is reduced to:

Bnew = Ω ·Tr ·ρs ·Borig

where Ω denotes the albedo. This approach handles self-
shadowing as the transparency of the ray diminishes on
the way through the density field and thereby reduces the

c© The Eurographics Association 2009.

13

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

T
im

e
 [

m
s
]

Total number of grid cells [k]

Comparison of Semi-Lagrangian advection

regular grid
adaptive grid

limit of benefit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250

T
im

e
 [

m
s
]

Total number of grid cells [k]

Comparison of Jacobi iteration

regular grid
adaptive grid

limit of benefit

Figure 7: Results from an adaptive grid with an effective resolution of 643 and a hierarchy depth of 2. Left: Semi-Lagrangian

advection. The MacCormack method implies 2x Semi-Lagrangian steps. Right: Jacobi iteration

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

T
im

e
 [
m

s
]

Total number of grid cells [k]

Comparison of Semi-Lagrangian advection

regular grid
adaptive grid

limit of benefit

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000

T
im

e
 [

m
s
]

Total number of grid cells [k]

Comparison of Jacobi iteration

regular grid
adaptive grid

limit of benefit

Figure 8: Results from an adaptive grid with an effective resolution of 1283 and a hierarchy depth of 2. Left: Semi-Lagrangian

advection. The MacCormack method implies 2x Semi-Lagrangian steps. Right: Jacobi iteration

amount of light that reaches the grid cell. The final radios-
ity is the sum of the shadowed values and the radiosity from
the rest of the patches. Finally, the density and the color val-
ues are stored in an additional 3D texture which is used for
rendering in the next section.

5.3. Rendering

We use a standard ray casting procedure on the GPU to ren-
der the 3D volume of the density and the lighting infor-
mation. In addition, we provide simple shadows by tracing
secondary rays from the intersection points of the eye rays
with the geometry of the scene to the k most powerful light
sources and integrate the density. The intersection points are
calculated with the depth buffer to avoid expensive geometry
processing. The final pixel color is gained by composing the
ray-casted image with the frame buffer of the scene.

6. Performance Measurements

We evaluate the performance by comparing the dynamic grid
with an optimized implementation for an equivalently re-

solved Cartesian grid. All results were obtained on a com-
mon workstation with an Intel Core2 Quad processor run-
ning at 2.4 GHz and a NVIDIA GeForce 8800 GTX with
768MB of memory.

The results from the advection step (left images in fig. 7
and 8) show an almost linear behaviour with a growing total
number of cells. At about 62−65% of the fully refined grid,
the benefit from the adaptive grid is compensated. The os-
cillations in the left image of figure 8 originate from a more
complex distribution of the blocks as the simulation and the
dynamic grid evolves which depends on the scene and the
initial condition, not on the resolution. The lowering at the
end of the curve originates from the assumption of the re-
finement level in the particle tracing. When the resolution of
the adaptive grid comes close to the fully refined grid, all
assumptions are true which results in the same behaviour as
the Cartesian grid.

The results from the pressure solving (right images in fig.
7 and 8) yield a similar curve. The benefit is limited at about
51− 55% of the fully-refined Cartesian grid. In contrast to
the advection procedure, the pressure solving does not profit

c© The Eurographics Association 2009.

14

M. Ament & W. Straßer / Dynamic Grid Refinement on the GPU

from any assumptions at the end of the curve. However,
there is also a lowering which originates from fewer non-
coalesced read operations concerning the averaged pressure
(see figure 5) when the total number of cells comes close to
the fully refined Cartesian grid.

Depending on the scene, we achieved practical speedups
of 1-3 compared to an equivalent Cartesian grid, especially
for effective resolutions of 1283 without loosing too much
details due to a too strict refinement policy.

7. Conclusion

In this paper, we presented a fluid simulation on parallel
SIMD graphics hardware with dynamic grid refinement. Our
approach reduces irregularity compared to an octree imple-
mentation to accommodate for the hardware’s performance
constraints. We suggested data structures that cope with
the individual demands of the advection step and the pres-
sure solving routine. We integrated the simulation into our
radiosity-based visualization module and achieved interac-
tive frame rates in conjunction with photorealistic render-
ing of smoke. Comparisons with equivalent Cartesian grids
showed that overhead is inevitable but speedups are possible
if the refinement policy is well-chosen. This is not directly
related to our method but is a general issue of adaptive grids.
A future work could be to extend our work to multi-GPU
systems like a HPC graphics cluster.

Acknowledgements

We would like to thank Ralf Sonntag for letting us use his
visualization module RadioLab.

References

[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh re-
finement for shock hydrodynamics. J. Comput. Phys. 82, 1
(1989), 64–84.

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖODER P.:
Sparse matrix solvers on the gpu: conjugate gradients and multi-
grid. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers (New
York, NY, USA, 2003), ACM, pp. 917–924.

[BO83] BERGER M. J., OLIGER J. E.: Adaptive mesh refinement

for hyperbolic partial differential equations. Tech. rep., Stanford,
CA, USA, 1983.

[CLT07] CRANE K., LLAMAS I., TARIQ S.: Real-time simula-
tion and rendering of 3d fluids. In GPUGems 3 (August 2007),
Addison-Wesley Professional, pp. 633–675.

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Ani-
mation and rendering of complex water surfaces. ACM Trans.

Graph. 21, 3 (2002), 736–744.

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids.
In SIGGRAPH ’01: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques (New York,
NY, USA, 2001), ACM, pp. 23–30.

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. Graph. Models Image Process. 58, 5 (1996), 471–483.

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simu-
lation of smoke. In SIGGRAPH ’01: Proceedings of the 28th

annual conference on Computer graphics and interactive tech-

niques (New York, NY, USA, 2001), ACM, pp. 15–22.

[Har04] HARRIS M.: Fast fluid dynamics simulation on the gpu.
In GPU Gems (2004), Addison-Wesley Professional, pp. 637–
665.

[HBSL03] HARRIS M. J., BAXTER W. V., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dynamics on graph-
ics hardware. In HWWS ’03: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware

(Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics
Association, pp. 92–101.

[KC05] KOLB A., CUNTZ N.: Dynamic particle coupling for
gpu-based fluid simulation. Proc. 18th Symposium on Simula-

tion Technique (2005), 722–727.

[KW05] KRÜGER J., WESTERMANN R.: Linear algebra opera-
tors for gpu implementation of numerical algorithms. In SIG-

GRAPH ’05: ACM SIGGRAPH 2005 Courses (New York, NY,
USA, 2005), ACM Press.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 457–462.

[LLW04] LIU Y., LIU X., WU E.: Real-time 3d fluid simula-
tion on gpu with complex obstacles. In PG ’04: Proceedings

of the Computer Graphics and Applications, 12th Pacific Con-

ference (Washington, DC, USA, 2004), IEEE Computer Society,
pp. 247–256.

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STRZODKA

R., OWENS J. D.: Glift: Generic, efficient, random-access gpu
data structures. ACM Trans. Graph. 25, 1 (2006), 60–99.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In SCA

’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 154–159.

[NVI08] NVIDIA: Cuda. Website, 2008. http://www.nvidia.
com/object/cuda_home.html#.

[SFK∗08] SELLE A., FEDKIW R., KIM B., LIU Y., ROSSIGNAC

J.: An unconditionally stable maccormack method. J. Sci. Com-

put. 35, 2-3 (2008), 350–371.

[She94] SHEWCHUK J. R.: An Introduction to the Conjugate

Gradient Method Without the Agonizing Pain. Tech. rep., Pitts-
burgh, PA, USA, 1994.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex par-
ticle method for smoke, water and explosions. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
ACM, pp. 910–914.

[Sta99] STAM J.: Stable fluids. In SIGGRAPH ’99: Pro-

ceedings of the 26th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 121–128.

[WLL04] WU E., LIU Y., LIU X.: An improved study of real-
time fluid simulation on gpu: Research articles. Comput. Animat.

Virtual Worlds 15, 3-4 (2004), 139–146.

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the gpu. In Proceedings

Symposium on Point-Based Graphics (2008), pp. 137–146.

c© The Eurographics Association 2009.

15

