
Parallel Volume Rendering on the IBM Blue Gene/P

Tom Peterka1, Hongfeng Yu2, Robert Ross1, Kwan-Liu Ma2

1Argonne National Laboratory
2University of California at Davis

Abstract
Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel
architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the
Blue Gene/P is not necessarily to achieve real-time rendering rates. It is to identify and understand the extent of
bottlenecks and interactions between various components that affect the design of future visualization solutions
on these machines, solutions that may offer alternatives to hardware-accelerated volume rendering, for example,
when large volumes, large image sizes, and very high quality results are dictated by peta- and exascale data. As
a step in that direction, this study presents data from experiments under a number of conditions, including
dataset size, number of processors, low- and high-quality rendering, offline storage of results, and streaming of
images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering,
and compositing. The dynamic balance among these tasks varies with the number of processors and other
conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation,
and communication within the context of visualization on supercomputers; recommendations for tuning and
optimization; and opportunities for further scaling. Extrapolating these results to very large data and image sizes
suggests that a distributed-memory high-performance computing architecture such as the Blue Gene is a viable
platform for some types of visualization at very large scales.

Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing,
I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]:
Raytracing, I3.8 [Applications]

1. Introduction

As data sizes and supercomputer architectures grow toward
the petascale and beyond, an attractive alternative to
rendering on graphics clusters may be to perform software-
based visualization directly on parallel supercomputers.
Benefits include the elimination of data movement between
computation and visualization architectures; the economies
of large-scale, tightly coupled parallelism; and the
possibility of visualizing a simulation in situ [MWY*07].
This paper examines the second benefit, large numbers of
tightly connected processor nodes, within the context of a
parallel ray casting volume rendering algorithm
implemented on the IBM Blue Gene/P (BG/P) architecture
at Argonne National Laboratory.

Volume rendering and parallel volume rendering on
supercomputers have been published extensively in the
literature, but this is the first such study conducted on
BG/P. This research profiles and identifies bottlenecks in
the rendering pipeline and suggests modifications to the
parallel rendering algorithm to achieve scalability. The
study, moreover, is intentionally system-wide and measures
end-to-end frame time that includes disk I/O during the
visualization of a time-varying dataset. Only by studying
the entire visualization pipeline can one get a glimpse of

the optimal balance between I/O, computation,
communication, and interactivity requirements in the
setting of parallel volume rendering on the BG/P.

The experiments include several test conditions,
including small- to medium-sized data sets, real-time
streaming of output images and offline storage of results,
and both low- and high-quality renderings. From the
results, one can draw conclusions about how to best
leverage the strengths of this architecture in visualization
applications. Although the results are specific to a
particular algorithm and architecture, the lessons learned

Direct correspondence to tpeterka@anl.gov

submitted to Eurographics Symposium on Parallel
Graphics and Visualization (2008)

Figure 1: Visualization of the early stages of
supernova collapse.

Eurographics Symposium on Parallel Graphics and Visualization (2008)
J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

can potentially apply more broadly to other supercomputer
architectures that share some of the same characteristics as
the Blue Gene, and to other parallel rendering algorithms as
well.

Thus far, we have successfully scaled up to 4096 cores.
Remote streaming of a small, time-varying dataset at
subsecond frame times was demonstrated. For the data
sizes that we currently have available, performance is not
faster than other methods and architectures, but we expect
the benefits to be apparent at still larger scales. Rather than
competing for real-time frame rate with graphics processor
(GPU) accelerated rendering in small to moderate scales,
parallel supercomputer rendering offers one solution to the
peta- and exascale challenges of data sizes that are beyond
the scalability of existing methods. For example, when the
data size is on the order of billions of voxels and image
resolution is on the order of millions of pixels, thousands or
even tens of thousands of processors may be justified.
Research at these scales is ongoing.

2. Background

Dataset

The dataset shown in Figure 1 is one time-step from a
supernova simulation, made available by John Blondin at
the North Carolina State University and Anthony
Mezzacappa of Oak Ridge National Laboratory [BMD03],
through the U.S. Department of Energy’s SciDAC Institute
for Ultrascale Visualization [SCI07]. The model seeks to
discover the mechanism behind the core collapse supernova
mechanism, which is the violent death of short-lived,
massive stars. A spherical accretion shock instability,
SASI, is driven by the response of an initially spherical
shock wave to global acoustic modes trapped in the
interior.

Visualization plays a key role in understanding the origin
of this instability of the supernova shock wave. By
manipulating the transparency of the rendered data,
scientists can quickly visualize different combinations of
variables or isolate features. In this dataset, a single scalar
variable angular momentum is stored at 8643 uniform,
structured grid locations. Each of 200 time-steps of time-
varying data is stored in a separate file. Files are stored in
raw binary format, in 32-bit floating point.

Algorithm

Parallel volume rendering algorithms have been well
documented in the literature. Beginning with Levoy’s
classic ray casting in 1988 [Lev88] and optimizations in
1990 [Lev90], parallel versions began to appear in 1993
with [MPHK93] and [Nue93]. Parker et al. demonstrated
efficient parallelism of ray casting in 1999 [PPL*99] for
isosurfacing and maximal intensity volume rendering on
shared memory architecture. Ma and Camp demonstrated
overlapped I/O, rendering, compression and transmission in
the context of remote visualization [MC00]. More recently,
Yu demonstrated that parallel volume rendering
performance can be further improved by overlapping
simulation with visualization [YMW04]. Parallel volume
rendering has also been studied in the context of cluster
computing [CMF05] and in standard visualization toolkits

such as VTK [BGM*07], ParaView [MAF07], and VisIt
[CBB*05, CDM06].

Our implementation uses post-classification after
trilinear interpolation, optionally includes lighting [DCH88,
Max95], and does not incorporate hierarchical levels of
detail. Sort-last parallelization occurs both in object space
and in image space. The dataset is divided into n
approximately equal size partitions, where n is the number
of processes. Each process computes a completed subimage
corresponding to its local data, including local front-to-
back compositing of samples along each ray of its local
subimage using the “over” operator [PD84] and early ray
termination. This standard technique terminates
compositing along a ray once the accumulated opacity
exceeds a predetermined threshold because further samples
along the ray would be occluded.

Stompel et al. [SML*03] provide an overview of various
methods for sort-last compositing of the n subimages, and
Cavin et al. [CMF05] analyze relative theoretical
performance of these methods. These overviews show that
compositing algorithms usually fall into one of the
following categories: plain or optimized direct send, plain
or optimized tree, and parallel pipeline. The direct send
approach is easiest to understand; each process requests the
subimages from all of those processes that have something
to contribute to it [Hsu93, Neu94, MI97]. Since the
possibility for network contention is high in direct send, the
SLIC [SML*03] optimization attempts to schedule
communication. For simplicity and a high degree of
parallelism, we use the direct send compositing approach.

Rather than sending compositing data monolithically,
tree methods exchange data between pairs of processes,
building larger completed subimages at each level of the
compositing tree. To keep more processes busy at higher
levels on the tree, Ma et al. introduced the binary swap
optimization [MPHK94]. Lee et al. discuss a parallel
pipeline compositing algorithm in [LRN96] for polygon
rendering, although this seldom appears in the context of
parallel volume rendering.

We define the time that a frame takes to complete, tframe,
as the time from the start of reading the time-step from disk
to the time that the final image is ready at the root process.
This frame time has three distinct components, and for a
given data size, the relative contribution of each component
to the total time depends on the number of processes.

tframe = tio + trender + tcomposite (1)

The I/O time, tio, is the length of time required by a

collective reading of the time-step data file by all processes
simultaneously. The rendering time, trender, is the time that it
takes for all processes to complete their local subimage
rendering. The compositing time, tcomposite, is the time to
composite all subimages into a single image on a single
process. The following section describes the
implementation of each component in more detail.

Before the execution of the first frame, a one-time
initialization step allocates data structures and determines
partitioning parameters; the time for this setup is on the
order of tens of seconds and because it occurs only once,
we omit it from the frame time. During the setup time, data
cells are partitioned into block-shaped regions and
allocated to processes. This static load balancing scheme

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P74

implies that the uniform data distribution can cause an
uneven rendering workload when the view matrix or
transfer function changes the visibility of subvolumes, as
shown by Marchesin et al. [MMD06]. This is not a problem
in the compositing step, where all processes participate
equally, irrespective of projection area.

Blue Gene Architecture

The Blue Gene/L and Blue Gene/P systems at Argonne
National Laboratory provide ample opportunities to
experiment with parallel rendering. This work began with
2,048 cores of the BG/L system and, so far, has scaled to
4,096 cores on the BG/P system. The current single rack of
BG/P is for testing and development; but in the near future,
Argonne’s BG/P system will contain 128K cores. In the
interest of space, we highlight below just a small sample of
relevant features but online documentation from IBM can
be found at [IBM07]; the reader is directed there for
specifications and configuration diagrams. For our
purposes, the key differences between the older BG/L and
the new BG/P are that BG/P provides twice as many cores
per node, twice the memory footprint, approximately a 2X
faster interconnect network, a 1.2X faster clock speed per
core, and once completed, many times more available
nodes and cores.

Processor cores are grouped together into nodes; the
BG/P has four cores per node. Within a node, the cores can
operate together to execute one user process, in pairs for
two processes, or independently for four user processes,
depending on the selected mode. Each BG/P core is a
PowerPC 450 850 MHz processor that contains two parallel
floating-point units that can execute certain pairs of
identical floating-point operations in parallel (SIMD
vectorization).

Application processes execute on top of a microkernel
that provides basic OS services. The Blue Gene
architecture has two separate interconnection networks – a
3D torus for inter-process point-to-point communication
and a tree network for collective operations as well as for
communicating with I/O nodes. BG/P has one I/O node for
every 64 compute nodes. At the front end, the machine has
four login nodes that support full Linux functionality.

3. Implementation

I/O

Our volume rendering application is written by using MPI
for both communication and I/O and executes with one
MPI process on each core. MPI-2 [GGH*96] (a.k.a. MPI-
IO) collective file read calls perform data staging, tio in
equation 1, allowing each process to read its own portion of
the volume in parallel with all of the other processes
[YMW04, YM05]. This approach is more efficient than
having a single master process read the entire dataset and
distribute it to slave processes. More important, for large
datasets it does not require a single process to be able to fit
the entire dataset into its memory.

For example, the largest dataset tested to date in this
work consists of 8643 voxels, or approximately 2.5 GB per
time-step. This is problematic for most workstations; even

the BG/P has only 2 GB of memory per node. With
collective I/O, however, the total memory footprint of the
entire machine - not just of one node - is the upper bound
on the maximum data size that can be processed in-core.
This memory limit on the current single-rack BG/P is 2 TB,
but will grow to 64 TB when the system is complete.

Underlying the MPI-2 collective I/O interface is a
parallel file system such as GPFS or PVFS [CLRT00]. By
striping data across multiple volumes controlled by a
number of file servers, application programs can access
noncontiguous regions of a file in parallel. Performance
varies depending on whether reads or writes are executed
(reads in our case), on the number of I/O nodes being used,
and on the size of the partition that each process reads.

Because BG/P is a new system undergoing development,
the parallel I/O system is untuned and I/O throughput is
expected to increase dramatically in the future. In the
meantime, the performance tests use both GPFS and PVFS,
depending on which system is currently available. In
performance tests, it is important to realize that a parallel
file system is shared between all jobs and the login nodes.
During timing measurements, we have taken care to restrict
others’ file system usage and confirmed results over
multiple trials.

Rendering

The computation of local subimages, trender in equation 1,
is highly parallel and requires no interprocess
communication. Its per-core performance is a function of
the efficiency of the Blue Gene’s compute node: clock
speed, pipeline architecture, cache coherence, and the
extent to which the code is tuned to optimize these features.
Compiler and code optimizations thus far have netted 2X
performance gains in trender.

We are currently evaluating low-level performance
counters to gauge the use of BG/P’s dual floating-point
pipeline, and estimate its use to be approximately 5%. Our
tests have shown a correlation between this value and the
rendering time. However, even with appropriate directives
and flags, the compiler still may not be able to vectorize
floating point operations, especially when loops contain
control flow or function calls.

Profiling tools identify where the code spends the
majority of time, and the IBM compiler reports the

P0 P1 P2

P3 P4 P5

P6 P7 P8

P0 P1 P3P2 P4 P5 P6 P7 P8

Figure 2: Direct send compositing divides both the
object space and image space among processes.

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P 75

locations within that critical kernel where vectorization
failed, along with reason for failure. To increase SIMD
vectorization within loops, function calls can be replaced
by inline functions or macros, and control flow can be
replaced by data flow, but these substitutions can be non-
trivial in actual code. Tuning the rendering kernel
specifically to the BG/P processor architecture is ongoing
research.

Compositing

Compositing of parallel volume rendered subimages,
tcomposite in equation 1, is implemented with direct send as
follows. At the start of compositing, each of the n processes
owns a completed subimage of its portion of the dataset.
Next, each of the n processes is assigned responsibility for
1/n of the final image area as well. For example, the final
image can be divided into n scan lines or rectangles,
without any spatial correspondence between the completed
subimage from the rendering step and the region of the
final image during the compositing step.

For example, consider process P2 in the 9-process 2D
example in Figure 2. The squares represent the 9
subvolumes, and the line along the bottom represents the
image divided into 9 regions. (The image need not be
aligned with the subvolume axes.) Through a global data
structure that all processes share, P2 knows that it must get
the subimages from P6, P3, and P0. It composites the
images in front-to-back order according to Equations 2 and
3 to recursively compute color and opacity,

i = (1.0 – aold) * inew + iold (2)
a = (1.0 – aold) * anew + aold (3)

Where i represents the intensity (r,g,b) premultiplied by its
associated alpha-value, and a represents the accumulated
alpha-value or opacity.

The last step is for processes P1 through P8 to send their
final results to process P0, which tessellates them together
into one image. The average communication complexity of
tcomposite is O(n4/3 + n). The first term, n4/3, is because on
average, n1/3 messages must be sent to each of n recipients

in order for the n processes to composite their portion of
the final image. The second term, n, represents the
gathering of final subimages at the root process.

Streaming and Prefetching

When resulting images are streamed to a remote display
device, rather than being stored on disk, the path requires
several steps. The reason is that the Blue Gene connects to
the outside world only through the front-end login nodes.
Therefore, to send an image from one of the compute
nodes, it first passes via a socket to the IP address of one of
the login nodes. Physically, it actually travels from the
compute node to the I/O node assigned to that compute
node, and from the I/O node to the login node, but the
connection between compute node and associated I/O node
is transparent to the programmer. Finally, a daemon
running on the login node forwards the data stream to the
remote display via a separate socket connection. The
connectivity is diagrammed in Figure 3.

Prefetching of time-steps can hide the I/O time when the
total number of cores available is sufficient. A multi-pipe
application structure, as in Figure 4, is one way to
accomplish this. Each of the four pipelines in this example
functions independently to process four time steps in
parallel. This is not the only way to prefetch data; however,
it maps well to the BG/P architecture and to our goals of
studying real-time, end-to-end visualization performance
that mitigates I/O cost without ignoring it altogether from
the equation. Results from this method will appear in a
future paper.

4. Performance Data

In November 2007, real-time streaming of the volume
rendering application from BG/L was demonstrated,
generating and streaming a series of 200 time-steps
repeatedly from Argonne in Chicago, Illinois, to the
Supercomputing conference exhibit floor in Reno, Nevada.
A single time-step is 103 MB; during the one-hour demo,
approximately 500 GB of data were processed in real time.
The optimal setting for this data size was 512 cores.

compute
node

compute
node

I/O node

compute
node

compute
node

I/O node
É

É

login
d

10 Gbps
TCP

10 Gbps
TCP

tree network

 TCP
socket TCP

socket

daemon

64

Figure 3: Connecting a compute node to a remote
display is a multi-step process.

É

É

É

eg,
4 pipes

time to

time t3

eg,
512
procs

Figure 4: Processing several time steps simultaneously
can extend the degree of parallelism.

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P76

Figure 5 shows updated tests of the same dataset on
BG/P, out to 4K processes. The plot shows a peak
performance still at 512 cores of approximately 2 frames
per second. Performance decreases slightly to 1.75 frames /
s through 2048 cores, and drops below 1 frame / s at 4096
cores. This is expected because the total file size divided by
a large number of cores results in inefficient I/O and poor
compositing behavior. In fact, at 4096 cores, 72% of the
frame time is spent in I/O; compositing accounts for an
additional 25% while the rendering portion is only 3%. In
order to optimize performance, one may either allocate
fewer cores or visualize a larger dataset.

In the next test, the full 8643 dataset is scaled from 2
cores up to 4096 cores, and the result appears in Figure 6.
Strong scaling, while still not ideal, improves using this 2.5
GB per time-step data. The full BG/P rack of 4096 cores
produces a frame time of approximately 3.5 seconds. I/O
performance still dominates: at 4096 cores the breakdown
of time is tio = 77%, trender = 10% rendering, and tcomposite =
13%. However, because the file size is larger, I/O is more
efficient at this scale and 4096 cores provides the best
overall frame rate.

Figures 5 and 6 appear quite similar in shape up to 2048
cores. For example, the slope of the curve from 256 cores
to 512 is steeper than from 128 to 256 cores and 512 cores
outperforms 1024 cores in both figures as well. We are

currently investigating cache usage as well as I/O and
communication patterns in order to explain the similarities
in scalability for two different data sizes.

BG/P is capable of executing one, two, or four processes
per node. In IBM terminology, these are called smp mode,
dual mode, vn mode, respectively. In smp mode, one core
performs computation while the other cores idle, with the
exception of low-level OS tasks. The total memory
footprint of 2GB per node is shared among the four cores in
smp mode.

Our tests show approximately 20 - 30% slower
performance in dual and vn modes compared to smp mode.
The largest increase is in tio, because the number of I/O
nodes assigned to a job is a fraction of the number of
compute nodes, not compute cores. On the BG/P, this
number is 64 compute nodes to 1 I/O node. Using more
compute nodes allocates more I/O nodes available for tio.
Therefore, in these tests smp mode is used through 1024
cores; dual mode is used for 2048 cores (since the total
number of nodes is 1024) and only 4096 cores employ vn
mode.

Figure 7 compares the contribution to tframe of each of tio,
trender, and tcomposite for the same 8643 dataset. At smaller
numbers of processes, rendering time dominates the frame
time, but I/O cost dominates at 1024 processes and beyond.
This result underlines the need to further optimize parallel

Figure 6: Total frame rate of BG/P on the full 8643 dataset
is plotted on a logarithmic scale.

Figure 5: Total frame rate of BG/P on the 3003
downsampled dataset is plotted on a logarithmic scale.

Figure 7: Relative contribution to tframe of each of tio,
trender, and tcomposite is shown.

Figure 8: Efficiency of tio, trender, and tframe is plotted as a
function of the number of processors.

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P 77

I/O operation on BG/P. Compositing time is still a
relatively small fraction of the total time, reaching a
maximum of 14% and usually less than 10%. However,
Figure 7 clearly shows its relative contribution steadily
increasing, and surpassing rendering time by 4096 cores.
Hence, compositing time cannot be ignored indefinitely,
especially if one expects to scale to tens of thousands of
processes. Note that because Figure 7 displays relative
percentages, features in one curve may be the result of
another. For example, the dip in compositing contribution
at 1024 cores is caused by an increase in I/O cost, not by a
decrease in compositing itself.

Even when the parallel file system is optimized on BG/P,
some configurations may be more efficient than others. For
example, all of the curves in Figures 5-8 show an increase
in both I/O and rendering performance at 512 cores. These
may be functions of the underlying storage, computation,
and communication architecture – things that we cannot
change. However, a better understanding of the hardware
may enable improved performance of visualization
applications.

The ratio of speedup to the scaled increase in core count
defines efficiency. Figure 8 shows efficiency of tio, trender,
and tframe. Compositing efficiency is not shown separately
because compositing is a communication-bound operation.
In an ideal setting, efficiency would remain near 100%:
using n times as many processes should result in
approximately n times the frame rate. Figure 8 tells quite a
different story, and exposes the realities of both
architecture and algorithm.

The upper curve, rendering efficiency, drops quickly but
then remains at 30 – 60% throughout the experiment. Load
imbalance between processes causes the drop from 100% to
60% between 2 and 16 cores. This is due to the static load
distribution scheme that divides the dataset into uniform
subvolumes irrespective of the actual rendering work to be
done in each subvolume. For example, in this scheme it is
possible for some subvolumes to have no data. Beyond
that, the other poor performing locations are at 256, 1024,
and 2048 cores. We hypothesize that cache coherence is
worse at these configurations because of combinations of
data size and cache size and we will be testing this further.

The lower curve, I/O efficiency, decreases rapidly early on,
and then slowly degrades further. Overall, I/O does not
scale well yet on BG/P; at 4096 cores it is 6% compared to
2 cores. We expect this to improve in the near future. The
middle curve is the efficiency of the total time, tframe, and is
principally an average of upper and lower curves.

The complete performance data for the 8643 dataset and
16002 image appears in Table 1. These data include all
three phases of the pipeline: I/O, rendering, and
compositing. Sometimes, the I/O cost can be amortized
over many frames, effectively hiding it. This is the case, for
example, when multiple views of a single file or time step
are visualized. We hope to similarly hide the I/O cost
through prefetching multiple time steps of time-varying
data in the future. Table 2 shows theoretical frame time
assuming I/O cost can be completely hidden in this way.

5. Conclusions

We implemented a parallel ray-casting direct volume
rendering algorithm on the IBM Blue Gene/P and tested
performance over a large number of cores. In order to
assess the viability of this architecture for large scale
visualization, we intentionally chose to measure end-to-end
frame time that includes not only classical visualization
components such as rendering and compositing, but I/O
time as well.

Our tests show that the Blue Gene architecture can be an
appropriate platform for high-quality software visualization
of large data. Its salient features with respect to this
application are large numbers of tightly connected cores, a
flexible programming model (MPI), a high-bandwidth
connection to the parallel I/O system (MPI-IO and PVFS),
and the ability to connect via sockets to remote displays.
Software rendering cannot produce better performance than
graphics clusters for small to medium-sized problems; but
if current trends in data size [Mou04, JR07] continue,
software volume rendering on massively parallel
supercomputers may become a viable method in the future.

We believe that this approach will prove useful for data
sizes of several gigavoxels in conjunction with image sizes
of several megapixels. The method is also promising for in

Table 1: Performance data for 8643 dataset, 16002
image

Procs

tframe
(s)

tio %
of

tframe

trender %
of tframe

tcomposite
% of
tframe

tframe %
effcncy.

2 453.83 11.3 88.6 0.1 100.0

4 243.22 13.7 86.2 0.1 93.3

8 125.94 14.7 85.1 0.2 90.1

16 103.20 18.9 80.9 0.3 55.0

32 56.13 30.1 69.5 0.4 50.5

64 28.21 30.1 69.2 0.8 50.3

128 21.03 43.5 55.5 1.0 33.7

256 12.96 41.4 57.0 1.6 27.4

512 4.30 37.4 57.7 4.7 41.2

1024 5.01 54.3 41.3 4.4 17.7

2048 4.80 68.3 26.0 5.6 9.2

4096 3.41 77.4 9.4 13.2 6.5

Table 2: Theoretical visualization performance
assuming I/O costs are entirely hidden

Procs

trender
(s)

tcomposite
(s)

vis. time =
trender +

tcomposite (s)

vis.
efficiency

2 401.94 0.4 402.34 100.00

4 209.56 0.32 209.88 95.85

8 107.15 0.3 107.45 93.61

16 83.47 0.27 83.74 60.06

32 39.01 0.24 39.25 64.07

64 19.51 0.22 19.73 63.73

128 11.67 0.21 11.88 52.92

256 7.39 0.21 7.60 41.36

512 2.48 0.2 2.68 58.64

1024 2.07 0.22 2.29 34.32

2048 1.25 0.27 1.52 25.85

4096 0.32 0.45 0.77 25.51
c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P78

situ visualization [TYR*06], or in general when a very
large dataset resides on the system already. As data sizes
increase, transporting data between machines becomes
nontrivial.

The relative cost of the three phases of the algorithm
changes with the number of processes, although ultimately
the application is I/O bound. Trade-offs exists between
applying the correct number of cores to optimize I/O,
rendering, and compositing, because these components of
the total time trend in opposite directions and have various
“sweet spots.” It is unlikely that this method alone can
effectively produce highly interactive performance, for
example, 30 frames per second. More likely, its niche will
be for very large data sets that cannot be accommodated by
graphics clusters and can produce frame times on the order
of a few seconds for such data.

Nonetheless, there is room for improvement. The parallel
I/O system on BG/P will improve considerably over time –
we know that it is not performing near capacity and work is
ongoing in that regard. More sophisticated load-balancing
techniques can improve the rendering efficiency, together
with closer attention to cache and dual floating point
pipeline usage. Compositing needs to be written with the
communication backbone of the BG/P in mind.

When fully completed, BG/P will offer over one hundred
thousand cores. This capacity can be leveraged by
visualizing several frames through a multi-pipeline layout.
Additional cores can also improve the quality of the
rendering, for example to enable lighting and shading
calculations. In the performance results, lighting was
disabled; but Figure 1 shows that very high quality images
can result through the addition of lighting.

6. Future Work

Our next tests will focus on scaling data size to gigavoxels
and image size to megapixels and on improving image
quality through lighting and shading. With 4 cores per
node, BG/P offers the opportunity to experiment with
multi-threading within an MPI process. This hybrid
programming model may enable more efficient scaling,
especially since the four cores share 2 GB of memory. This
new level of parallelism can be exploited by modifying the
rendering algorithm. We also are experimenting with tree-
based compositing as a replacement for direct send. This
may include binary swap [MPHK94] as a way to balance
the number of messages with the size of a message and to
keep more processes busy during the late stages of
compositing.

We also plan to study how this research can be extended
to encompass adaptive mesh refined (AMR) time-varying
datasets [Ma99, WHH*01]. Varying levels of spatial
resolution encoded in AMR data provide a compromise
between the rigidity of completely structured data and the
randomness of entirely unstructured data.

Another goal is to collate the performance data into a
coherent model for predicting future performance. An open
question is: what input criteria, such as processor speed,
data size, number of processes, network bandwidth,
memory bandwidth, and aggregate I/O throughput should
be included in such a model. The result should be a
relatively simple-to-use module that can analyze a parallel

volume rendering problem and suggest an optimal
configuration and predict its performance.

One of our long-term goals is to study how a
supercomputer architecture can be used to support
interactive rendering. The research so far has not included
any elements of interactivity and performance data reveals
that reaching interactive rates is difficult because of the
tradeoffs between tio, trender, and tcomposite. The next steps
toward interactive rates may include LOD rendering as well
as local view interpolation at the display machine(s). The
ideal configuration may be the supercomputer and the
graphics machine(s) sharing responsibilities in a client-
server architecture.

Acknowledgments

We thank John Blondin and Anthony Mezzacappa for
making their dataset available for this research. This work
was supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357. Work is also supported in part by
NSF through grants CNS-0551727 and CCF-0325934, and
DOE with agreement No. DE-FC02-06ER25777.

References

[IBM07] IBM Redbooks.

http://www.redbooks.ibm.com/redpieces/abstracts/sg247
287.html?Open 2007.

[SCI07] SciDAC Institute for Ultra-Scale Visualization.
http://ultravis.ucdavis.edu/ 2007.

[BGM*07] BIDDISCOMBE, J., GEVECI, B., MARTIN, K.,
MORELAND, K. THOMPSON, D.: Time Dependent
Processing in a Parallel Pipeline Architecture. IEEE
Transactions on Visualization and Computer Graphics,
13, 6, (October 2007), 1376-1383.

[BMD03] BLONDIN, J. M., MEZZACAPPA, A. DEMARINO,
C.: Stability of Standing Accretion Shocks, with an Eye
Toward Core Collapse Supernovae. The Astrophysics
Journal, 584, 2, (2003), 971.

[CLRT00] CARNS, P., LIGON, W. B. I., ROSS, R. THAKUR,
R.: PVFS: A Parallel File System for Linux Clusters.
Proceedings of 4th Annual Linux Showcase &
Conference, Atlanta, GA, (2000), 28.

[CMF05] CAVIN, X., MION, C. FIBOIS, A.: COTS Cluster-
based Sort-last Rendering: Performance Evaluation and
Pipelined Implementation. Proceedings of IEEE
Visualization 2005, (October 2005), 111-118.

[CDM06] CHILDS, H., DUCHAINEAU, M. MA, K.-L.: A
Scalable, Hybrid Scheme for Volume Rendering
Massive Data Sets. Proceedings of Eurographics
Symposium on Parallel Graphics and Visualization
2006, Braga, Portugal, (May 2006), 153-162.

[CBB*05] CHILDS, H. R., BRUGGER, E. S., BONNELL, K. S.,
MEREDITH, J. S., MILLER, M. C., WHITLOCK, B. J. MAX,
N. L.: A Contract Based System for Large Data
Visualization. Proceedings of IEEE Visualization 2005,
Minneapolis, MN, (October 2005), 190-198.

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P 79

[DCH88] DREBIN, R. A., CARPENTER, L. HANRAHAN, P.:
Volume Rendering. ACM SIGGRAPH Computer
Graphics, 22, 4, (August 1988), 65-74.

[GGH*96] GEIST, A., GROPP, W., HUSS-LEDERMAN, S.,
LUMSDAINE, A., LUSK, E., SAPHIR, W. SKJELLUM, T.:
MPI-2: Extending the Message-Passing Interface.
Proceedings of Euro-Par'96, Lyon, France, (October
1996).

[Hsu93] HSU, W. M.: Segmented Ray Casting for Data
Parallel Volume Rendering. Proceedings of 1993
Parallel Rendering Symposium, San Jose, CA, (1993), 7-
14.

[JR07] JOHNSON, C. ROSS, R.: Visualization and
Knowledge Discovery: Report from the DOE/ASCR
Workshop on Visual Analysis and Data Exploration at
Extreme Scale, 2007.

[LRN96] LEE, T.-Y., RAGHAVENDRA, C. S. NICHOLAS, J.
B.: Image Composition Schemes for Sort-Last Polygon
Rendering on 2D Mesh Multicomputers. IEEE
Transactions on Visualization and Computer Graphics,
2, 3, (September 1996), 202-217.

[Lev88] LEVOY, M.: Display of Surfaces from Volume
Data. IEEE Computer Graphics and Applications, 8, 3,
(May 1988), 29-37.

[Lev90] LEVOY, M.: Efficient Ray Tracing of Volume
Data. ACM Transactions on Graphics, 9, 3, (July 1990),
245-261.

[Ma99] MA, K.-L.: Parallel Rendering of 3D AMR Data
on the SGI/Cray T3E. Proceedings of 7th Annual
Symposium on the Frontiers of Massively Parallel
Computation 1999, Annapolis MD, (February 1999),
138-145.

[MC00] MA, K.-L. CAMP, D. M.: High Performance
Visualization of Time-Varying Volume Data over a
Wide-Area Network. Proceedings of Supercomputing
2000, Dallas, TX, (November, 2000), 29.

[MI97] MA, K.-L. INTERRANTE, V.: Extracting Feature
Lines from 3D Unstructured Grids. Proceedings of IEEE
Visualization 1997, Phoenix, AZ, (October 1997), 285-
292.

[MPHK93] MA, K.-L., PAINTER, J. S., HANSEN, C. D.
KROGH, M. F.: A Data Distributed, Parallel Algorithm
for Ray-Traced Volume Rendering. Proceedings of 1993
Parallel Rendering Symposium, San Jose, CA, (October
1993), 15-22.

[MPHK94] MA, K.-L., PAINTER, J. S., HANSEN, C. D.
KROGH, M. F.: Parallel Volume Rendering Using Binary-
Swap Compositing. IEEE Computer Graphics and
Applications, 14, 4, (July 1994), 59-68.

[MWY*07] MA, K.-L., WANG, C., YU, H. TIKHONOVA, A.:
In-Situ Processing and Visualization for Ultrscale
Simulations. Journal of Physics, 78, (June 2007).

[MMD06] MARCHESIN, S., MONGENET, C. DISCHLER, J.-
M.: Dynamic Load Balancing for Parallel Volume
Rendering. Proceedings of Eurographics Symposium of
Parallel Graphics and Visualization 2006, Braga,
Portugal, (May 2006)

[Max95] MAX, N. L.: Optical Models for Direct Volume
Rendering. IEEE Transactions on Visualization and
Computer Graphics, 1, 2, (June 1995), 99-108.

[MAF07] MORELAND, K., AVILA, L. FISK, L. A.: Parallel
Unstructured Volume Rendering in ParaView.

Proceedings of IS&T SPIE Visualization and Data
Analysis 2007, San Jose, (January 2007).

[Mou04] MOUNT, R.: The Office of Science Data-
Management Challenge. Report from the DOE Office of
Science Data-Management Workshops, 2004.

[Neu94] NEUMANN, U.: Communication Costs for Parallel
Volume-Rendering Algorithms. IEEE Computer
Graphics and Applications, 14, 4, (July 1994), 49-58.

[Neu93] NEUMANN, U.: Parallel Volume-Rendering
Algorithm Performance on Mesh-Connected
Multicomputers. Proceedings of 1993 Parallel
Rendering Symposium, San Jose, CA, (October 1993),
97-104.

[PPL*99] PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-
P., HANSEN, C. D. SHIRLEY, P.: Interactive Ray Tracing
for Volume Visualization. IEEE Transactions on
Visualization and Computer Graphics, 5, 3, (July 1999),
238-250.

[PD84] PORTER, T. DUFF, T.: Compositing Digital Images.
Proceedings of 11th Annual Conference on Computer
Graphics and Interactive Techniques, (1984), 253-259.

[SML*03] STOMPEL, A., MA, K.-L., LUM, E. B., AHRENS,
J. PATCHETT, J.: SLIC: Scheduled Linear Image
Compositing for Parallel Volume Rendering.
Proceedings of IEEE Symposium on Parallel and Large-
Data Visualization and Graphics, Seattle, WA, (October
2003), 33-40.

[TYR*06] TU, T., YU, H., RAMIREZ-GUZMAN, L., BIELAK,
J., GHATTAS, O., MA, K.-L. O'HALLARON, D. R.: From
Mesh Generation to Scientific Visualization: An End-to-
end Approach to Parallel Supercomputing. Proceedings
of Supercomputing 2006, Tampa, FL, (November 2006).

[WHH*01] WEBER, G. H., HAGEN, H., HAMANN, B., JOY,
K. I., LIGOCKI, T. J., MA, K.-L. SHALF, J. M.:
Visualization of Adaptive Mesh Refinement Data.
Proceedings of IS&T/SPIE Visual Data Exploration and
Analysis VIII, San Jose, CA, (2001), 121-132.

[YM05] YU, H. MA, K.-L.: A Study of I/O Methods for
Parallel Visualization of Large-Scale Data. Parallel
Computing, 31, 2, (February 2005), 167-183.

[YMW04] YU, H., MA, K.-L. WELLING, J.: A Parallel
Visualization Pipeline for Terascale Earthquake
Simulations. Proceedings of Supercomputing 2004,
(November 2004), 49.

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

