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Abstract 
Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel 
architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the 
Blue Gene/P is not necessarily to achieve real-time rendering rates. It is to identify and understand the extent of 
bottlenecks and interactions between various components that affect the design of future visualization solutions 
on these machines, solutions that may offer alternatives to hardware-accelerated volume rendering, for example, 
when large volumes, large image sizes, and very high quality results are dictated by peta- and exascale data. As 
a step in that direction, this study presents data from experiments under a number of conditions, including 
dataset size, number of processors, low- and high-quality rendering, offline storage of results, and streaming of 
images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering, 
and compositing. The dynamic balance among these tasks varies with the number of processors and other 
conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation, 
and communication within the context of visualization on supercomputers; recommendations for tuning and 
optimization; and opportunities for further scaling. Extrapolating these results to very large data and image sizes 
suggests that a distributed-memory high-performance computing architecture such as the Blue Gene is a viable 
platform for some types of visualization at very large scales. 
 
Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing, 
I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]: 
Raytracing, I3.8 [Applications]  

 
 
1. Introduction 
 
As data sizes and supercomputer architectures grow toward 
the petascale and beyond, an attractive alternative to 
rendering on graphics clusters may be to perform software-
based visualization directly on parallel supercomputers. 
Benefits include the elimination of data movement between 
computation and visualization architectures; the economies 
of large-scale, tightly coupled parallelism; and the 
possibility of  visualizing a simulation in situ [MWY*07]. 
This paper examines the second benefit, large numbers of 
tightly connected processor nodes, within the context of a 
parallel ray casting volume rendering algorithm 
implemented on the IBM Blue Gene/P (BG/P) architecture 
at Argonne National Laboratory.  

Volume rendering and parallel volume rendering on 
supercomputers have been published extensively in the 
literature, but this is the first such study conducted on 
BG/P. This research profiles and identifies bottlenecks in 
the rendering pipeline and suggests modifications to the 
parallel rendering algorithm to achieve scalability. The 
study, moreover, is intentionally system-wide and measures 
end-to-end frame time that includes disk I/O during the 
visualization of a time-varying dataset. Only by studying 
the entire visualization pipeline can one get a glimpse of 

the optimal balance between I/O, computation, 
communication, and interactivity requirements in the 
setting of parallel volume rendering on the BG/P. 

The experiments include several test conditions, 
including small- to medium-sized data sets, real-time 
streaming of output images and offline storage of results, 
and both low- and high-quality renderings. From the 
results, one can draw conclusions about how to best 
leverage the strengths of this architecture in visualization 
applications. Although the results are specific to a 
particular algorithm and architecture, the lessons learned 
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can potentially apply more broadly to other supercomputer 
architectures that share some of the same characteristics as 
the Blue Gene, and to other parallel rendering algorithms as 
well. 

Thus far, we have successfully scaled up to 4096 cores. 
Remote streaming of a small, time-varying dataset at 
subsecond frame times was demonstrated. For the data 
sizes that we currently have available, performance is not 
faster than other methods and architectures, but we expect 
the benefits to be apparent at still larger scales. Rather than 
competing for real-time frame rate with graphics processor 
(GPU) accelerated rendering in small to moderate scales, 
parallel supercomputer rendering offers one solution to the 
peta- and exascale challenges of data sizes that are beyond 
the scalability of existing methods. For example, when the 
data size is on the order of billions of voxels and image 
resolution is on the order of millions of pixels, thousands or 
even tens of thousands of processors may be justified. 
Research at these scales is ongoing. 
 
2. Background 
 
Dataset 
 
The dataset shown in Figure 1 is one time-step from a 
supernova simulation, made available by John Blondin at 
the North Carolina State University and Anthony 
Mezzacappa of Oak Ridge National Laboratory [BMD03], 
through the U.S. Department of Energy’s SciDAC Institute 
for Ultrascale Visualization [SCI07]. The model seeks to 
discover the mechanism behind the core collapse supernova 
mechanism, which is the violent death of short-lived, 
massive stars. A spherical accretion shock instability, 
SASI, is driven by the response of an initially spherical 
shock wave to global acoustic modes trapped in the 
interior.  

Visualization plays a key role in understanding the origin 
of this instability of the supernova shock wave. By 
manipulating the transparency of the rendered data, 
scientists can quickly visualize different combinations of 
variables or isolate features. In this dataset, a single scalar 
variable angular momentum is stored at 8643 uniform, 
structured grid locations. Each of 200 time-steps of time-
varying data is stored in a separate file. Files are stored in 
raw binary format, in 32-bit floating point. 
 
Algorithm 
 
Parallel volume rendering algorithms have been well 
documented in the literature. Beginning with Levoy’s 
classic ray casting in 1988 [Lev88] and optimizations in 
1990 [Lev90], parallel versions began to appear in 1993 
with [MPHK93] and [Nue93]. Parker et al. demonstrated 
efficient parallelism of ray casting in 1999 [PPL*99] for 
isosurfacing and maximal intensity volume rendering on 
shared memory architecture. Ma and Camp demonstrated 
overlapped I/O, rendering, compression and transmission in 
the context of remote visualization [MC00]. More recently, 
Yu demonstrated that parallel volume rendering 
performance can be further improved by overlapping 
simulation with visualization [YMW04]. Parallel volume 
rendering has also been studied in the context of cluster 
computing [CMF05] and in standard visualization toolkits 

such as VTK [BGM*07], ParaView [MAF07], and VisIt 
[CBB*05, CDM06]. 

Our implementation uses post-classification after 
trilinear interpolation, optionally includes lighting [DCH88, 
Max95], and does not incorporate hierarchical levels of 
detail. Sort-last parallelization occurs both in object space 
and in image space. The dataset is divided into n 
approximately equal size partitions, where n is the number 
of processes. Each process computes a completed subimage 
corresponding to its local data, including local front-to-
back compositing of samples along each ray of its local 
subimage using the “over” operator [PD84] and early ray 
termination. This standard technique terminates 
compositing along a ray once the accumulated opacity 
exceeds a predetermined threshold because further samples
along the ray would be occluded. 

Stompel et al. [SML*03] provide an overview of various 
methods for sort-last compositing of the n subimages, and 
Cavin et al. [CMF05] analyze relative theoretical 
performance of these methods. These overviews show that 
compositing algorithms usually fall into one of the 
following categories: plain or optimized direct send, plain 
or optimized tree, and parallel pipeline. The direct send 
approach is easiest to understand; each process requests the 
subimages from all of those processes that have something 
to contribute to it [Hsu93, Neu94, MI97]. Since the
possibility for network contention is high in direct send, the
SLIC [SML*03] optimization attempts to schedule
communication. For simplicity and a high degree of 
parallelism, we use the direct send compositing approach. 

Rather than sending compositing data monolithically, 
tree methods exchange data between pairs of processes, 
building larger completed subimages at each level of the 
compositing tree. To keep more processes busy at higher 
levels on the tree, Ma et al. introduced the binary swap 
optimization [MPHK94]. Lee et al. discuss a parallel 
pipeline compositing algorithm in [LRN96] for polygon 
rendering, although this seldom appears in the context of 
parallel volume rendering. 

We define the time that a frame takes to complete, tframe, 
as the time from the start of reading the time-step from disk 
to the time that the final image is ready at the root process. 
This frame time has three distinct components, and for a 
given data size, the relative contribution of each component 
to the total time depends on the number of processes. 

 
tframe = tio + trender + tcomposite (1) 

 
The I/O time, tio, is the length of time required by a 

collective reading of the time-step data file by all processes 
simultaneously. The rendering time, trender, is the time that it 
takes for all processes to complete their local subimage 
rendering. The compositing time, tcomposite, is the time to 
composite all subimages into a single image on a single 
process. The following section describes the 
implementation of each component in more detail.  

Before the execution of the first frame, a one-time 
initialization step allocates data structures and determines 
partitioning parameters; the time for this setup is on the 
order of tens of seconds and because it occurs only once, 
we omit it from the frame time. During the setup time, data 
cells are partitioned into block-shaped regions and 
allocated to processes. This static load balancing scheme 

c© The Eurographics Association 2008.

Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma / Parallel Volume Rendering on the IBM Blue Gene/P74



implies that the uniform data distribution can cause an 
uneven rendering workload when the view matrix or 
transfer function changes the visibility of subvolumes, as 
shown by Marchesin et al. [MMD06]. This is not a problem 
in the compositing step, where all processes participate 
equally, irrespective of projection area. 
 
 
Blue Gene Architecture 
 
The Blue Gene/L and Blue Gene/P systems at Argonne 
National Laboratory provide ample opportunities to 
experiment with parallel rendering. This work began with 
2,048 cores of the BG/L system and, so far, has scaled to 
4,096 cores on the BG/P system. The current single rack of 
BG/P is for testing and development; but in the near future, 
Argonne’s BG/P system will contain 128K cores. In the 
interest of space, we highlight below just a small sample of 
relevant features but online documentation from IBM can 
be found at [IBM07]; the reader is directed there for 
specifications and configuration diagrams. For our 
purposes, the key differences between the older BG/L and 
the new BG/P are that BG/P provides twice as many cores 
per node, twice the memory footprint, approximately a 2X 
faster interconnect network, a 1.2X faster clock speed per 
core, and once completed, many times more available 
nodes and cores.  

Processor cores are grouped together into nodes; the 
BG/P has four cores per node. Within a node, the cores can 
operate together to execute one user process, in pairs for 
two processes, or independently for four user processes, 
depending on the selected mode. Each BG/P core is a 
PowerPC 450 850 MHz processor that contains two parallel 
floating-point units that can execute certain pairs of 
identical floating-point operations in parallel (SIMD 
vectorization). 

Application processes execute on top of a microkernel 
that provides basic OS services. The Blue Gene 
architecture has two separate interconnection networks – a 
3D torus for inter-process point-to-point communication 
and a tree network for collective operations as well as for 
communicating with I/O nodes. BG/P has one I/O node for 
every 64 compute nodes. At the front end, the machine has 
four login nodes that support full Linux functionality. 
 
3. Implementation 
 
I/O 
 
Our volume rendering application is written by using MPI 
for both communication and I/O and executes with one 
MPI process on each core. MPI-2 [GGH*96] (a.k.a. MPI-
IO) collective file read calls perform data staging, tio in 
equation 1, allowing each process to read its own portion of 
the volume in parallel with all of the other processes 
[YMW04, YM05]. This approach is more efficient than 
having a single master process read the entire dataset and 
distribute it to slave processes. More important, for large 
datasets it does not require a single process to be able to fit 
the entire dataset into its memory.  

For example, the largest dataset tested to date in this 
work consists of 8643 voxels, or approximately 2.5 GB per 
time-step. This is problematic for most workstations; even 

the BG/P has only 2 GB of memory per node. With 
collective I/O, however, the total memory footprint of the 
entire machine - not just of one node - is the upper bound 
on the maximum data size that can be processed in-core. 
This memory limit on the current single-rack BG/P is 2 TB, 
but will grow to 64 TB when the system is complete. 

Underlying the MPI-2 collective I/O interface is a 
parallel file system such as GPFS or PVFS  [CLRT00]. By 
striping data across multiple volumes controlled by a 
number of file servers, application programs can access 
noncontiguous regions of a file in parallel.  Performance 
varies depending on whether reads or writes are executed 
(reads in our case), on the number of I/O nodes being used, 
and on the size of the partition that each process reads. 

Because BG/P is a new system undergoing development, 
the parallel I/O system is untuned and I/O throughput is 
expected to increase dramatically in the future. In the 
meantime, the performance tests use both GPFS and PVFS, 
depending on which system is currently available. In 
performance tests, it is important to realize that a parallel 
file system is shared between all jobs and the login nodes. 
During timing measurements, we have taken care to restrict 
others’ file system usage and confirmed results over 
multiple trials. 
 
Rendering 
 

The computation of local subimages, trender in equation 1, 
is highly parallel and requires no interprocess 
communication. Its per-core performance is a function of 
the efficiency of the Blue Gene’s compute node: clock 
speed, pipeline architecture, cache coherence, and the 
extent to which the code is tuned to optimize these features. 
Compiler and code optimizations thus far have netted 2X 
performance gains in trender. 

We are currently evaluating low-level performance 
counters to gauge the use of BG/P’s dual floating-point 
pipeline, and estimate its use to be approximately 5%.  Our 
tests have shown a correlation between this value and the 
rendering time. However, even with appropriate directives 
and flags, the compiler still may not be able to vectorize 
floating point operations, especially when loops contain 
control flow or function calls.  

Profiling tools identify where the code spends the 
majority of time, and the IBM compiler reports the 

 

P0 P1 P2 

P3 P4 P5 

P6 P7 P8 

P0 P1 P3P2 P4 P5 P6 P7 P8 
 

Figure 2: Direct send compositing divides both the 
object space and image space among processes. 
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locations within that critical kernel where vectorization 
failed, along with reason for failure. To increase SIMD 
vectorization within loops, function calls can be replaced 
by inline functions or macros, and control flow can be 
replaced by data flow, but these substitutions can be non-
trivial in actual code. Tuning the rendering kernel 
specifically to the BG/P processor architecture is ongoing 
research. 
 
Compositing 
 

Compositing of parallel volume rendered subimages, 
tcomposite in equation 1, is implemented with direct send as 
follows. At the start of compositing, each of the n processes 
owns a completed subimage of its portion of the dataset. 
Next, each of the n processes is assigned responsibility for 
1/n of the final image area as well. For example, the final 
image can be divided into n scan lines or rectangles, 
without any spatial correspondence between the completed 
subimage from the rendering step and the region of the 
final image during the compositing step. 

For example, consider process P2 in the 9-process 2D 
example in Figure 2. The squares represent the 9 
subvolumes, and the line along the bottom represents the 
image divided into 9 regions. (The image need not be 
aligned with the subvolume axes.) Through a global data 
structure that all processes share, P2 knows that it must get 
the subimages from P6, P3, and P0. It composites the 
images in front-to-back order according to Equations 2 and 
3 to recursively compute color and opacity, 

 
i =   ( 1.0  –  aold) * inew + iold  (2) 
a = ( 1.0  –  aold) * anew + aold  (3) 

 
Where i represents the intensity (r,g,b) premultiplied by its 
associated alpha-value, and a represents the accumulated 
alpha-value or opacity.  

The last step is for processes P1 through P8 to send their 
final results to process P0, which tessellates them together 
into one image. The average communication complexity of 
tcomposite is O(n4/3 + n). The first term, n4/3, is because on 
average, n1/3 messages must be sent to each of n recipients 

in order for the n processes to composite their portion of 
the final image. The second term, n, represents the 
gathering of final subimages at the root process. 
 
Streaming and Prefetching 
 

When resulting images are streamed to a remote display 
device, rather than being stored on disk, the path requires 
several steps. The reason is that the Blue Gene connects to 
the outside world only through the front-end login nodes. 
Therefore, to send an image from one of the compute 
nodes, it first passes via a socket to the IP address of one of 
the login nodes. Physically, it actually travels from the 
compute node to the I/O node assigned to that compute 
node, and from the I/O node to the login node, but the 
connection between compute node and associated I/O node 
is transparent to the programmer. Finally, a daemon 
running on the login node forwards the data stream to the 
remote display via a separate socket connection. The 
connectivity is diagrammed in Figure 3. 

Prefetching of time-steps can hide the I/O time when the 
total number of cores available is sufficient. A multi-pipe 
application structure, as in Figure 4, is one way to 
accomplish this. Each of the four pipelines in this example 
functions independently to process four time steps in 
parallel. This is not the only way to prefetch data; however, 
it maps well to the BG/P architecture and to our goals of 
studying real-time, end-to-end visualization performance 
that mitigates I/O cost without ignoring it altogether from 
the equation. Results from this method will appear in a 
future paper. 
 
4. Performance Data 
 
In November 2007, real-time streaming of the volume 
rendering application from BG/L was demonstrated, 
generating and streaming a series of 200 time-steps 
repeatedly from Argonne in Chicago, Illinois, to the 
Supercomputing conference exhibit floor in Reno, Nevada. 
A single time-step is 103 MB; during the one-hour demo, 
approximately 500 GB of data were processed in real time. 
The optimal setting for this data size was 512 cores.  
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Figure 3: Connecting a compute node to a remote 
display is a multi-step process. 
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Figure 4: Processing several time steps simultaneously 
can extend the degree of parallelism. 
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Figure 5 shows updated tests of the same dataset on 
BG/P, out to 4K processes. The plot shows a peak 
performance still at 512 cores of approximately 2 frames 
per second. Performance decreases slightly to 1.75 frames / 
s through 2048 cores, and drops below 1 frame / s at 4096 
cores. This is expected because the total file size divided by 
a large number of cores results in inefficient I/O and poor 
compositing behavior. In fact, at 4096 cores, 72% of the 
frame time is spent in I/O; compositing accounts for an 
additional 25% while the rendering portion is only 3%. In 
order to optimize performance, one may either allocate 
fewer cores or visualize a larger dataset. 

In the next test, the full 8643 dataset is scaled from 2 
cores up to 4096 cores, and the result appears in Figure 6. 
Strong scaling, while still not ideal, improves using this 2.5 
GB per time-step data. The full BG/P rack of 4096 cores 
produces a frame time of approximately 3.5 seconds. I/O 
performance still dominates: at 4096 cores the breakdown 
of time is tio = 77%, trender =  10% rendering, and tcomposite = 
13%. However, because the file size is larger, I/O is more 
efficient at this scale and 4096 cores provides the best 
overall frame rate. 

Figures 5 and 6 appear quite similar in shape up to 2048 
cores. For example, the slope of the curve from 256 cores 
to 512 is steeper than from 128 to 256 cores and 512 cores 
outperforms 1024 cores in both figures as well. We are 

currently investigating cache usage as well as I/O and 
communication patterns in order to explain the similarities 
in scalability for two different data sizes. 

BG/P is capable of executing one, two, or four processes 
per node. In IBM terminology, these are called smp mode, 
dual mode, vn mode, respectively. In smp mode, one core 
performs computation while the other cores idle, with the 
exception of low-level OS tasks. The total memory 
footprint of 2GB per node is shared among the four cores in 
smp mode.  

Our tests show approximately 20 - 30% slower 
performance in dual and vn modes compared to smp mode. 
The largest increase is in tio, because the number of I/O 
nodes assigned to a job is a fraction of the number of 
compute nodes, not compute cores. On the BG/P, this 
number is 64 compute nodes to 1 I/O node. Using more 
compute nodes allocates more I/O nodes available for tio. 
Therefore, in these tests smp mode is used through 1024 
cores; dual mode is used for 2048 cores (since the total 
number of nodes is 1024) and only 4096 cores employ vn 
mode. 

Figure 7 compares the contribution to tframe of each of tio, 
trender, and tcomposite for the same 8643 dataset. At smaller 
numbers of processes, rendering time dominates the frame 
time, but I/O cost dominates at 1024 processes and beyond. 
This result underlines the need to further optimize parallel 

 
 
Figure 6: Total frame rate of BG/P on the full 8643 dataset 
is plotted on a logarithmic scale. 

 
 

Figure 5: Total frame rate of BG/P on the 3003 
downsampled dataset is plotted on a logarithmic  scale. 

 
Figure 7: Relative contribution to tframe of each of tio, 
trender,  and tcomposite  is shown. 

 
 

Figure 8: Efficiency of tio, trender, and tframe is plotted as a 
function of the number of processors. 
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I/O operation on BG/P. Compositing time is still a 
relatively small fraction of the total time, reaching a 
maximum of 14% and usually less than 10%. However, 
Figure 7 clearly shows its relative contribution steadily 
increasing, and surpassing rendering time by 4096 cores. 
Hence, compositing time cannot be ignored indefinitely, 
especially if one expects to scale to tens of thousands of 
processes. Note that because Figure 7 displays relative 
percentages, features in one curve may be the result of 
another. For example, the dip in compositing contribution 
at 1024 cores is caused by an increase in I/O cost, not by a 
decrease in compositing itself. 

Even when the parallel file system is optimized on BG/P, 
some configurations may be more efficient than others. For 
example, all of the curves in Figures 5-8 show an increase 
in both I/O and rendering performance at 512 cores. These 
may be functions of the underlying storage, computation, 
and communication architecture – things that we cannot 
change. However, a better understanding of the hardware 
may enable improved performance of visualization 
applications. 

The ratio of speedup to the scaled increase in core count 
defines efficiency. Figure 8 shows efficiency of tio, trender, 
and tframe. Compositing efficiency is not shown separately 
because compositing is a communication-bound operation. 
In an ideal setting, efficiency would remain near 100%: 
using n times as many processes should result in 
approximately n times the frame rate. Figure 8 tells quite a 
different story, and exposes the realities of both 
architecture and algorithm. 

The upper curve, rendering efficiency, drops quickly but 
then remains at 30 – 60% throughout the experiment. Load 
imbalance between processes causes the drop from 100% to 
60% between 2 and 16 cores. This is due to the static load 
distribution scheme that divides the dataset into uniform 
subvolumes irrespective of the actual rendering work to be 
done in each subvolume. For example, in this scheme it is 
possible for some subvolumes to have no data. Beyond 
that, the other poor performing locations are at 256, 1024, 
and 2048 cores. We hypothesize that cache coherence is 
worse at these configurations because of combinations of 
data size and cache size and we will be testing this further. 

The lower curve, I/O efficiency, decreases rapidly early on, 
and then slowly degrades further. Overall, I/O does not 
scale well yet on BG/P; at 4096 cores it is 6% compared to 
2 cores. We expect this to improve in the near future. The 
middle curve is the efficiency of the total time, tframe, and is 
principally an average of upper and lower curves. 

The complete performance data for the 8643 dataset and 
16002 image appears in Table 1. These data include all 
three phases of the pipeline: I/O, rendering, and 
compositing. Sometimes, the I/O cost can be amortized 
over many frames, effectively hiding it. This is the case, for 
example, when multiple views of a single file or time step 
are visualized. We hope to similarly hide the I/O cost 
through prefetching multiple time steps of time-varying 
data in the future. Table 2 shows theoretical frame time 
assuming I/O cost can be completely hidden in this way. 

 
5. Conclusions 
 
We implemented a parallel ray-casting direct volume 
rendering algorithm on the IBM Blue Gene/P and tested 
performance over a large number of cores. In order to 
assess the viability of this architecture for large scale 
visualization, we intentionally chose to measure end-to-end 
frame time that includes not only classical visualization 
components such as rendering and compositing, but I/O 
time as well.  

Our tests show that the Blue Gene architecture can be an 
appropriate platform for high-quality software visualization 
of large data. Its salient features with respect to this 
application are large numbers of tightly connected cores, a 
flexible programming model (MPI), a high-bandwidth 
connection to the parallel I/O system (MPI-IO and PVFS), 
and the ability to connect via sockets to remote displays. 
Software rendering cannot produce better performance than 
graphics clusters for small to medium-sized problems; but 
if current trends in data size [Mou04, JR07] continue, 
software volume rendering on massively parallel 
supercomputers may become a viable method in the future.  

We believe that this approach will prove useful for data 
sizes of several gigavoxels in conjunction with image sizes 
of several megapixels. The method is also promising for in 

Table 1: Performance data for 8643 dataset, 16002 
image 

 

# 
Procs 

tframe 
(s) 

tio % 
of 

tframe 

trender % 
of tframe 

tcomposite 
% of 
tframe 

tframe % 
effcncy. 

2 453.83 11.3 88.6 0.1 100.0 

4 243.22 13.7 86.2 0.1 93.3 

8 125.94 14.7 85.1 0.2 90.1 

16 103.20 18.9 80.9 0.3 55.0 

32 56.13 30.1 69.5 0.4 50.5 

64 28.21 30.1 69.2 0.8 50.3 

128 21.03 43.5 55.5 1.0 33.7 

256 12.96 41.4 57.0 1.6 27.4 

512 4.30 37.4 57.7 4.7 41.2 

1024 5.01 54.3 41.3 4.4 17.7 

2048 4.80 68.3 26.0 5.6 9.2 

4096 3.41 77.4 9.4 13.2 6.5 

Table 2: Theoretical visualization performance 
assuming I/O costs are entirely hidden 

 

# 
Procs 

trender  
(s) 

tcomposite 
(s) 

vis. time = 
trender + 

tcomposite (s) 

vis. 
efficiency 

2 401.94 0.4 402.34 100.00 

4 209.56 0.32 209.88 95.85 

8 107.15 0.3 107.45 93.61 

16 83.47 0.27 83.74 60.06 

32 39.01 0.24 39.25 64.07 

64 19.51 0.22 19.73 63.73 

128 11.67 0.21 11.88 52.92 

256 7.39 0.21 7.60 41.36 

512 2.48 0.2 2.68 58.64 

1024 2.07 0.22 2.29 34.32 

2048 1.25 0.27 1.52 25.85 

4096 0.32 0.45 0.77 25.51 
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situ visualization [TYR*06], or in general when a very 
large dataset resides on the system already. As data sizes 
increase, transporting data between machines becomes 
nontrivial. 

The relative cost of the three phases of the algorithm 
changes with the number of processes, although ultimately 
the application is I/O bound. Trade-offs exists between 
applying the correct number of cores to optimize I/O,  
rendering, and compositing, because these components of 
the total time trend in opposite directions and have various 
“sweet spots.” It is unlikely that this method alone can 
effectively produce highly interactive performance, for 
example, 30 frames per second. More likely, its niche will 
be for very large data sets that cannot be accommodated by 
graphics clusters and can produce frame times on the order 
of a few seconds for such data. 

Nonetheless, there is room for improvement. The parallel 
I/O system on BG/P will improve considerably over time – 
we know that it is not performing near capacity and work is 
ongoing in that regard. More sophisticated load-balancing 
techniques can improve the rendering efficiency, together 
with closer attention to cache and dual floating point 
pipeline usage. Compositing needs to be written with the 
communication backbone of the BG/P in mind. 

When fully completed, BG/P will offer over one hundred 
thousand cores. This capacity can be leveraged by 
visualizing several frames through a multi-pipeline layout. 
Additional cores can also improve the quality of the 
rendering, for example to enable lighting and shading 
calculations. In the performance results, lighting was 
disabled; but Figure 1 shows that very high quality images 
can result through the addition of lighting. 
 
6. Future Work 
 
Our next tests will focus on scaling data size to gigavoxels 
and image size to megapixels and on improving image 
quality through lighting and shading. With 4 cores per 
node, BG/P offers the opportunity to experiment with 
multi-threading within an MPI process. This hybrid 
programming model may enable more efficient scaling, 
especially since the four cores share 2 GB of memory.  This 
new level of parallelism can be exploited by modifying the  
rendering algorithm. We also are experimenting with tree-
based compositing as a replacement for direct send. This 
may include binary swap [MPHK94] as a way to balance 
the number of messages with the size of a message and to 
keep more processes busy during the late stages of 
compositing. 

We also plan to study how this research can be extended 
to encompass adaptive mesh refined (AMR) time-varying 
datasets [Ma99, WHH*01]. Varying levels of spatial 
resolution encoded in AMR data provide a compromise 
between the rigidity of completely structured data and the 
randomness of entirely unstructured data.  

Another goal is to collate the performance data into a 
coherent model for predicting future performance. An open 
question is: what input criteria, such as processor speed, 
data size, number of processes, network bandwidth, 
memory bandwidth, and aggregate I/O throughput should 
be included in such a model. The result should be a 
relatively simple-to-use module that can analyze a parallel 

volume rendering problem and suggest an optimal 
configuration and predict its performance. 

One of our long-term goals is to study how a 
supercomputer architecture can be used to support 
interactive rendering. The research so far has not included 
any elements of interactivity and performance data reveals 
that reaching interactive rates is difficult because of the 
tradeoffs between tio, trender, and tcomposite. The next steps 
toward interactive rates may include LOD rendering as well 
as local view interpolation at the display machine(s). The 
ideal configuration may be the supercomputer and the 
graphics machine(s) sharing responsibilities in a client-
server architecture.  
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