Eurographics Symposium on Parallel Graphics and Visualization (2008)

J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

Acceleration of Opacity Correction Mechanisms for
Over-sampled Volume Ray Casting

Jong Kwan Lee and Timothy S. Newman

Department of Computer Science, University of Alabama in Huntsville, U.S.A.

Abstract

Techniques for accelerated opacity correction for over-sampled volume ray casting on commodity hardware are
described. The techniques exploit processing capabilities of programmable GPUs and cluster computers. The
GPU-based technique follows a fine-grained parallel approach that exposes to the GPU the inherent parallelism
in the opacity correction process. The cluster computation techniques follow less finely-granular data parallel
approaches that allow exploitation of computational resources with minimal inter-CPU communication. The per-
formance improvements offered by the accelerated approaches over opacity correction on a single CPU are also

exhibited for real volumetric datasets.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Parallel processing, 1.3.1

[Computer Graphics]: Graphics processors

1. Introduction and Background

Ray-casting methods to visualize volumetric data are used
in many application areas such as engineering, medicine,
and geosciences. Volume ray casting (VRC) [Lev88, GM96,
WMG98] methods can produce high quality renderings that
aid in discovery of valuable information. For example, they
can allow discovery of internal defects in manufactured parts
and anatomical structure locations in humans. VRC creates a
rendering by casting rays from the image plane into the vol-
ume of data and integrating lighting effects along the rays.
Typically, VRC uses discrete sample composition, for exam-
ple, front-to-back (FTB) composition, to approximate con-
tinuous integration. The FTB composition, which we use
here, can be described for one ray as:

m

|F:2<|ix;]:[i(1aj)>, )

i=1

where | £ is the final composited intensity associated with the
ray, mis the sample count along the ray, I; is theit sample’s
intensity, and o and (1—o.j) are the jth sample’s opacity and
transparency, respectively. The light intensity, I;, at a sample
is often taken as I; = C; x oy, where C; is the sample’s color.
In Eqgn. 1, sample indices increase with distance from the
viewer (e.g., I1 is the intensity of the closest sample to the
viewer along the ray).

(© The Eurographics Association 2008.

An advantage of a high sampling rate (i.e., sampling at
less than unit distance between samples) in VRC is that it can
produce results more similar to continuous ray integration.
In particular, certain artifacts can be avoided or reduced. For
example, a high sampling rate can be used to avoid ringing
(i.e., aliasing) artifacts [RGW*03].

1.1. Opacity Correction for Over-sampled VRC

However, compositing more than one sample per cell in
VRC can produce another sort of rendering artifact—over-
composition of opacities. Over-composition produces ren-
derings that are overly-influenced by certain cells in the
dataset. Correction is possible, however, using opacity cor-
rection mechanisms within VRC. Fig. 1 illustrates an over-
composition problem for a dataset that contains a bar-shaped
object inside a sphere. In Fig. 1 (a) and (b), 5 times over-
sampled VRC renderings without and with opacity correc-
tion, respectively, are shown. Some parts of the bar-shaped
object inside the sphere are not visible in the rendering with-
out opacity correction (that object is more apparent in the
rendering that uses opacity correction). The rendering with-
out correction in Fig. 1 (a) suffers from the over-composition
of opacities; along most rays, the transparency reaches zero
before samples from the region containing the bar-shaped
object are taken.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org

J. K. Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms

Figure 1: Rendering of same scene: (a) without opacity cor-
rection and (b) with opacity correction

Two classes of opacity correction mechanisms are known.
Both are independent of the interpolation-classification or-
der. One follows from a data homogeneity assumption; it
is provably correct if there is homogeneity. It was first de-
scribed by Lacroute [Lac95] for shear-warp factorization.
A variant (but equivalent) formulation for it was shown by
Lichtenbelt et al. [LCN98]. The homogeneity the formula-
tion assumes is on a cell basis; it assumes all samples within
a cell have the same opacity (and color) values. The formu-
lation is:

o =1-Vi—a, @

where N is the over-sampling rate, o is the original opac-
ity, and o is the corrected opacity. In this paper, the
homogeneity-assuming correction mechanism will be de-
noted as classic opacity correction.

The second class of opacity correction does not rest on
the assumption of data homogeneity within cells. A mecha-
nism of this type is our Correct-to-First (CTF) opacity cor-
rection [LNO7]. The CTF was aimed at a scenario where the
first sample per cell is at the face of the cell. Its basis is unit-
sampling that takes samples at cell faces.

The CTF opacity correction within a cell follows from
Eqgn. 3, which expresses that the corrected N-times over-
sampling has the same opacity as unit-sampling.

N
0 <H Otk) pN+
k=1

N N

D> | TTow | p N+
=1\ k=1
#u

(3)
N_1 1 N N 1
(—)N- H O p+
=1 tN_1= k=1
tn—2+1 \KAt,--

(_1)N (241 po = 07

where oy is the ki opacity within a cell, p is the factor that
corrects opacity for the cell, and N > 2. CTF opacity correc-

tion first solves Eqn. 3 for the opacity correction factor, p,
for a given over-sampling rate. It then uses p to re-scale all
opacities within each cell (e.g., o, = p o). To avoid the dif-
ficulty of evaluating Eqn. 3 when the sampling rate is high
(i.e., to avoid solving high-order polynomials), the approach
approximates the high-order polynomials by fitting second
degree polynomials. These can be straightforwardly fit (i.e.,
using the quadratic formula, A2p+ Bp+C =0). The CTF
formulation can likely be extended to higher degree polyno-
mial approximations (which might improve its accuracy).

For all opacity corrections, using either direct computa-
tion of the correction factor or a lookup table scheme (in-
dexed by opacity) is possible. However, using a table may
trade off accuracy for speed due to the discretization im-
posed by the table. In this paper, direct computation is used.

Use of either class of opacity correction has been reported
to yield roughly comparable quality, although CTF is appar-
ently better in situations where the first sample value is very
small [LNO7]. The classic correction has also been reported
to run slower than CTF on a standard CPU.

In this paper, two classes of techniques for efficient re-
alizations of the known opacity correction mechanisms in
over-sampled volume ray casting using commodity hard-
ware are introduced. The first class enables exploiting a
programmable graphics processing unit (GPU). The second
class enables exploiting cluster computing for environments
lacking programmable GPUs. We are unaware of any prior
reports of parallelized opacity correction.

The paper is organized as follows. In Section 2, related
work is discussed. The acceleration techniques introduced
here are described in Section 3. Experimental results are
shown in Section 4. Section 5 concludes the paper.

2. Related Work

The classic correction mechanism has been used or dis-
cussed previously in some reports (e.g., [MHB*00, Pfi05]).
A variation on the classic mechanism that corrects final color
(i.e., instead of opacity) has also been developed by Schulze
et al. [SKLEO3] for use in under-sampled VRC.

Many techniques for achieving high performance in di-
rect volume rendering have been reported, including tech-
niques aimed at exploiting custom hardware [RPSC99] and
desktop streaming media capabilities (e.g., [Kni00]). Multi-
processing techniques for volume rendering have also been
investigated (e.g., [GM96]). Early work in parallel vol-
ume rendering has previously been surveyed by Witten-
brink [Wit98]. Some of the more recent works in paral-
lel volume rendering include methods based on perspective
shear-warp factorization on cluster computers [SL02] and
based on combining ray-casting and object-order process-
ing to allow very large datasets to be efficiently processed
on supercomputers [CDMO6].

(© The Eurographics Association 2008.



J.K.Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms 19

Computation using programmable GPUs has been uti-
lized in graphics as well as in an increasing number of more
general-purpose applications. Some recent applications of
GPU-based techniques for volume visualization have also
been reported. For instance, some fast volume ray-casting
techniques that can skip over empty spaces have been re-
ported (e.g., [EK106, KEIO7, KSSE05, KW03]). Two of these
( [EKI06] and [KEIQ7]) also feature ways to efficiently pro-
cess regions of homogeneity. Another ( [KSSE05]) includes
over-sampling in high gradient regions to reduce aliasing.
One ( [KWO03]) includes a mechanism for early ray ter-
mination. In addition, a technique for efficient tetrahedral
grid data visualization using GPU-based barycentric coor-
dinate system sampling has been presented [GWO06]. Some
works that utilize clusters of GPUs for very fast volume ren-
dering have also been presented (e.g., [CMCL06, MSEQ6,
SMW*04]). Castanié et al. [CMCLO06] have described a sys-
tem that exploits distributed shared memory using a clus-
ter of GPUs for interactive viewing of volume renderings of
very large datasets. Weiskopf [Wei06] has well-summarized
recent work in GPU-based visualization.

To our knowledge, high performance opacity-corrected
over-sampled VRC has not been reported previously.

3. Accelerated Opacity Correction

The parallel opacity correction techniques introduced here
enable exploitation of parallelism (1) on programmable
GPUs and (2) on cluster computer systems lacking pro-
grammable GPUs. Since VRC does not require cast rays to
share intermediate computation results produced during vol-
ume traversal, it naturally maps well to data parallel strate-
gies. The techniques described here utilize data parallelism.

Our work is built on shear-image order volume ray cast-
ing [WBLSO03] for rectilinear volumetric datasets. Shear-
image order VRC provides a high image quality that is
equivalent to the full image order VRC, but it provides this
at a lower computational cost. Also, its memory access has a
spatial coherence that is similar to the shear-warp factoriza-
tion [Lac95]. In shear-image order VRC with unit-sampling,
samples are taken only on “faces” of the cells that make up
the data lattice (e.g., if ray direction is nearly parallel to the
z-axis, samples will be takenatz=0,z=1,z=2, ----).

GPU

\g@e\

N -
Composited
Intensity

Texture

" Composited
Oversampl
er "9 Transparenc

Opacity Correction Texture

[ VRC Composition

Figure 2: lllustration of GPU-based opacity-corrected VRC

(© The Eurographics Association 2008.

Our techniques include early ray termination and zero-cell
skipping features. To our knowledge, these features were
not part of the original reports of opacity correction (e.g.,
in [LCN98] or [LNO7]). Also, dependancy analysis followed
by term rearrangement and term reductions are used in the
CTF’s quadratic fitting of the correction factors for both
GPU- and cluster-based techniques so that the performance
is not inhibited by the dependency or redundancy.

3.1. Programmable GPU-based Opacity Correction

Standard volume ray casting on a CPU typically involves
interpolating data values at samples that do not fall exactly
on dataset elements. Often, the interpolation is done by lin-
ear (or trilinear) interpolation. One computational advantage
of shear-warp/image order style VRC over standard VRC
is that its linear-class interpolations can be computed more
quickly due to the known patterns of sample positions.

Using shear-image order VRC, the process of travers-
ing rays through the volume can also be done straightfor-
wardly in a slice-by-slice way. (Here, each “slice” is a cross-
sectional plane of the data lattice.) Slice-by-slice process-
ing is advantageous for the GPU since it can be achieved
by texture-based operations; the GPU’s high bandwidth and
computational power in texture-based operations enables
fast performance.

Our GPU-based opacity-corrected VRC is performed in
an iterative way in which three dataset slices are used in
VRC composition at each iteration. Initially, the composi-
tions for the samples between the first two slices are com-
puted by taking the first three dataset slices and mapping
them to textures on the GPU. Two 2D arrays are also mapped
to textures on the GPU to store the rays’ composited in-
tensities (which are initialized to 0.0) and transparencies
(which are initialized to 1.0). Then, using the first two slice
textures, over-sampling is performed via interpolation on
the GPU to create N — 1 intermediate textures, where N is
the over-sampling rate. (Trilinear interpolation is done for
non-axial-perpendicular rays, otherwise linear interpolation
is done.) Next, opacity-corrected VRC composition is ap-
plied using the first slice texture and the N — 1 intermediate
textures. The opacity-corrected VRC composition includes
opacity correction, (central differencing) gradient computa-
tion, and transparency and intensity composition. (Later in
this section, we describe how the opacity correction activity
is achieved. We note that the third slice texture is used only
in central differencing gradient computation and that the
zero-cell skipping and opacity- and geometry-based early
ray terminations are employed in the transparency and in-
tensity compositions.) For the rest of the slices, these steps
are iterated such that one additional dataset slice is mapped
to a GPU texture per iteration. In each new iteration, the
prior iteration’s second and third slice textures are re-used
as the new iteration’s first and second slice textures, and one
new slice texture is added. The composited intensity and



20 J. K. Lee& T. S Newman / Acceleration of Opacity Correction Mechanisms

opacity textures are also fed back for continued composi-
tion. The iterative slice-to-texture mapping allows our GPU-
based opacity-corrected VRC to process volumetric datasets
that are too large to be mapped onto the GPU textures at the
same time.

The zero-cell skipping is handled by not performing
opacity-corrected VRC composition within a cell when all
texture elements within it are zeros. Early ray terminations
are handled by not performing the opacity-corrected VRC
composition for rays that leave the volume or when a ray’s
transparency reaches 0.0001. For exiting rays, padding of
textures with dummy elements is applied to allow coher-
ent operations on all texture elements. The incorporation of
zero-cell skipping and early ray termination speeds up per-
formance only marginally.

Once slices have been considered, the composited inten-
sity texture result is displayed as the final rendering on the
GPU.

Fig. 2 illustrates some details of the GPU-based process-
ing. The figure shows three slices mapped at a time to GPU
textures. (GPU textures contain orange grid overlays in the
figure.) The over-sampling and the opacity correction (e.g.,
classic or correct-to-first correction) followed by the VRC
composition steps are applied using textures on the GPU.

The key part of our technique is performing the mathe-
matical operations necessary to correct the opacities on the
GPU. For the CTF opacity correction, all elements of the N
textures within a cell are used to determine the coefficients
for the formula in Eqn. 3. The formula is fitted by a second
degree polynomial and then the fitted polynomial is solved
for the correction factor p on the GPU. Since the correction
factor p requires all the between-slice samples along one ray
for its computation, all elements of N textures are used at the
same time to correct the opacity on the GPU. In short, since
the same processing operations for the fitting and solving can
be applied on each texel, the operations map naturally to and
run quickly on the GPU. Here, we note that conditional ex-
pressions to prevent divide-by-zero and a negative discrimi-
nant in the quadratic formula are included in the CTF correc-
tion. For the classic correction, since each corrected opacity

- CPU1/ CPU 2

_ Master
(Slice Subset 1) (Slice Subset 2)

L R N

< T 7crus cPUa~
(Slice Subset 3) (Slice Subset 4)

Figure 3: lllustration of static load balanced opacity-
corrected VRC

is independent of other samples, the correction is applied
one texture at a time, with all of each texture’s elements be-
ing computed at the same time on the GPU (i.e., opacities
are adjusted using the Eqn. 2, which is able to well-leverage
the hardware support for the Nt root operation).

3.2. Cluster Computer-based Opacity Correction

The second set of techniques described here considers opac-
ity correction on cluster computers lacking programmable
GPUs. One of these techniques uses a static load balancing
scheme. The other uses a dynamic load balancing scheme.
Other VRC parallelizations using opacity corrections are
possible. Our emphasis here is enabling parallel opacity cor-
rection and measuring its performance.

It is natural to utilize data parallelism for opacity-
corrected VRC since it involves ray composition steps in
which the rays are independent of each other; each ray can
apply opacity correction and composition independently of
other rays using only the portion of the volume that the ray
passes through. Thus, our cluster-based techniques divide
the volumetric dataset among the CPUs. As suggested ear-
lier, the subdivision is dependent on ray direction (i.e., view-
ing direction) since each ray accesses only the portion of the
volume it passes through. Our subdivision scheme divides
the volumetric dataset in the dimensions that are perpendic-
ular to the ray direction. (If the ray direction is not perpen-
dicular to any of dataset dimensions, the volume is resam-
pled with respect to the ray direction. This step is done as a
pre-processing step, for reasons which will be discussed in
Sec. 4.) Data for a contiguous bundle of rays are then sent to
each processor. Each processor performs opacity-corrected
VRC and returns its portion of the 2D rendering to a master
processor. The master gathers all portions of the rendering
and outputs the rendering to display. The work assignment
is governed by either of two load balancing schemes, as de-
scribed next. Neither of the schemes requires pre-processing
steps to estimate work load.

1. Assign a data subset to each slave

2. Do{

2a.  Wait to receive a subset result

2b.  Assign new data subset to idled processor
2c.  Gather returned results

2d. } until no subsets remain

3. Forall slaves :

3a.  Send terminate message to slave

4. Render final image

(a) Master

1. While terminate message is not received :
la. Blocking receive a data subset

1b.  Apply opacity—corrected VRC

1c. Blocking send processed image to master

(b) Slaves

Figure 4: Seps of dynamic load balanced opacity-corrected
VRC: (a) on master and (b) on slaves

(© The Eurographics Association 2008.



J.K.Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms 21

Static Load Balancing. The static load balancing scheme
divides the volume into equal-sized subsets, and each pro-
cessor performs opacity-corrected VRC for one subset. In
particular, one processor divides the data into subsets and
assigns subsets to other processors (while keeping a subset
for itself). Then, each processor performs opacity-corrected
VRC for its assigned subset. Thus, there is only one data
subset assigned to each processor.

Fig. 3 illustrates the static load balancing for a 4-processor
configuration. In the figure, one equal-sized data subset is
assigned to each processor. Then, each processor performs
opacity-corrected VRC to produce a portion of the final ren-
dering. The master gathers the portions for final display.

We use blocking sends and receives for the synchroniz-
ing communications. Although this entails some communi-
cations overhead between processors, the total processing
time is strongly dominated by the computation time for the
opacity-corrected VRC. In addition, the gathering commu-
nications depend only on the 2D rendering’s size rather than
dataset size or over-sampling rate.

Dynamic Load Balancing. The dynamic load balancing
scheme involves first dividing the dataset into small subsets
(e.g., 8x8xZ or 16x16xZ subsets, where Z is the num-
ber of data slices along the rays). The subsets are assigned
one at a time, each to an idle processor. Processors perform
the opacity-corrected VRC and return their portion of the
final rendering to the master processor. As each processor
becomes idle, a new subset is assigned, until all subsets have
been processed. The master gathers the renderings and dis-
plays the final rendering once all subset results are produced.

Fig. 4 outlines the dynamic load balancing scheme’s steps.
We use blocking sends and non-blocking receives on the
master processor and blocking sends and receives on the
slave processors for the communications. The approach has
been implemented using MPI which allowed use of the
MPI_Waitsome() on the master to handle multiple return
communications from the slaves.

4. Experimental Results

In this section, experiments to benchmark the techniques’
performances are described. First, the GPU-based technique
is considered. Then, the cluster computation techniques are
considered. In the results presented here, for the GPU-based
technique, interpolation is done on the GPU, and the time
to interpolate is included in the reported times. Interpola-
tion time is not included for any CPU-based technique re-
sults, though. For the GPU, performing interpolation on the
GPU results in fastest overall opacity-corrected VRC times.
(It is slower to do interpolation on the CPU first due to the
time to transfer the interpolation textures onto the GPU.) For
the CPU-based approaches, we report just opacity-corrected
VRC times (exclusive of interpolation, with interpolation
done as a pre-processing step).

4.1. GPU-based Acceleration

The GPU-based technique was tested on a 512 MB NVIDIA
GeForce 7950 GT. Cg version 1.4.1 was used for the im-
plementation. For comparison, CPU-based implementations
were executed on the (unloaded) CPU (Intel Core Duo
3.20 GHz) of the same PC. The PC has 3.2 GB RAM
and runs Linux. Executables were built using gcc ver-
sion 4.0.2. Both classic and CTF opacity corrections were
tested. Five real datasets were tested: a 256 x 256 x 72 dataset
called Brain 1, a 256x256x128 dataset called Brain 2,
a 256x256x62 dataset called Monkey, a 256x256x128
dataset called Head, and a 256° dataset called Engine. The
last three are from Roettger’s Volume Library.

Tables 1 and 2 show the execution times of the opacity-
corrected VRC composition on the CPU and the GPU, re-
spectively, for the five datasets. Here, ray directions were
axially-perpendicular. Datasets were over-sampled N= 2,
3, 4, and 5 times. For the N=5 case, the number of sam-
ples ranged from 19,988,480 (for the Monkey dataset) to
83,558,400 (for the Engine dataset). For these datasets, the
CTF opacity correction was about 2 to 4 times faster than

Correct. | N |Brainl Brain2 Monkey Head Engine Correct. | N |Brainl Brain2 Monkey Head Engine
without 0.296 0548 0.215 0.392 1.296 without 0.0183 0.0318 0.0157 0.0317 0.0627
classic 2 | 2020 4152 0646 3210 3513 classic 2 |0.0192 0.0336 0.0166 0.0334 0.0661
CTF 0533 0956 0.296 0.759 1.525 CTF 0.0199 0.0349 0.0172 0.0346 0.0687
without 0.386 0.760 0.238 0536 2573 without 0.0196 0.0342 0.0169 0.0341 0.0675
classic 3 13015 6213 1.001 4.814 6.102 classic 3 [0.0214 0.0374 0.0184 0.0373 0.0738
CTF 0.843 1524 0429 1181 3.115 CTF 0.0220 0.0385 0.0190 0.0383 0.0760
without 0481 1175 0.276 0.728 3.028 without 0.0211 0.0369 0.0182 0.0367 0.0728
classic 4 | 4006 8521 1245 6.537 7.764 classic 4 10.0221 0.0388 0.0191 0.0387 0.0769
CTF 0873 1.711 0493 1.333 3.525 CTF 0.0257 0.0446 0.0208 0.0451 0.0879
without 0.700 2132 0351 1.200 3.688 without 0.0215 0.0375 0.0185 0.0374 0.0741
classic 5 | 5069 11.217 1593 8512 9.665 classic 5 10.0280 0.0492 0.0241 0.0491 0.0984
CTF 1219 2987 0.660 2.189 4.385 CTF 0.0329 0.0599 0.0268 0.0581 0.0994

Table1: Opacity-corrected ray composition execution times
(in seconds), N=over-sampling rate, on the CPU

(© The Eurographics Association 2008.

Table2: GPU-based opacity-corrected ray composition ex-
ecution times (in seconds), N=over-sampling rate



22 J.K.Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms

@

(d)

Figure 5: GPU-based VRC renderings of (human) Head for over-samplings (5 times): (a) without opacity correction, (b) with
classic correction, (c) with CTF correction, and (d) scaled absolute difference image of (b) and (c).

classic opacity correction on the CPU. On the GPU, the
classic and CTF opacity corrections executed in about the
same amount of time, although the classic correction was
slightly faster than the CTF correction. The overhead of in-
corporating opacity correction into GPU-based VRC ranged
from about 5% more time (for N=2) to about 40% more time
(for N=5). The GPU is substantially faster than the CPU at
opacity-corrected VRC; it was on the order of 100 times
faster at classic opacity correction and about 30 times faster
at CTF opacity correction. While GPU-based opacity correc-
tion is well-suited for both correction mechanisms, it appears
to be modestly better for the classic correction. We believe
that the absence of conditional expressions in the computa-
tion of classic correction resulted in fewer pipeline stalls on

Brain 1 (VRA) (256x256x72)

[~ m Brain 2 (11 MRI) (256x256x128)

m Engine (CT)

Speedup

Num. Cores

(a) Speedups using classic correction

1 (MRA) (256x256x72)
2 (T1 MRI) (256x256x128)

e (CT)

Speedup

Num. Cores

(b) Speedups using CTF correction

Figure 6: Speedups for opacity-corrected VRC, static load
balanced cluster computation, using (a) classic opacity cor-
rection and (b) CTF opacity correction.

the GPU. Also, the classic opacity correction benefits from
the GPU’s built-in support for its expensive N root opera-
tion. Both opacity corrections are reasonably well-suited for
the GPU, though.

Fig. 5 shows example GPU-based VVRC renderings of the
Head (CT) dataset. The figure shows VRC renderings with-
out opacity correction and with each of the correction mech-
anisms. While the VRC rendering without any opacity cor-
rection (Fig. 5 (a)) suffered from over-composited opacities,
the VRC renderings using the opacity corrections (Fig. 5 (b)
and (c)) suffer less; they allow more internal details to be
observed. Fig. 5 (d) shows the scaled absolute difference im-
age of the opacity-corrected renderings. The differences are
most noticeable near the teeth and top back of head. The
GPU-based renderings in Fig. 5 are visually indistinguish-
able from results produced using the single CPU system
(i.e., there were no visible differences between the render-
ings of the CPU-based and GPU-based VRCs). Some pixels
had very small measurable differences, however—at the 6th
digit after the decimal point.

4.2. Cluster-based Acceleration

The cluster computation techniques were tested on a cluster
computer with 16 nodes. Each node consists of an Intel Core
Duo 3.00 GHz CPU with 1 GB RAM and runs Linux. Exe-
cutables were built using mpicc of LAM version 7.1.1. Our
experiments used 2-, 4-, 8-, 16-, 24-, and 30-core configu-
rations. (To avoid inter-communication effects on the node
with the master, only less than 32 cores were tested.) Tests
on our cluster-based approaches enable study of opacity cor-
rection’s scale-up.

Fig. 6 shows, for 5 times over-sampling of 3 datasets, the
speedups for the static load-balanced technique for the clas-
sic and CTF opacity corrections. The speedup increases ap-
proximately linearly as the number of cores increases for
these datasets. For 24 cores, speedups of about 17.6 for
classic correction-based VRC and of about 22.0 for CTF-
based VRC were observed. We also note that the CTF-based
VRC was consistently about 3.0 times faster than the classic

(© The Eurographics Association 2008.



J.K.Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms 23

(d)

Figure 7: VRC renderings of Engine on cluster computer system for over-samplings (5 times): (a) without opacity correction,
(b) with classic correction, (c) with CTF correction, and (d) scaled absolute difference image of (b) and (c).

correction-based VRC. For 30 cores, a superlinear speedup
was observed for CTF-based VRC (from caching effects).

Example renderings using a yellow material color (and a
difference image) for the static load balanced cluster com-
putation technique are shown in Fig. 7. Differences are es-
pecially noticeable near structure boundaries.

Fig. 8 shows, for the same cases in Fig. 6, the speedups
for the dynamic load-balanced technique for the classic
and CTF opacity corrections. The number of cores shown
in Fig. 8 are the number of (slave) cores performing the
opacity-corrected VRC composition. For 24 cores, speedups
of about 15 to 19 were observed. For 30 cores, speedups of
23.2 for classic correction-based VRC and of 19.7 for CTF-

28 7 @ Brain 1 (MRA) (256x256x72)
[| W Brain 2 (T1 MRI) (256x256x128)

[7| @ Engine (CT) (256x256x256)

Speedups

Num. Cores

(a) Speedups using classic correction

28 7| @ Brain 1 (MRA) (256x256x72)
[ | W Brain 2 (T1 MRI) (256x256x126)
m Engine (CT) (256x256x256)

Speedups

Num. Cores

(b) Speedups using CTF correction

Figure 8: Speedups for opacity-corrected VRC, dynamic
load balanced cluster computation, using (a) classic correc-
tion and (b) CTF correction.

(© The Eurographics Association 2008.

based VRC were observed. While the classic correction-
based VRC achieved higher speedups than the CTF-based
VRC, the CTF correction was always faster than the clas-
sic correction (e.g., it was 2.6 times faster using 16 cores).
As shown in Fig. 8, the dynamic load balancing scheme had
better performance improvement for smaller datasets.

We note that the master processor in the dynamic load
balancing scheme does not perform any opacity-corrected
VRC composition. However, it is possible to have the mas-
ter do a little VRC composition work for a small region. We
have found that adding work to the master provides a sub-
stantial benefit only for configurations with few cores. For
example, having the master processor perform some VRC
composition improved performance by about 10 to 20% us-
ing 2 to 4 cores and by about 1 to 2% using 8 to 16 cores.
We believe that the time the master processor spends han-
dling both the communication and some VRC composition
resulted in some overload on it as well as synchronization
issues (when there were many cores), delaying processing
of slave results. The implementation of such a dynamic load
balancing scheme is also complex; it may not be worthwhile
to assign work on the master for such small improvements.

While both load-balancing schemes are well-suited for
the opacity-corrected VRC, the static load-balancing scheme
has less overhead; the communication overhead to achieve a
balanced load in dynamic load-balancing was more than its
benefit of more evenly-balanced load.

5. Conclusion

We have presented efficient techniques for over-sampled
opacity-corrected volume ray casting. One class of technique
achieves efficiency using fine-grained parallelism on a pro-
grammable GPU on a single CPU system. For this tech-
nique, classic correction is marginally faster than CTF but
both achieve about 15 f.p.s. for a scenario of a 256° dataset
with two times over-sampling. A second class of techniques
exploits less finely-granular parallelism using static and dy-
namic load balanced cluster computation. For this class of
technique, CTF can achieve about 14 f.p.s. for the same



24 J.K.Lee& T. S Newman/ Acceleration of Opacity Correction Mechanisms

scenario. Known opacity correction mechanisms in over-
sampled volume ray casting were shown to achieve efficient
performance on a GPU and clustered CPUs. This paper is,
to our knowledge, the first demonstration of parallel opacity
correction for over-sampled VRC.

In the future, we hope to achieve further efficiency im-
provements using a cluster computer system that contains
programmable GPUs and to test use of higher-order approx-
imating polynomials.

Lastly, we note reviewer comments improved this paper.

References

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A
scalable, hybrid scheme for volume rendering massive
data sets. In Proc., EG Par. Graphics and Vis. ' 06 (2006),
pp. 153-161.

[CMCLO6] CASTANIE L., MioN C., CAVIN X., LEVY
B.: Distributed shared memory for roaming large vol-
umes. |EEE Trans. Vis. and Comp. Graphics 12, 5 (2006),
1299-1306.

[EKIO6] Es A., KELES H., ISLER V.: Accelerated vol-
ume rendering with homogeneous region encoding us-
ing extended anisotropic chessboard distance on gpu. In
Proc., EG Par. Graphics and Vis. ' 06 (2006), pp. 67-73.

[GM96] GOEL V., MUKHERJEE A.: An optimal parallel
algorithm for volume ray casting. The Visual Computer
12 (1996), 26-39.

[GWO06] GEORGII J., WESTERMANN R.: A generic and
scalable pipeline for gpu tetrahedral grid rendering. |[EEE
Trans. Vis. and Comp. Graphics 12, 5 (2006), 1345-1352.

[KEIO7] KELES H., Es A., ISLER V.: Acceleration of di-
rect volume rendering with programmable graphics hard-
ware. The Visual Computer 23, 1 (2007), 15-24.

[Kni00] KNITTEL G.: High-speed software raycasting on
a dual-cpu using cache optimizations, mmx, streaming
simd extensions, multi-threading and directx. In Proc.,
SPIE Misual Data Exp. and Anal. VII (2000), pp. 164—
174.

[KSSEO5] KLEIN T., STRENGERT M., STEGMAIER S.,
ERTL T.: Exploiting frame-to-frame coherence for accel-
erating high-quality volume raycasting on graphics hard-
ware. In Proc., Vis. ' 05 (2005), pp. 223-230.

[KW03] KRUGER J., WESTERMANN R.: Acceleration
techniques for gpu-based volume rendering. In Proc., is.
’03 (2003), pp. 287-292.

[Lac95] LAcRoOUTE P.: Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation.
Doctoral Dissertation (Tech. Rep. CSL-95-678), Stanford
Univ., 1995.

[LCN98] LICHTENBELT B., CRANE R., NAQVI S.: In-
troduction to Volume Rendering. Prentice Hall, U. Saddle
Riv., NJ, 1998.

[Lev88] LEvoy M.: Display of surfaces from volume
data. |EEE Comp. Graphics and Apps. 5, 3 (1988), 29—
ar.

[LNO7] LeeJ. K., NEwMAN T.: New method for opacity
correction in oversampled volume ray casting. J. WSCG
15 (2007), 1-8.

[MHB*00] MEISSNER M., HUANG J., BARTZ D.,
MUELLER K., CRAWFIS R.: A practical evaluation of
popular volume rendering algorithms. In Proc., |IEEE
Symp. on Vol. Visualization (2000), pp. 81-90.

[MSEO6] MULLER C., STRENGERT M., ERTL T.: Op-
timized volume raycasting for graphics-hardware-based
cluster systems. In Proc., EG Par. Graphics and Vis. ' 06
(2006), pp. 59-66.

[Pfi05] PFISTER H.: Hardware-accelerated volume ren-
dering. In The Visualization Handbook (C. Hansen and C.
Johnson (eds.), Elsevier, New York, 2005), pp. 229-258.

[RGW*03] ROETTGER S., GUTHE S., WEISKOPF D.,
ERTL T., STRASSER W.: Smart hardware-accelerated
volume rendering. In Proc., |[EEE Symp. on Data Vis.’ 03
(2003), pp. 231-238.

[RPSC99] RAY H., PFISTER H., SILVER D., CooK T.:
Ray casting architectures for volume visualization. |EEE
Trans. Vis. and Comp. Graphics 5, 3 (1999), 210-223.

[SKLEO3] ScHuLze J., KRAUS M., LANG U., ERTL
T.: Integrating pre-integration into the shear-warp algo-
rithm. In Proc., Third Int'l Work. on Vol. Graphics (2003),
pp. 109-118.

[SL02] ScHuLzEJ., LANG U.: The parallelization of the
perspective shear-warp volume rendering algorithm. In
Proc., EG Par. Graphics and Vis. ' 02 (2002), pp. 61-69.

[SMW*04] STRENGERT M., MAGALLON M.,
WEISKOPF D., GUTHE S., ERTL T.: Hierarchical
visualization and compression of large volume datasets
using gpu clusters. In Proc., EG Par. Graphics and Ms.
04 (2004), pp. 41-48.

[WBLS03] WU Y., BHATIA V., LAUER H., SEILER L.:
Shear-image order ray casting volume rendering. In Proc.,
2003 Symp. on Interact. 3D Graphics (2003), pp. 27-30.

[Wei06] WEISKOPF D.: GPU-based interactive visualiza-
tion techniques. Springer, New York, 2006.

[Wit98] WITTENBRINK C.: Survey of parallel volume
rendering algorithms. In Proc., Par. and Dist. Proc. Techs.
and Apps. (PDPTA) '98 (1998), pp. 1329-1336.

[WMG98] WITTENBRINK C., MALZBENDER T., GOSS
M.:  Opacity-weighted color interpolation for volume
sampling. In Proc., IEEE Symp. on \Vol. Visualization
(1998), pp. 135-142.

(© The Eurographics Association 2008.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CurlzMT
    /DfW5Printer
    /DfW5PrinterBold
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /ImprintMT-Shadow
    /Kartika
    /Latha
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /MaiandraGD-Regular
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /Oc_020
    /Oc_021
    /Oc_030
    /Oc_200
    /Oc_210
    /Oc_211
    /Oc_220
    /Oc_221
    /Oc_251
    /Oc_260
    /Oc_270
    /OCRAbyBT-Regular
    /OCRAExtended
    /OCRB10PitchBT-Regular
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /Shruti
    /SureThingDVDSymbolsII
    /SureThingSymbols
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Ucs_020
    /Ucs_021
    /Ucs_030
    /Ucs_200
    /Ucs_210
    /Ucs_211
    /Ucs_220
    /Ucs_221
    /Ucs_251
    /Ucs_260
    /Ucs_270
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.001 842.000]
>> setpagedevice


