
Eurographics Symposium on Parallel Graphics and Visualization (2008)

J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

CUDASA: Compute Unified Device and Systems Architecture

M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl

Visualization Research Center (VISUS), University of Stuttgart

Abstract

We present an extension to the CUDA programming language which extends parallelism to multi-GPU systems

and GPU-cluster environments. Following the existing model, which exposes the internal parallelism of GPUs,

our extended programming language provides a consistent development interface for additional, higher levels of

parallel abstraction from the bus and network interconnects. The newly introduced layers provide the key features

specific to the architecture and programmability of current graphics hardware while the underlying communica-

tion and scheduling mechanisms are completely hidden from the user. All extensions to the original programming

language are handled by a self-contained compiler which is easily embedded into the CUDA compile process. We

evaluate our system using two different sample applications and discuss scaling behavior and performance on

different system architectures.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Languages C.2.4

[Computer-Communication Networks]: Distributed applications

1. Introduction

Each new generation of GPUs provides flexible programma-

bility and computational power which exceeds previous gen-

erations. Nowadays, graphics hardware is capable of ex-

ecuting increasingly costly and complex algorithms for-

merly only practicable with CPUs. Processing non-graphics

tasks on GPUs spurred the development of programming

models which are detached from the traditional rendering

pipeline policy. Various interfaces for high-performance,

data-parallel computations exist, among others NVIDIA’s

CUDA [NVI07b], AMD’s CTM [PSG06], Brook [BFH∗04]

and Sh [MQP02] and their spin-offs PeakStream and Rapid-

Mind. All expose the intrinsic parallelism of GPUs to the

user and provide means to perform general-purpose com-

putations. This research area received increasing attention

lately and the dedicated webpage at www.gpgpu.org

gives an impression of the broad range of applications.

Efficiently programming GPUs imposes specific rules on

the programmer: Algorithms need to be formulated in a way

such that parallel execution is possible. Although this ap-

plies to all parallel languages, from now on we will focus

on CUDA, which serves as a basis for our extended system.

While the pure computational power of contemporary GPUs

exceeds 380 GFlops in peak performance, the bottlenecks

are the limited amount of available memory (1.5GB for

NVIDIA QuadroFX GPUs and 2.0GB for AMD Firestream

9170 stream processors) and memory bandwidth: Challeng-

ing problems with data sets which do not fit into memory

at once require the computation to be split and executed

sequentially or they might introduce a significant commu-

nication overhead stressing the bus bandwidth. Fortunately

the internal scheduling and sequentialization process is hid-

den from the programmer; however, it is necessary to handle

multiple GPUs manually by creating threads for each GPU

and by explicitly taking care of shared data transfer.

Our work addresses higher levels of parallelism and com-

putations with large data sets: Our extended programming

language, CUDASA, behaves similarly to a single-GPU

CUDA system, but is able to distribute computations to mul-

tiple GPUs, attached to the local system or to machines

connected via networks. Data-intensive computations which

would require sequential execution on a single GPU can eas-

ily be parallelized to multiple GPUs and further accelerated

by distributing the work load across cluster nodes. Our uni-

fied approach exploits the intrinsic parallelism of GPUs –

which is also reflected in CUDA and similar languages –

and is thus able to provide a consistent development inter-

face for a great variety of target configurations including in-

homogeneous systems with single or multiple GPUs and bus

or network interconnects.

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

The remainder of this paper is organized as follows. Next,

we give an overview over related work and GPU languages

in particular. In Section 3 we present our system in detail

and introduce the programming model and the compile pro-

cesses. Providing parallelism across buses and networks is

described in Section 4 and 5. Finally we analyze our system

with different synthetic and real-world test cases and demon-

strate that it provides nice scaling behavior.

2. Related Work

As indicated in the previous section, various options ex-

ist for performing general-purpose computations on GPUs

(GPGPU). Several languages and interfaces have been espe-

cially designed for treating the GPU as a stream processor,

and most of them build upon C/C++ and extend it with spe-

cific instructions and data types.

The high-level language programming of GPUs has been

introduced with Sh [MQP02] and C for Graphics [FK03]

and later led to API-specific shader languages such as GLSL

and HLSL. The increasing computational resources and flex-

ibility of GPUs sparked the interest in GPGPU and special-

ized programming environments – besides traditional ren-

dering APIs – have been developed: Brook [BFH∗04] ex-

tends C with simple data-parallel constructs to make use of

the GPU as a streaming coprocessor. Glift [LSK∗06] and

Scan Primitives [SHZO07] focus on convenient data struc-

tures and facilitate the implementation of various algorithms

on GPUs. Scout [MIA∗07] goes one step further and even

provides modules for scientific visualization techniques. The

probably most commonly used high-level GPGPU language

is NVIDIA’s CUDA [NVI07b], which serves as a basis for

our work. It is in line with the aforementioned languages

and extends C/C++ with parallel stream processing con-

cepts. CTM [PSG06] breaks ranks and provides a low-level

assembler access to AMD/ATI GPUs for hand-tuned high-

performance computations.

Basically all of the aforementioned languages can be used

to distribute computations across multiple GPUs, but – and

this is an important motivation for our work – only if this

is explicitly implemented and ”hardwired” in the host appli-

cation. None of them provides language concepts for paral-

lelism on higher levels such as across multiple GPUs or even

across nodes within a network cluster.

In this work, we focus on this higher level parallelism

and extend CUDA to enable multi-GPU and cluster com-

puting with the goal of increased performance. Another use

of parallel computations is to introduce redundancy for reli-

able computations which has been investigated by Sheaffer

et al. [SLS07]. Both directions benefit from ROCKS clusters

and CUDA Roll [NVI07a]: A live boot system which easily

and quickly sets up network clusters with CUDA support.

Languages for stream processing on GPUs profit by expe-

riences from parallel programming with CPUs and network

clusters. This is a mature research area beyond the scope of

this work and we refer the interested reader to Bal et al.’s

comprehensive overview [BST89] and their comparison of

parallel programming paradigms [Bal92].

3. System Overview

In this section we introduce the CUDASA programming en-

vironment and its programming model. Both are tightly cou-

pled to the schematic overview in Fig. 1 and we recommend

referring to it while following the description.

3.1. Programming Environment

The CUDASA programming environment consists of four

abstraction layers as depicted in Fig. 1 from left (top layer)

to right (bottom layer). Each of the three lower levels ad-

dresses one specific kind of parallelism: The lowest utilizes

the highly parallel architecture of a single graphics proces-

sor, while the next higher level builds upon the parallelism

of multiple GPUs within a single system. The third layer

adds support for distributing program execution in cluster

environments and enables parallelism scaling with the num-

ber of participating cluster nodes. Finally, the topmost layer

represents the sequential portion of an application which is-

sues function calls executed exploiting the parallelism of the

underlying abstraction levels. Each layer exposes its func-

tionality to the next higher level via specific user-defined

functions which are declared using the extended set of func-

tion type qualifiers implemented in CUDASA. These func-

tions are called using a consistent interface across all layers

whereas each call includes the specification of an execution

environment, i.e. the grid sizes, of the next lower level.

GPU Layer: The lowest layer (see Fig. 1, right) simply rep-

resents the unmodified CUDA interface for programming

GPUs. Existing CUDA code does not require any modifi-

cations to be used with our system – quite the contrary, it

serves as a building block for higher levels of parallelism.

Bus Layer: The second layer (Fig. 1) abstracts from multi-

ple GPUs within a single system, for example SLI, Cross-

fire, Quad-SLI configurations, or single-box setups based

on the QuadroPlex platform. A CPU thread together with a

GPU forms a basic execution unit (BEU), called host on the

bus layer. The programmability of these BEUs is exposed to

the programmer through task functions, which are the pen-

dants to kernel functions of the GPU layer. We follow the

execution model of CUDA and define that a single call to

a task consists of a grid of distinctive blocks. A scheduler

distributes the pending workloads to participating hosts and

also handles inhomogeneous system configurations, e.g. sys-

tems with two different GPUs or different number of phys-

ical PCIe lanes to the GPUs. The scheduling process works

transparently to the user and the desirable consequence is

that the application design is completely independent of the

c© The Eurographics Association 2008.

50

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

Sequence

Job 1

Job 2

Node (cluster PC)

Jobgrid 1

Jobgrid 2

Block

(1,0,0)

Block

(0,0,0)

Host (CPU + GPU)

Taskgrid 1

Block

(1,0,0)

Block

(0,0,0)

Block

(1,1,0)

Block

(0,1,0)

Device (GPU)

Block

(1,0)

Block

(0,0)

Block

(1,1)

Block

(0,1)

Kernelgrid 1

Network Layer Bus Layer

Block (1,0,0)

Kernel 1

Kernel 2

Task 1

Task 2

Block (1,1)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

GPU LayerApplication Layer

Block (1,0,0)

Figure 1: Schematic overview of all four abstraction layers of the CUDASA programming environment. The topmost layer is

placed left, with decreasing level of abstraction from left to right.

underlying hardware. For example, a once compiled CUD-

ASA program is able to fully exploit the power of a QuadSLI

system by executing four kernel blocks in parallel, while it

processes blocks sequentially on a single-GPU system.

While the main focus of CUDASA is to provide easy ac-

cess to multiple GPUs, the bus layer is also able to delegate

tasks to CPU cores. This enables us to use CPU cores (in

parallel if available) for tasks of a CUDASA program which

cannot be executed on GPUs or for which the user wants the

execution to happen on CPUs. Tasks, both with and with-

out GPU support, can be used together in arbitrary combina-

tions. We can also use CPU cores to emulate a system with

multiple GPUs using the built-in device emulation provided

by CUDA. The user specifies the operation mode (CPU only

or CPU+GPU) of each task at compile time and optionally

defines a maximum number of parallel devices to be used.

Network Layer: The third layer adds support for clusters of

multiple interconnected computers. Its design is very sim-

ilar to the underlying bus layer: A single computer, called

node, acts as the BEU of the network layer and all nodes

process blocks of the job grid (issued through a job function)

in parallel. Again, the scheduling mechanism takes care of

distributing the workload, in both homogeneous and inho-

mogeneous environments.

The difference to all underlying layers is that the network

layer has to provide its own implementation of a distributed

shared memory model in software. The distributed memory

provides means to transfer data between blocks of a jobgrid

and successive jobs. It can be considered as the pendant to

the global memory in CUDA, which is used to transfer data

between blocks and kernels. However, in contrast to GPUs

this memory does not exist as an ”onboard component”, but

each node makes a part of its system memory available to

the distributed shared memory pool.

Application Layer: The topmost layer describes a sequen-

tial process which issues calls to job functions. It also takes

care of the (de-)allocation of distributed shared memory

which holds input and output data and is processed by

the nodes. The distributed shared memory enables the pro-

cessing of computations which exceed the available system

memory of a single node.

3.2. Programming Model

In this section, we describe the three main components of

our extensions to the CUDA programming environment: A

runtime library, a minimal set of extensions to the CUDA

language itself, and the self-contained CUDASA compiler.

Runtime Library: The runtime library provides the ba-

sic functionality of job and task scheduling, distributed

shared memory management, and common interface func-

tions, such as atomic functions and synchronization mech-

anisms for all new abstraction layers. We implemented two

versions, one with network layer support for cluster environ-

ments and one without, for single node execution.

Language Extensions: Our extensions to the original

CUDA language solely introduce additional programmabil-

ity for the higher levels of parallelism while the syntax and

semantics of the GPU layer remain unchanged. Hence ex-

isting CUDA code does not require any manual modifica-

tions and can be used with CUDASA directly. For each

new layer (bus, network, and application layer) CUDASA

defines a set of function type qualifiers to specify a func-

tion’s target BEU and its corresponding scope visibility. This

c© The Eurographics Association 2008.

51

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

CUDASA

code

CUDASA

compiler

CUDA code

multi-threading

application code

MPI network

communication

CUDA

compiler

GPU code

CPU code

nvopencc

C/C++

compiler

application

CUDASA

runtime library

Figure 2: The CUDASA compiler processes a program and outputs standard CUDA code but also generates multi-threading

and network code providing higher levels of parallelism. The CUDA compiler separates GPU and CPU code and hands it over

to the corresponding compilers (nvopencc and any standard C/C++ compiler). The generated application executable, together

with the CUDASA runtime library, is able to distribute workload across clusters and GPUs.

is in line with the existing CUDA qualifiers __device__

and __global__ for functions executed on a graphics de-

vice and __host__ functions acting as the front-end for

CUDA device functions. Table 1 lists the CUDA and CU-

DASA keywords. As indicated there, each layer introduces

specific built-in variables holding block indices and dimen-

sions (Table 1, right column), each accessible to functions of

the corresponding and the underlying layers.

Finally, CUDASA needs a way to link the abstraction lay-

ers and define function calls to the respective next-lower

layer. Again, we follow CUDA and generalize its concepts to

higher levels of abstraction: A CUDA function call requires

the host level to specify an execution configuration which

includes the requested grid and block sizes for the parallel

execution on the GPU. In an analogous manner, functions

of each layer are allowed to call the exposed functions (see

Table 1) of the next underlying layer. In order to maintain

a consistent interface, we use the CUDA-specific parenthe-

sized parameter list (denoted with <<< ... >>>) for the spec-

ification of the execution configuration.

Obviously, we limited our extensions to the CUDA lan-

guage to a minimal set of new keywords. However, they

provide powerful control over all levels of additional paral-

lelism and enable the tackling of much more complex com-

putations while keeping the additional programming and

learning overhead for the user very low. Specifically, pro-

gramming CUDASA job and task functions is very similar

to CUDA kernel functions with respect to distributing the

workload. All communication-related tasks are completely

hidden from the user and are covered by the CUDASA run-

time library and the compiler described next.

CUDASA Compiler: The last component of the CUD-

ASA programming environment is the self-contained com-

piler which processes CUDASA programs and outputs code

which is then compiled with the standard CUDA tools

(Fig. 2). Although regular expressions can handle the new

set of keywords, we cannot use them for the translation

of CUDASA code to the underlying parallelization mech-

anisms. This requires detailed knowledge of variables types

and function scopes and can only be obtained from a full

grammatical analysis. The code translation process is de-

scribed in detail in section 4 for the bus layer and in section 5

for the network layer.

CUDA itself exposes the C subset of C++ to the program-

mer, while some language-specific elements rely on C++

functionality, e.g. templated texture classes. CUDASA needs

to act as a pre-compiler to CUDA including the ability to

parse the header files of CUDA. Consequently, the CUD-

ASA compiler needs to cope with the full C++ standard

to translate the new extensions into plain CUDA code. We

opted for building our compiler using Elkhound [MN04], a

powerful parser generator capable of handling C++ gram-

mar, and Elsa, a C/C++ parser based on Elkhound. We ex-

tended the compiler to support all CUDA-specific extensions

to the C language, as well as our extensions described in the

previous paragraphs. The compiler takes CUDASA code as

input and outputs code which is strictly based on CUDA syn-

tax without any additional extensions. This means that the

additional functionality exposed by CUDASA is translated

into plain C code which refers to functions of the CUDASA

runtime library.

4. Bus Parallelism

The goal of bus parallelism is to scale processing power and

the total available memory with the number of GPUs within

a single system. For this, a task needs to be executed in paral-

lel on multiple graphics devices, i.e. blocks of a taskgrid are

assigned to different GPUs. CUDA demands a one to one

ratio of processes or CPU threads to GPUs by design. Thus,

each BEU of the bus layer has to be executed as a detached

thread. Practically speaking, a host corresponds to a single

CPU thread with a specific GPU device assigned to it.

Calling a task triggers the execution of the host threads

and initializes the scheduling of the taskgrid blocks. A queue

of all blocks waiting for execution is held in system mem-

ory. Idle host threads process pending blocks until the queue

is empty, i.e. the execution of the complete taskgrid is fin-

ished. Mutex locking ensures a synchronized access to the

block queue, provides the necessary thread-safety, and also

avoids a repeated processing of blocks on multiple BEUs.

The block-threads are organized using a thread pool in order

to keep the overhead for calling a task at a minimum. This

c© The Eurographics Association 2008.

52

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

Abstraction Exposed Internal Built-ins

application layer __sequence__

network layer __job__ __node__ jobIdx, jobDim

bus layer __task__ __host__ taskIdx, taskDim

GPU layer __global__ __device__ gridDim, blockIdx, blockDim, threadIdx

Table 1: The extended set of function type qualifiers of CUDASA, new keywords are printed bold-face. Internal functions are

only callable from functions within the same layer, while exposed functions are accessible from the next higher abstraction

layer. Built-ins are automatically propagated to all underlying layers.

is particularly important to avoid the costly initialization of

CUDA for every function call.

The polling mechanism achieves load balancing on a

block level across hosts as the actual execution time for each

block implicitly controls how many of them are assigned to

each BEU. This does not guarantee deterministic block as-

signment (see Section 6 for a discussion), but it does guar-

antee parallel execution, even for inhomogeneous setups, as

long as enough pending blocks are left in the queue.

The automatic translation of code using the CUDASA in-

terface into code which can be executed in parallel by mul-

tiple CPU threads handles the parameter passing, built-in

variables, and the invocation of the task scheduler. Param-

eters and built-ins are grouped into a combined structure to

meet the requirements of the underlying POSIX threads. The

CUDASA compiler builds wrapper functions for each user-

defined task which perform the following steps:

• Copy the function parameters into the wrapper structure.

• Populate the queue of the scheduler with all blocks of the

taskgrid.

• Determine the built-ins for each block.

• Wake up BEU worker threads from the pool.

• Wait for all blocks to be processed (issuing a taskgrid is a

blocking call).

Additionally, the signature of a task is modified internally

to accept the wrapper structure. The parameters as well as

built-ins are then reconstructed from the data structure.

The following simplified example demonstrates the code

transformation of a function definition: The compiler trans-

lates the definition of a task, written in CUDASA code

__task__ void tfunc(int i, float *f) { ... }

into the following internal structure and modified function:

typedef struct {

int i; float *f; // user-defined

dim3 taskIdx, taskDim; // built-ins

} wrapper_struct_tfunc;

void tfunc(wrapper_stuct_tfunc *param) {

int i = param->i;

float *f = param->f;

dim3 taskIdx = param->taskIdx;

dim3 taskDim = param->taskDim;

{ ... }

}

Please note that the semantics of pointer-typed parameters is

consistent with the CUDA parameter handling and the valid-

ity of pointer addresses is ensured. The result of the transfor-

mation is plain CUDA code and can be passed to the stan-

dard CUDA compiler.

CUDASA also adds support for atomic functions on the

bus parallelism level to enable thread-safe communication

between multiple task invocations. The implementation of

those atomic functions is straightforward using the lock in-

struction in assembler code.

5. Network Parallelism

The network layer is very similar to the bus layer, not only

conceptually, but also regarding its implementation. Jobs are

the pendants of the tasks on the bus layer. The difference is

that jobgrids are not executed by operating system threads,

but on different cluster nodes. The parallelization on the

network level is implemented using MPI2. Invocations of

a job (issued by the application running on the head node)

are translated by the CUDASA compiler into a broadcast

instructing all nodes to run a job. The transfer of function

parameters is realized – analogously to the bus layer – by

packing them together with the built-in variables, e.g. the

jobIdx, into a structure and handing it over to the network.

In order to listen for function calls, all nodes except for the

head node run an event loop waiting for broadcast messages.

The corresponding code is automatically generated by the

CUDASA compiler and includes the parameter serialization

for all jobs. Besides the invocation of jobs, the event loop

also handles collective communication operations required

for the distributed memory manager of CUDASA described

next.

5.1. Distributed Shared Memory

The network layer of CUDASA allows for computations

which do not fit into the main memory of a single node. By

design the head node solely controls the job distribution and

does not participate in any computations. Please note that the

head node of course can run as a thread on any node within

the cluster. Each other cluster node makes a part of its mem-

ory available to the distributed shared memory pool, which

is exposed as a continuous virtual address range to the ap-

plication. Allocations in shared memory are split into evenly

sized segments and one is stored on each node.

c© The Eurographics Association 2008.

53

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

Access to distributed shared memory is not opaque via

variables and a paging mechanism: The programmer explic-

itly requests specific memory ranges to be cloned to a node

as it is the case with the Global Arrays paradigm [NHL94].

CUDASA provides memcpy-style functions for accessing

shared memory from the head node and special mapping

functions for all other nodes. The mapping functions also

handle the write-back when the mapping is closed.

CUDASA’s shared memory manager is implemented us-

ing MPI Remote Memory Access (RMA). It distinguishes

between two classes of operations: Collective and single-

sided operations. Allocation and deallocation, which may

only be invoked from the head node, are collective opera-

tions and therefore must be executed by all nodes at the same

time. For collective operations the head node posts a corre-

sponding request into the event loop of all nodes. This is

necessary as we need to ensure a consistent view of alloca-

tions across all nodes and this reflects in MPI as well, as all

nodes accessing a memory window need to be involved in

the (de-)allocation process.

Access to existing allocations is fully single-sided on

both, the head and the compute nodes. With the coherent

view on the global allocation state all nodes can access, lock,

and read from/write to distributed shared memory (through

MPI_Get and MPI_Put). We group these operations for

each memory segment (remember, one segment resides in

the local memory of one node). Thus, an access to mem-

ory ranges spanning more than one segment is not atomic.

This could be achieved with a two-phase locking protocol at

the expense of greatly slowing down the accesses. For the

sake of speed, CUDA does not make any guarantees regard-

ing concurrent accesses to global memory and we decided to

adopt this for CUDASA’s shared memory manager as well.

5.2. Atomics

CUDASA also extends the concept of atomic functions to

distributed shared memory. They are implemented using the

memory window locking mechanism of MPI2. Several pre-

conditions for atomic functions must be met to avoid a two-

phase locking protocol for multiple segments: Firstly, atomic

functions are only allowed for 32-bit words, which must be

aligned on a word boundary within the allocation. This is a

reasonable constraint which normally also applies to atomic

operations in main memory. And secondly, each aligned

word must never span across segment boundaries. This pre-

condition can be easily enforced by CUDASA using a seg-

ment size that matches a multiple of a word length.

For most atomic functions we can limit the commu-

nication cost to a single MPI_Accumulate call (with

the corresponding operation code) – in the worst case an

MPI_Get/MPI_Put pair within an exposure epoch suf-

fices.

6. Discussion and Implementation Details

In this section we want to point out interesting aspects which

deserve discussion. In particular the newly-introduced lay-

ers throw up new questions on synchronization, distributed

shared memory, and the compile process.

CUDA offers a synchronization of threads of a single

block, but synchronization between blocks is not possible.

This is due to the fact that only a limited number of blocks

can be executed in parallel: Block synchronization would

require the suspension of blocks and the storage of their

complete state. Only in doing so can all blocks be executed

until they reach the synchronization point. Due to limited

on-board memory this would imply a high memory trans-

fer overhead and is thus simply impracticable. Basically the

same holds for higher levels of parallelism: In principle,

it would be easy to provide a synchronization mechanism

for blocks within a taskgrid (and analogously for jobgrids).

However, storing the state of a single block, e.g. after the ex-

ecution of a kernel, means that potentially the total memory

of a GPU needs to be transferred to the host and back to the

GPU.

The newly-introduced network layer shares the workload

transparently across nodes of clusters. For this, our imple-

mentation of the distributed shared memory functionality

partitions the memory pool evenly across all nodes of a clus-

ter, i.e. each node makes the same amount of memory avail-

able to the memory pool. The order of executed blocks of a

jobgrid is non-deterministic as idle nodes simply query for

the next pending block. Preferably the query mechanism as-

signs a block which (mainly) requires a portion of the dis-

tributed shared memory already present within the node’s

system memory and thus minimizes costly memory trans-

fers. In order to enforce such locality-aware assignments, we

would like to implement a callback mechanism where blocks

use the execution configuration to indicate which portion of

distributed memory they intend to access. This concept is not

anchored in CUDASA and remains for future work.

Scheduling on the network layer as described does not

scale optimally for very large cluster environments as the

job queue is solely managed by the head node. A large num-

ber of idle nodes asking for new jobs simultaneously may

congest the network communication with the job queue and

hamper parallel jobgrid execution. Hierarchical load balanc-

ing within a network or the assignment of multiple jobs per

query bypasses this bottleneck. A head node can reasonably

estimate the number of blocks to be processed based on the

number of compute nodes and the size of the grid. However,

this approach has negative impact on the effectiveness of the

load balancing.

Finally, it is worth to note that the current CUDA compiler

does not support exception handling. Consequently, CUD-

ASA requires an MPI implementation that does not use this

language concept. In our work, MVAPICH2 [HSJ
∗06] is

used with the necessary flags set accordingly.

c© The Eurographics Association 2008.

54

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

7. Results

For bus parallelism we evaluated scaling behavior of CUD-

ASA applications on up to four GPUs in a single machine for

a variety of problem sizes. For network parallelism we show

practicability of our approach and further discuss commu-

nication overhead issues. All measurements were performed

using CUDA version 1.1 for Linux (display driver version

169.04).

7.1. Bus Parallelism

In order to compare performance and efficiency of CUDASA

generated code to other parallel execution environments, i.e.

multiple CPU cores and the intrinsic parallelism of a sin-

gle GPU, we use the single precision general matrix multi-

ply (SGEMM) subroutine of the level 3 BLAS library stan-

dard. For each processor the vendor specific performance-

optimized implementation was used to guarantee optimal us-

age of each hardware. Namely, we used Intel’s Math Kernel

Library 10.0 (MKL), AMD Core Math Library 4.0 (ACML),

and NVIDIA’s CUBLAS Library 1.1.

Our CUDASA implementation of SGEMM uses

CUBLAS as building block for the task level. The workload

distribution on the upper levels employs the same block

building approach as used in NVIDIA’s matrix multipli-

cation example [NVI07b] with increasing sub-problem

sizes.

Figure 3 summarizes the results for SGEMM bus level

parallelization (colored lines) compared with the above-

mentioned CPU implementations (gray lines). Our mea-

surements demonstrate excellent scaling behavior for both

test cases, two 8800GTX Ultra (blue lines) and up to four

8800GTs (red lines) cards, especially for large problem

sizes. In the former setup, we achieve a speedup of 1.95

when comparing pure CUBLAS running on one GPU with

our CUDASA implementation using both cards. In the lat-

ter case, distributing the work over all four cards results in

a speedup of 3.60. Please note that a better scaling with the

second setup is hindered by the physical PCIe lanes of the

mainboard, which offers a 16/4/4/4 layout only.

As a second test case, we use CUDASA for implement-

ing a part of Dachsbacher et al.’s [DSDD07] recently pub-

lished method for interactive global illumination on GPUs.

They use a finite-element radiosity method together with a

reformulation of the rendering equation [Kaj86] which ex-

presses light transport as a global energy transfer and a local

operation that convolves incoming radiance with the surface

BRDF. We distributed the computation of the ”local pass”,

which is the most demanding operation of the original al-

gorithm, by populating the taskgrid with multiple blocks of

surface elements. Table 2 shows the computation times in

milliseconds for two typical scene sizes on our four-GPU

system.

0

50

100

150

200

250

300

350

400

 0 5000 10000 15000 20000 25000

G
F

lo
p

s

AMD Opteron 270, 2x2 cores
Intel Q6600, 4 cores

NVIDIA Quadro FX5600
NVIDIA 8800GT

NVIDIA 8800GTX Ultra
2x NVIDIA 8800GTX Ultra

2x NVIDIA 8800GT
3x NVIDIA 8800GT
4x NVIDIA 8800GT

Figure 3: This figure illustrates the SGEMM scaling behav-

ior with CUDASA for various system configurations on the

bus layer. With SGEMM we achieve nearly optimal scaling

with the number of GPUs, the slight performance fluctua-

tions in multi-GPU configurations stem from the imperfect

load balancing (see Section 6).

7.2. Network Parallelism

As the additional network layer adds a high communication

overhead, the actual type of interconnect is an important fac-

tor. However, in the context of graphics clusters, which are

the target platform of CUDASA, high-speed networks like

InfiniBand or Myri-10G are commonly used. Running our

tests for detailed timings on such systems remains for future

work.

In the meantime, the proof-of-concept for the network

layer is given by running SGEMM on two machines each

equipped with two GPUs connected via a Gigabit Ether-

net only. Compared to high-performance interconnects, this

leads to an additional slowdown by approximately a factor

of twenty. Therefore, the communication costs are expected

to have major impact on the total system performance. We

achieved 192 GFlops for 250002 matrix multiplication on all

four GPUs. Detailed timings disclose that a job spends an

average of only 1.6 s on computations, but 4.9 s on reading

data from and writing to distributed shared memory.

We simulated an ”optimal network” of four single-GPU

nodes by using the full layer stack, but running all com-

pute instances on a four-GPU machine (4×8800GT). In this

configuration, we achieve 236 GFlops for a 102402 matrix.

When parallelizing this computation without the network

layer, we get a performance of 314 GFlops on the same ma-

chine. By this we can estimate the overhead introduced by

the network parallelization layer. It is mostly caused by the

shared memory accesses, which take 1.5 times longer than

the actual computation for this problem size – reading and

writing distributed shared memory introduces an additional

copy operation per job, which in turn also includes inter-

process communication.

c© The Eurographics Association 2008.

55

M. Strengert et al. / CUDASA: Compute Unified Device and Systems Architecture

number of 1 GPU 2 GPUs 4 GPUs

scene elements

32768 526 263 129

131072 1030 520 265

Table 2: This table illustrates the scaling behavior of the lo-

cal pass, i.e. a convolution of a uniform directional radiance

distribution (128 samples) with a glossy BRDF, as described

in [DSDD07]. Timings are given in milliseconds for a single-

node multi-GPU system with four NVIDIA 8800GTs.

8. Conclusions and Future Work

We introduced CUDASA, an extension to CUDA, to achieve

higher levels of parallelism. Only few additional language

elements are required thus keeping the programming and

learning overhead for the user very low. We showed that

this allows for tackling computations which are too large

for single-GPU CUDA-programs and demonstrate that our

system shows the expected, and desirable, scaling behavior.

For future work we want to improve the load balancing on

the network layer and implement a block assignment strat-

egy which is aware of data-locality on nodes. Having the

information of memory usage also available per block of

a kernelgrid, would allow CUSASA to automatically uti-

lize asynchronous data transfers to the GPUs and speed up

the distributed memory accesses. Especially for large tar-

get sizes we expect further major performance benefits us-

ing this newly introduced feature of CUDA 1.1, as kernel

block execution and data transfer can be parallelized. Fur-

thermore, we plan to test the CUDASA environment on clus-

ters with high-speed network interconnects, such as Infini-

Band or Myri-10G. We also intend to make CUDASA pub-

licly available and provide it for download on our webpage.

References

[Bal92] BAL H. E.: A Comparative Study of Five Parallel

Programming Languages. Future Gener. Comput. Syst. 8,

1-3 (1992), 121–135.

[BFH∗04] BUCK I., FOLEY T., HORN D., SUGERMAN

J., FATAHALIAN K., HOUSTON M., HANRAHAN P.:

Brook for GPUs: stream computing on graphics hardware.

ACM Trans. Graph. 23, 3 (2004), 777–786.

[BST89] BAL H. E., STEINER J. G., TANENBAUM A. S.:

Programming Languages for Distributed Computing Sys-

tems. ACM Comput. Surv. 21, 3 (1989), 261–322.

[DSDD07] DACHSBACHER C., STAMMINGER M.,

DRETTAKIS G., DURAND F.: Implicit Visibility and

Antiradiance for Interactive Global Illumination. ACM

Transactions on Graphics (SIGGRAPH Conference

Proceedings) 26, 3 (August 2007).

[FK03] FERNANDO R., KILGARD M. J.: The Cg Tuto-

rial: The Definitive Guide to Programmable Real-Time

Graphics. Addison-Wesley Publishing Co., 2003.

[HSJ∗06] HUANG W., SANTHANARAMAN G., JIN

H. W., GAO Q., X D. K. PANDA D. K.: Design of High

Performance MVAPICH2: MPI2 over InfiniBand. ccgrid

00 (2006), 43–48.

[Kaj86] KAJIYA J. T.: The Rendering Equation. In SIG-

GRAPH ’86: Proceedings of the 13th annual conference

on Computer graphics and interactive techniques (1986),

pp. 143–150.

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STR-

ZODKA R., OWENS J. D.: Glift: Generic, efficient,

random-access GPU data structures. ACM Trans. Graph.

25, 1 (2006), 60–99.

[MIA∗07] MCCORMICK P., INMAN J., AHRENS J.,

MOHD-YUSOF J., ROTH G., CUMMINS S.: Scout: A

Data-Parallel Programming Language for Graphics Pro-

cessors. Parallel Comput. 33, 10-11 (2007), 648–662.

[MN04] MCPEAK S., NECULA G. C.: Elkhound: A Fast,

Practical GLR Parser Generator. In Proceedings of the

Compiler Construction (CC’04) (2004), pp. 73–88.

[MQP02] MCCOOL M. D., QIN Z., POPA T. S.: Shader

Metaprogramming. In HWWS ’02: Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware (2002), pp. 57–68.

[NHL94] NIEPLOCHA J., HARRISON R. J., LITTLE-

FIELD R. J.: Global Arrays: A Portable Shared-

Memory Programming Model for Distributed Memory

Computers. In Supercomputing ’94: Proceedings of the

1994 ACM/IEEE conference on Supercomputing (1994),

pp. 340–349.

[NVI07a] NVIDIA: CUDA for Rocks Cluster

User Guide. http://developer.nvidia.com/ objec-

t/cuda_1_0.html, 2007.

[NVI07b] NVIDIA: CUDA Programming Guide.

http://developer.nvidia.com/object/cuda.html, 2007.

[PSG06] PEERCY M., SEGAL M., GERSTMANN D.: A

Performance-Oriented Data Parallel Virtual Machine for

GPUs. In SIGGRAPH ’06: ACM SIGGRAPH 2006

Sketches (2006), p. 184.

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y.,

OWENS J. D.: Scan primitives for GPU computing. In

GH ’07: Proceedings of the 22nd ACM SIGGRAPH/EU-

ROGRAPHICS symposium on Graphics hardware (2007),

pp. 97–106.

[SLS07] SHEAFFER J. W., LUEBKE D. P., SKADRON

K.: A Hardware Redundancy and Recovery Mecha-

nism for Reliable Scientific Computation on Graphics

Processors. In GH ’07: Proceedings of the 22nd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics

hardware (2007), pp. 55–64.

c© The Eurographics Association 2008.

56

