Eurographics Symposium on Parallel Graphics and Visualization (2008)
J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

Streaming Model Based Volume Ray Casting Implementation

for Cell Broadband Engine

Jusub Kim and Joseph JaJa

Institute for Advanced Computer Studies
Department of Electrical and Computer Engineering
University of Maryland, College Park, MD USA 20742

Abstract

Interactive high quality volume rendering is becoming increasingly more important as the amount of more com-
plex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used,
ray casting has been recognized as one of the techniques which can generate high quality rendering. However,
for most users, the use of ray casting has been limited to datasets that are very small because of its high de-
mands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband
Engine (Cell B.E.) processor, which consists of 9 heterogeneous cores designed to handle extremely demanding
computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this
paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementa-
tion is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using
an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically,
we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for
ray casting on Cell B.E. In addition to better SIMD utilization, our method provides two key benefits: there is no
cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our
experimental results show that we can interactively ray cast practical datasets of moderate size with one Cell B.E
processor 3.2GHz.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Parallel Processing 1.3.7

[Computer Graphics]: Raytracing

1. Introduction

There is a consistent trend in almost all scientific, engi-
neering and medical domains toward increasingly generat-
ing higher resolution volumetric data as computing power
steadily increases and imaging instruments get more refined.
For computational scientists, there is a constant desire to
conduct more computationally demanding simulations in or-
der to capture complex phenomena at finer scales. At the
same time, biomedical researchers and practitioners are de-
manding higher quality visualization for medical data gener-
ated by increasingly more sophisticated imaging instruments
such as CT, MRI, and 3-D confocal microscope. Clearly, the
ability to interactively visualize the volumetric data using
high quality rendering techniques is critical to fully explore
and understand the corresponding datasets.

(© The Eurographics Association 2008.

Ray casting [Lev90] has been recognized as a fundamen-
tal volume rendering technique that can produce very high
quality images. However, for most of users, its application
has been limited only to datasets of very small sizes because
of its high computational requirements and its irregular data
accesses. In particular, the amount of data to be processed
and the generally irregular access patterns required make it
very hard to exploit caches, which in general result in high
memory latencies. Thus, it is very difficult for current gen-
eral purpose desktop computers to deliver the targeted level
of interactivity for most practical volumetric datasets.

Significant research efforts have attempted to accelerate
volume rendering using graphics hardware. A representative
technique is based on the exploitation of the texture-mapping
capabilities of the graphics hardware [CCF94, KMM™*01].

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

10 Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

The texture-mapping based volume rendering has enabled a
single PC with a commodity graphics card to achieve inter-
active frame rates for moderate-sized data. However, the ren-
dering quality is generally not satisfactory [MHB*00]. Also,
the size of the data that can interactively be rendered is lim-
ited by the graphics memory size, which is typically substan-
tially smaller than system memory. When the data set does
not fit in the graphics memory, which is often the case in
time-series data, interactivity becomes very hard to achieve
because data has to be transferred from system memory to
graphics memory, a process that usually takes at least an or-
der of magnitude more time than the graphics memory band-
width.

On the other hand, in order to address the increasing de-
mands on interactive, higher-quality video rendering, Sony,
Toshiba and IBM (STI) teamed together to develop the Cell
Broadband Engine (Cell B.E.) [JAKSO05], which is the first
implementation of a chip multiprocessor with a significant
number of general purpose programmable cores. The Cell
B.E. is a heterogeneous multicore chip capable of mas-
sive floating point processing optimized for computation-
intensive workloads and rich broadband media applications,
and thus opening up the opportunity to put the ray casting
algorithm into widespread, practical use.

In this paper, we introduce a carefully tailored, efficient
parallel implementation of volume ray casting on the Cell
B.E. In general, achieving high performance for demanding
computations with highly irregular data movements is ex-
tremely difficult on the Cell B.E. as it was primarily designed
for large scale SIMD operations on media data streaming
through the core processors. In our work, we aim to take full
advantage of the unique capabilities of the Cell B.E while
overcoming its unique challenges. In particular, we achieve
an optimized implementation of two main acceleration tech-
niques for volume ray casting [Lev90] - empty space skip-
ping and early ray termination - on the Cell B.E.

We present a streaming model based scheme to effi-
ciently employ both acceleration techniques. This scheme
makes an effective use of the heterogeneous cores and asyn-
chronous DMA features of the Cell B.E. In our scheme, a
PPE (the PowerPC processor in the Cell B.E.) is responsi-
ble for traversing a hierarchical data structure and generat-
ing the lists of intersecting voxels along the rays over non-
empty regions, as well as it is responsible for feeding the
SPEs (Synergistic Processing Elements - SIMD type cores
with very high peak floating point performance) with the
corresponding lists. The SPEs are responsible for actual ren-
dering of the data received from the PPE, and they naturally
implement the early ray termination acceleration technique.
To deal with the speed gap between the heterogeneous cores
(PPE versus SPEs), we introduce a couple of important tech-
niques.

Our streaming model based scheme provides the follow-
ing two key benefits. First, we essentially remove the over-

head caused by traversing the hierarchical data structure by
overlapping the empty space skipping process with the ac-
tual rendering process. Second, using prefetching, we essen-
tially remove memory access latency, which has been the
main performance degradation factor that is due to the irreg-
ular data access patterns. In addition to these two key bene-
fits, we can also achieve better SIMD utilization in the SPEs
because the SPEs know the sampling voxels to process in
advance and thus they can pack them into SIMD operations.

Our experimental results show that we can interactively
ray cast practical datasets of size 256° onto a 2567 image
at 9~26 frames/sec with one Cell B.E processor 3.2GHz,
which is about an order of magnitude faster than the imple-
mentation at Intel Xeon 3GHz.

In the following sections, we start by discussing related
work and briefly introducing Cell B.E. architecture. We then
explain our primary work decomposition and assignment
scheme followed by a description of the techniques to deal
with the speed gap between the heterogeneous cores. We end
with a brief summary of the experimental results and a con-
clusion.

2. Related work

Levoy [Lev90] proposed two optimization techniques for ray
casting - empty space skipping and early ray termination,
which are the most widely used optimization techniques
for ray casting. He used a pyramid of binary volumes to
make rays efficiently skip empty space and also made each
ray terminate early if the opacity value accumulates to a
level where the color stabilizes. Yagel and Shi [YS93] pro-
posed another optimization technique using frame-to-frame
coherency. Their method saves the coordinates of the first
non-empty voxel encountered by each ray so that rays can
start from these coordinates in the next frame. Their method
was improved by Wan et al. [WSKO02] in several ways.

As volume rendering is computationally quite demand-
ing especially for large datasets or high resolution screens,
there have been many efforts to accelerate this method us-
ing the latest hardware and/or a cluster of computers. Re-
cently, the most popular method seems to be the one that
is based on using the graphics cards’ texture mapping capa-
bility [CCF94], which can also be extended to multiple cards
and a cluster system. Kniss et al. [KMM™*01] distribute a data
set into multiple graphics cards in a shared-memory system,
and make each card render a subvolume by using the texture
mapping technique. Lum et al. [LMCO02] and Strengert et al.
[SMW™04] use the same technique in a cluster environment.
As graphics processors become more programmable, there
have been efforts to implement ray casting on the graphics
cards. Stegmaier and et al. [SSKEOS5] shows that ray cast-
ing can be implemented on the programmable graphics pro-
cessor and Miiller et al. [MSEO6] extend the hardware ac-
celerated ray casting technique to a cluster system. On the

(© The Eurographics Association 2008.

Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine 11

other hand, it is worth mentioning recent hardware-based ray
tracing techniques for geometric rendering since the princi-
ple of ray shooting is the same. Horn et al. [HSHHO7] de-
velop k-D tree based GPU ray tracing methods and Benthin
et al. [BWSFO06] introduce ray tracing techniques for Cell
B.E. For isosurface rendering on Cell B.E., refer to O’Conor
et al. [OOCO6].

3. Cell Broadband Engine Overview

The Cell Broadband Engine (Cell B.E.) [JAKSO05], as shown
in Figure 1, consists of one 64-bit PowerPC Processor
Element (PPE) and eight Synergistic Processor Elements
(SPEs), all connected together by a high-bandwidth Element
Interconnect Bus (EIB). Each SPE contains a Synergistic
Processor Unit (SPU), a Memory Flow Controller (MFC)
and 256K bytes of local storage (LS). The MFC has DMA
engines that can transfer data across the EIB between the LS
and main memory. Each SPU contains a 128-bit-wide SIMD
engine enabling 4-way 32-bit floating point operations. With
aclock speed of 3.2 GHz, the Cell B.E. has a theoretical peak
performance of 204.8 GFlops/s. The EIB supports a peak
bandwidth of 204.8 GBytes/s for on-chip data transfers. The
memory interface controller provides 25.6 GBytes/s band-
width to main memory at peak performance.

SPE

SPU SPU SPU SPU
Rambus XDR
MFC| LS MFC| LS MFC| LS MFC| LS ﬁ
PPE 1T 1T it T Memory
Interface
L1 <:> Controller
PowerPC (::> Element Interconnect Bus (EIB)
core 12 <:> Bus
Interface
ﬁ ﬁ ﬁ ﬁ Controller

iz

MFC| LS MFC| LS MFC| LS MFC| LS
Rambus FlexIO

SPU SPU SPU SPU

Figure 1: Cell Broadband Engine Overview [IBMO6].

4. Primary Work Decomposition and Allocation

In this section, we describe our primary work decomposition
and assignment scheme for volume ray casting on the Cell
B.E. Our scheme is illustrated in Figure 2. Our work decom-
position scheme is based on fine-grain task parallelism that
achieves load balancing among the SPEs as well as matching
workload between the PPE and the SPEs. In ray casting, the
overall concurrency is obvious since we can compute each
pixel value on the screen independently of all the other pix-
els. To take advantage of this fact, we divide the screen into
a grid of small tiles. Each tile will be independently rendered
by a certain SPE. The size of the tile should be small enough
to balance loads between the SPEs. Also, a SPE should be
able to store in its very limited local memory the task list
generated by the PPE as well as the tile image itself. Note
that the size of the task list from the PPE increases as the

(© The Eurographics Association 2008.

SPE0 || SPE1 mmen

Figure 2: Work decomposition and assignment to the SPEs.

tile size does. On the other hand, the tile size should be large
enough to ensure enough work between synchronizations.

The high communication bandwidth of the Cell B.E.
makes it possible to achieve excellent performance using
image-based fine-grain decomposition despite the fact that
the Cell B.E. is essentially a distributed memory system,
in which object-based coarse-grain decomposition is usu-
ally chosen. This fine-grain task parallelism enables us to
achieve near-optimal load balancing and also to overcome
the limited local memory size.

Our work assignment scheme is static. We assign each
tile to each SPE in some order as shown in Figure 2, which
shows Z-order based scheme. Such an ordering tries to ex-
ploit spatial locality as much as possible. Even though the
assignment is static, the time it takes to render all the as-
signed tiles in each SPE is almost identical for the different
SPEs because of the fine-grain work decomposition.

5. Implementation of Acceleration Techniques

There are two most widely used acceleration techniques for
ray casting [Lev90]: empty space skipping and early ray ter-
mination. To skip empty space, one usually constructs a hi-
erarchical data structure that stores the information about
which subvolume is empty and skips the subvolume dur-
ing traversal. This acceleration technique is very useful in
most volumetric datasets since they usually have significant
portions that are empty space. On the other hand, early ray
termination can also save significant time by stopping a ray
traversal after its opacity value reaches some threshold since
its final pixel value will hardly change by further ray traver-
sal. This acceleration technique is particularly useful when
the objects embedded in the volume are mostly opaque. Ef-
ficiently implementing these two acceleration techniques is
very important since it significantly affects the ray casting
performance.

5.1. Streaming model for acceleration

Our basic idea for implementing the acceleration techniques
on the Cell B.E. is to assign empty space skipping to the PPE

12 Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

)| eee see |)

R: Ray offset
L: Segment Length

Figure 3: Our streaming model for acceleration techniques.

and early ray termination to the SPEs. The PPE is a full-
fledged 64-bit PowerPC with L1 and L2 caches, and hence
can handle branch prediction much better than the SPE.
Clearly the PPE is a better candidate for efficiently traversing
a hierarchical data structure. Furthermore, the SPE would
have substantial overhead in handling empty space skipping
due to the limited local memory size as the size of the hi-
erarchical data structure increases. On the other hand, the
SPE is ideal for the rendering work since it was designed for
compute-intensive workloads using SIMD style operations.
Thus, we naturally implement early ray termination on the
SPE.

We streamline the empty space skipping process and the
actual rendering process. Given a ray, the PPE traverses the
hierarchical data structure along the ray direction and col-
lects ray segments (defining the corresponding sampled vox-
els) which are only in non-empty subvolumes. Each ray seg-
ment is characterized by two parameters R and L such that
R is the ray offset from the viewpoint and L is the length
of the corresponding segment. The collected ray segments
for all the pixels of a tile are concatenated and transferred to
the SPE in charge of the corresponding tile, which then ren-
ders the tile with early ray termination option. This stream-
ing model is illustrated in Figure 3.

In this streaming model, the PPE side is responsible for
generating and sending only the contributing (non-empty)
ray segments to the SPEs. For that, we use a simple 3-D
octree data structure, in which each node has 8 children
and stores a maximum value of any voxel in the subvol-
ume rooted at the node. However we should carefully set
the leaf node size. The smaller the size of the leaf node, the
more traversal time and the more amount of data needs to
be transferred to the SPEs. However, the larger the leaf size,
the more empty space will need to be handled by the SPEs,
eventually leading to significant increase in rendering time.
Empty space can be determined by either opacity values af-
ter classification or raw voxel values. If opacity values are
used, the octree would have to be updated every time the
classification table is changed.

SPEs are responsible for the actual rendering process. A
SPE waits until it gets a signal from the PPE that it has
collected all the contributing ray segments corresponding
to all the pixels in the tile under consideration. Once it re-
ceives the signal from the PPE, it starts the rendering pro-
cess for the corresponding tile. The rendering process con-
sists of four main steps: prefetching, interpolation, shad-

PPE SPE

Get the List for
Repeated for Issue asynchronous
all SPEs?

? DMA for next 4 ray
No

sampling points

Get the list of
contributing ray segments
for the next Tile
in the current SPE,
and store into a buffer

Data for current 4
Ray sampling points
ready?

Send the size of the list
unless the queue
in the SPE is full

Do Interpolation, Shading,
Classification and
Compositing using SIMD

No tile to process?
No

Yes

Yes

Current tile done?

Yes

Wait until
all SPEs done

Issue asynchronous
DMA for current tile image
to main memory

All tiles done?

Finish

Finish

Figure 4: Main algorithms in PPE and SPE.

ing/classification, and compositing. During the rendering,
four ray sampling points are processed together in a loop to
exploit the SIMD capabilities of the SPE. First, for prefetch-
ing, we take advantage of the asynchronous DMA feature of
the Cell B.E. and use double buffering [IBM06]. We prefetch
the next 4 subvolumes required for rendering the next 4 ray
sampling points into a buffer. To achieve peak performance,
we arrange the volume residing in main memory into a 3-
D grid of small subvolumes. If the 4 subvolumes necessary
for rendering the current 4 ray sampling points are ready, we
concurrently perform 4 tri-linear interpolations using 4-way
SIMD instructions to reconstruct the signals. Reconstructed
values are mapped to a color and opacity value using shad-
ing and classification tables. Finally, we composite the 4 val-
ues sequentially since compositing can not be concurrently
done. However, we concurrently composite the R, G, B val-
ues, and hence we utilize 3/4 of the SIMD capability of the
SPE. The final opacity value is then tested for early ray ter-
mination, and, if so, we proceed to the next ray. After getting
all the pixel values for the tile, we send the tile image back
to the main memory using asynchronous DMA, and proceed
to the next tile.

5.2. Techniques for filling performance gap between
heterogeneous cores

The successful implementation of our streaming model crit-
ically depends on how much we can match the executions

(© The Eurographics Association 2008.

Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine 13

of the two stages of the model. If the PPE performs its
tasks faster than the SPE, the outputs generated by the PPE
should be stored somewhere so that it can proceed to execute
the next task. However, much more difficult is the situation
when the PPE performs its tasks slower than the SPE. In
that case, the SPEs will be idle waiting for the inputs from
the PPE, which can substantially degrade the overall perfor-
mance and negatively impact scalability since the more the
number of SPEs, the more work has to be performed by the
PPE and hence the more time the SPE will have to wait. In
the following, we introduce a couple of techniques for taking
care of the possible performance gap between the heteroge-
neous cores.

We first describe a simple way to handle the case when the
PPE executes its tasks faster than the SPEs handling of their
corresponding tasks. We keep a small buffer for each SPE
in main memory, where each entry stores a complete list of
contributing ray segments for a tile. When the PPE finishes
the task of creating a list of ray segments for a tile, it stores
the list in the buffer and sends a message, which is actually
the size of the list, to the mailbox of the SPE assigned for
the tile. Then, the SPE initiates the transfer from the buffer
to its local memory. The SPE keeps track of the entry from
which it has to transfer data for the current tile. Since the
mailbox in the SPE has 4 entries, we essentially use it as
a 4-entry queue so that the messages from the PPE can be
buffered and used immediately when the SPE is ready to
proceed to the next tile. This scheme of using buffers on both
PPE and SPE enables us to efficiently deal with the situation
of overflowing inputs from PPE.

In the following subsections, we introduce our "approx-
imation+refining" scheme to deal with the other case, in
which the PPE is not fast enough to feed the SPEs. This is
unfortunately the case for the current Cell B.E.

Approximation

In order to reduce the workload of the PPE, we only gen-
erate the list of contributing ray segments for every k X k-th
pixel, rather than for every pixel. Each segment is now com-
puted by projecting the boundary of an intersected octree
leaf (corresponding to non-empty subvolume) onto the ray
direction as shown in Figure 5. We estimate the contribut-
ing ray segments for each subtile by taking the union of the
ray segments lists at the surrounding 4 corners. Then, the
SPE assigned to the tile uses the resulting list to render to
all the pixels in the subtile of size k X k. This method sig-
nificantly reduces the processing time in the PPE by a factor
of k>. However, it increases the processing time in the SPE
because the SPE ends up with processing much more empty
voxels due to the approximate nature of the contributing ray
segments used for each pixel.

In this approximation technique, we might miss some in-
tersecting subvolumes for some pixels as shown in Figure 6
even though we use the projected ray segments since we
selectively shoot rays to get the contributing ray segments.

(© The Eurographics Association 2008.

A contributing ray segment in
original — Y

1(0,0)

L(1,1) @] o] O
Tile i, j)

A contributing ray segment in
approximation
L(a,b): a contributing ray segment list at (a,b) inside the tile.
List for a subtile, LS(0,0) = L(0,0) U L(0,1) U L(1,0) U L(1,1)
List for the tile, LT(i,j) =
a concatenation of LS(0,0) LS(0,1) LS(1,0) LS(1,1)

Figure 5: Approximation technique.

./

—]

Figure 6: The case of missing non-empty subvolumes. In the
figure, the shaded region is not checked by any of rays using
the approximation technique.

Missed subvolumes may lead to incorrect rendering since it
can end up with reporting no contributing ray segments for
a particular subtile even though there is a non-empty subvol-
ume, which is not traversed by any of the four rays.

Thus, we need to make sure that we never miss any sub-
volume for correct rendering. In orthographic ray casting,
where all rays are cast in parallel, we only need to make sure
the interval value k is smaller than the maximum end-to-end
length of the leaf subvolume. In perspective ray casting, we
can easily prove the following.

Proposition 1 Two rays that are k apart on the image
plane, originating from the same viewpoint, never diverge
more than 2k inside the volume as along as the distance from
the viewpoint to the image plane, dist., is larger than the
distance from the image plane to the far end of the volume,
disty. See Figure 8.

Proof First, for the case when the image plane is beyond
the far end of the volume, rays are always less than k apart
inside the volume. For the other case, we have a simple rela-
tionship/ dist. : k = (dist. +disty) : y, where k is the distance
between the two rays on the image plane and y is the one on
the far end of the volume. In order to have y less than 2k,
dist, must be larger than dist,. []

Thus, we use the approximation technique by setting the
k value to half of the maximum end-to-end length of the leaf

14 Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

Aneurism

Engine Fuel

Figure 7: Rendered images from four datasets throughout the tests.

Dataset Size Characteristic
Foot 256> (16MB) small empty space + moderate opaque interior
Aneurism 2563 (16MB) moderate empty space + moderate opaque interior
Engine 256% x 128 (8MB) small empty space + small opaque interior
Fuel 256> (16MB) large empty space + small opaque interior

Table 1: Test Datasets. (Fuel dataset size is originally 643. We enlarged it for better comparison.)

Image Plane N Volume
/ (
L
k }y
< +
| ——
dist, dist,

Figure 8: Proof of proposition 1.

subvolume. Then, we can guarantee that we can safely zoom
out up to 1/2 and zoom in to infinity since the eye distance to
the image plane is always larger than the distance from the
image plane to the far end of the volume. This guarantee is
acceptable in volume rendering since we are not interested
in investigating objects in smaller size.

Refining

In order to reduce the amount of additional work per-
formed by the SPE due to the approximation technique, we
send to SPEs additional information about which subvolume
is empty so that SPEs can skip the processing of the sam-
pling points that belong to empty subvolumes. We use hash-
ing to capture this additional information as follows.

Given a tile, we keep a hash table for every k X k-th ray
and record which subvolume is not empty using the follow-
ing universal hashing function.

key=(ranX - x + ranY -y + ranZ - z) modulo PR

hash-table[key] = 1

PR: prime number equal to the hash table size
0 < random number ranX, ranY, ranZ < PR
x,y,z: the smallest coordinates of the subvolume

Then, we approximate the hash table for a subtile by tak-
ing the union of the hash tables at the 4 surrounding corners
and send it to a corresponding SPE. The SPE skips a sam-
pling point if it belongs to an empty subvolume by checking
the hash table. Note that by using the hash table, we might
have the case where an empty subvolume is recognized as
non-empty, but will never have the opposite case. Also, by
setting the hash table size large enough, we can significantly
reduce the false alarm rate.

6. Performance

To evaluate the performance of our streaming model based
methods, we selected four volumetric datasets that are
widely used in the literature: two from medical domain (foot
and aneurism) and two from science/engineering domain
(fuel and engine) [Dat]. Table 1 summarizes the character-
istics of the corresponding datasets.

All default rendering modes are semi-transparent and de-
fault rendering image size is 256%. All experimental results
were obtained by averaging the results from 24 randomly se-
lected view points. We chose 16x16 for tile size and 8 for
the k-value by experiments. We used one Cell B.E. 3.2GHz
throughout the evaluation. Figure 7 shows rendered images
obtained using our method.

We first demonstrate that our streaming model with the

(© The Eurographics Association 2008.

Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

15

Approximation & Refining Approximation & Refining Approximation & Refining Approximation & Refining
(foot) 1714 (aneurism) (engine) (fuel)
1800 —1592 1800 1o —HO8 so 730
1600 o PPEt 1600 OPPE - OPPE o
1400 1— I SPE 1400 BSPE B SPE @ O SPE
1200 1200 0 w0
2000 —| 1000 2w §W
£800 | £ 800 g g
600 | 600 400 300
400 206 400 77 200 9 60 200 7
0| |52 36 50101 20 41 35 48 80 30 28 34 100 6 5 527
0 = ﬂ 1 ownllll 0 . m — 0 L L g 0 7 i |
w/o approxi. w/ approxi. w/ approxi. w/o approxi. w/ approxi. W/ approxi. w/o approxi. w/approxi. ~w/ approxi. w/0 approxi. w/ approxi. w/ approxi.
w/o refining w/o refining ~ w/ refining w/o refining ~ w/o refining w/ refining w/o refining w/o refining ~ w/ refining w/o refining w/o refining w/ refining

Figure 9: Processing time in PPE and SPE for three different combinations of approximation and refining techniques.

"approximation+refining" scheme removes the overhead of
traversing the octree structure for empty space skipping by
almost fully overlapping it with the actual rendering process.
Figure 9 shows the processing time for the PPE and the SPEs
for three different combinations of the techniques using the
four datasets. Processing time on the PPE is the time it takes
to traverse the octree data structure and to generate the con-
tributing ray segments. The SPE time is the time it takes to
perform the actual rendering. When none of the techniques is
used, we end up starving the SPEs due to the long processing
time on the PPE. When only the approximation technique
is used, we significantly reduce the processing time on the
PPE, but end up with increased SPE time. Finally, when the
approximation technique is used in combination with the re-
fining technique, we achieve the best results. Figure 9 also
shows that the current implementation can scale up to the
double number of SPEs since the processing time on the PPE
is allowed to double for the balance of performance between
the PPE and the SPE.

Another important benefit of our streaming model is that
it essentially removes the latency due to the access of vol-
ume data by making it possible to almost always prefetch the
data. The first two rows of Table 2 compares the rendering
time with and without prefetching and shows that prefetch-
ing reduces rendering time by about one half.

foot | aneurism | engine | fuel
w/o prefetch 224 210 133 76
w/ prefetch 113 99 72 38
local volume 161 103 85 39
w/ prefetch, w/o
.. 179 112 88 41
early termination

Table 2: Effects of prefetching (in milliseconds).

However, it does not show that there is no memory ac-
cess latency. The SPE program is blocked until the subvol-
umes required for rendering the current sampling points are
moved to the local memory. If prefetching hides memory la-
tency, our rendering time should be approximately the same
as the time it takes for rendering any volumetric data stored
in the local memory. The third and fourth row of Table 2

(© The Eurographics Association 2008.

compares the rendering time on local volume with one with
our prefetching scheme. Note that since early ray termina-
tion makes the rendering time depend on the data contents,
we disabled early ray termination in those experiments. We
believe that the ~ 7% increase in the results is from prefetch
1/0 overhead because we achieved only less than 1% better
results in the same experiments with only difference in the
size of data transfer, which was set to zero.

Our fine-grain task decomposition allows us to achieve
very good load balance. Figure 10 shows that our scheme
achieves near-optimal load balance with average percentage
standard deviation 1.7% among the 8 SPEs of the Cell B.E.

Finally, we compare the rendering performance on the
Cell B.E. 3.2GHz with that of the Intel Xeon dual processor
3GHz with SSE2. We implemented the same acceleration
techniques with the same ray casting algorithm. SSE2 vec-
tor instructions are used for interpolation and compositing
in the same way as in the SPEs at Cell B.E. We created two
threads on Intel Xeon while creating two threads on the PPE
and 8 threads on the SPEs. Two threads on each of Xeon and
the PPE reduce tree traversal time by dividing the traversal
work. Figure 11 shows that our scheme for Cell B.E. consis-
tently achieves an order of magnitude better performance.

Load balance among SPEs

msec

foot aneurism engine fuel

Figure 10: Load balance among eight SPEs.

16 Jusub Kim & Joseph JaJa / Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

Intel Xeon 3GHz vs. Cell B.E.

[Intel Xeon 3GHz (2 threads)
M Cell 3.2GHz (2 PPE + 8 SPE threads)

1600

(x12)
1400 | 1391
(x12)
1200 — 1149
(x12)
1000 863
8 —
Z 800 —
600 — X 9)
400 |) 359
(©1ps) (10 fps) (14 fps)
200 13 59 2826f S)
ol I | m | wwm | .
foot aneurism engine fuel

Figure 11: Performance comparison with Intel Xeon dual
processor 3GHz with SSE2.

7. Conclusion

We presented streaming model based volume ray casting,
which is a new strategy for performing ray casting. This
strategy enables the full utilization of empty space skipping
and early ray termination, in addition to removing memory
latency overheads typically encountered in ray casting due
to irregular data accesses. Moreover, to successfully imple-
ment this strategy on the Cell B.E., we introduced a few
additional techniques including the "approximation+ refin-
ing" technique to balance the performance gap between the
two streaming stages. We have presented experimental re-
sults that illustrate the effectiveness of our new techniques.

We are currently exploring the implementation of our
strategy on the latest NVIDIA GPU CUDA architecture,
which also provides massive computational power and mem-
ory bandwidth. We believe that our strategy appropriately
implemented on the CUDA architecture will also be quite
effective.

References

[BWSF06] BENTHIN C., WALD I., SCHERBAUM M.,
FRIEDRICH H.: Ray Tracing on the Cell Processor. In
Proceedings of IEEE Symposium on Interactive Ray Trac-
ing (2006), pp. 15-23.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated
volume rendering and tomographic reconstruction using
texture mapping hardware. In Proceedings of the 1994
symposium on Volume visualization (1994), ACM Press,
pp. 91-98.

[Dat] Volume datasets repository, http://www.gris.uni-
tuebingen.de/edu/areas/scivis/volren/datasets/datasets.html.

[HSHHO7] HORN D., SUGERMAN J., HOUSTON M.,
HANRAHAN P.: Interactive kd tree GPU raytracing. ACM
Press, pp. 167-174.

[IBMO6] IBM: Cell Broadband Engine Programming Tu-
torial verion 2.0, 2006.

[JAKSO5] J. A. KAHLE M. N. DAY H. P. H. C. R. J.
T. R. M., SHIPPY D.: Introduction to the cell multipro-
cessor. IBM Journal of Research and Development 49, 4
(2005), 589-604.

[KMM*01] KNiss J., MCCORMICK P., MCPHERSON
A., AHRENS J., PAINTER J., KEAHEY A., HANSEN C.:
Interactive texture-based volume rendering for large data
sets. Computer Graphics and Applications, IEEE 21, 4
(2001), 52-61.

[Levo0] LEvVOY M.: Efficient ray tracing of volume data.
ACM Transactions on Graphics (TOG) 9, 3 (1990), 245-
261.

[LMCO02] Lum E., MA K., CLYNE J.: A hardware-
assisted scalable solution for interactive volume rendering
of time-varying data. IEEE Transactions on Visualization
and Computer Graphics 8, 3 (2002), 286-301.

[MHB*00] MEISSNER M., HUANG J., BARTZ D.,
MUELLER K., CRAWFIS R.: A practical evaluation of
popular volume rendering algorithms. In Proceedings of
IEEE symposium on Volume visualization (2000), ACM
Press, pp. 81-90.

[MSE06] MULLER C., STRENGERT M., ERTL T.: Op-
timized volume raycasting for graphics-hardware-based
cluster systems. In Eurographics Symposium on Parallel
Graphics and Visualization (2006).

[O0OC06] OARCONOR K., OARSULLIVAN C., COLLINS
S.: Isosurface extraction on the cell processor. In Seventh
Irish Workshop on Computer Graphics (2006).

[SMW*04] STRENGERT M., MAGALLON M.,
WEISKOPF D., GUTHE S., ERTL T. Hierarchi-
cal Visualization and Compression of Large Volume
Datasets Using GPU Clusters. In Parallel Graphics and
Visualization (2004).

[SSKEO5] STEGMAIER S., STRENGERT M., KLEIN T.,
ERTL T.: A Simple and Flexible Volume Rendering
Framework for Graphics-Hardware—based Raycasting. In
Proceedings of Volume Graphics (2005), pp. 187-195.

[WSK02] WAN M., SADIQ A., KAUFMAN A.: Fast and
reliable space leaping for interactive volume rendering.
In Proceedings of the conference on Visualization 02
(2002), IEEE Computer Society, pp. 195-202.

[YS93] YAGEL R., SHI Z.: Accelerating volume anima-
tion by space-leaping. In IEEE Visualization 1993 (1993),
pp. 62-69.

(© The Eurographics Association 2008.

