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Abstract
Large-scale numerical simulation produces datasets with ever-growing size and complexity. In particular,
unstructured meshes are encountered in many applications. Volume rendering provides a way to efficiently
analyze such datasets. Recent advances in graphics hardware have enabled the implementation of efficient
unstructured volume rendering algorithms on the GPU. However, GPU architecture limitations make these
methods difficultly amenable to a parallel implementation, which is necessary to render very large datasets
at interactive speeds and high resolutions. Many previous parallel approaches have focused on software-
based  algorithms.  In  this  paper,  we  present  a  hybrid  object-space/image-space  CPU-GPU  distributed
parallel volume rendering method, taking advantage of the flexibility afforded by the CPU, including SIMD
processing capabilities, and using GPUs to perform repetitive tasks like depth-sorting and compositing. We
present the impact of the different phases on the overall rendering time as a function of node number.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics, I.3.8 [Computer Graphics]: Applications

1. Introduction

Numerical  simulation  of  unsteady  physical  phenomena
routinely  produces  datasets  with  ever-increasing  element
number  and  complexity.  Datasets  based  on  unstructured
meshes are encountered in many application domains. We
want to focus on volume rendering for such datasets with a
large  number  of  elements,  ranging  from  106 to  108

elements,  and  a  high-dynamic  range,  both  in  time  and
space.  During the last few years, the dramatic increase in
graphics processors (GPU) computing speed and features
has enabled the development of novel unstructured volume
rendering  algorithms,  taking  advantage  of  GPU  user-
programmable  features  to  reach  interactive  rendering
speeds  for  relatively  modest-sized  tetrahedral  datasets.
Unfortunately, their performance is often not high enough
yet to be able to render the largest datasets generated by
large-scale  numerical  simulation  at  interactive  rates  (at
least  1  frame  rendered/s).  By  distributing  the  rendering
workload  and  dataset,  parallel  rendering  allows  to
aggregate the rendering performance of N nodes.

Several  uniform  grids  parallel  volume  rendering
algorithms have been developed on PC clusters with GPUs.

These methods  generally partition  the whole dataset into
sub-volumes  distributed  among  the  N  nodes.   As  in
sequential rendering, the global visibility ordering can be
determined from the  position  of  each sub-volume in  the
global volume relative to the viewpoint. Enforcing a global
visibility  ordering  is  more  difficult  with  unstructured
volume  rendering,  as  mesh  geometric  and  topological
characteristics  such  as  non-convex boundaries,  holes,  or
multiple disconnected components require suited visibility
ordering algorithms.  Moreover,  parallel  rendering dataset
partitioning  may  generate  further  irregularities  such  as
sawtooth  boundaries.  For  these  reasons,  parallel
unstructured  volume rendering is  difficult  to  perform on
GPU clusters,  as sequential  algorithms generally execute
all of the rendering pipeline on the GPU and do not easily
allow retrieving intermediate data which might be required
by a parallel implementation. A hybrid object/image-space
parallel  algorithm  retains  advantages  from  both  object-
space and image-space based rendering algorithms:

• it allows an arbitrary partition of the dataset between
projection nodes,  thus allowing dataset size to scale
with the number of nodes,

• it determines a per-pixel image-space depth ordering
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of  tetrahedron  ray-segment-equivalent  contributions:
this  ordering  is  unaffected  by  mesh  geometric  and
topological particularities and dataset partitioning.

We base our parallel rendering approach on an existing
distributed  rendering  algorithm  [MC97],  which  uses  a
hybrid  object-space/image-space  2-stage  pipeline.  Our
contribution  is  two-fold:  first,  we  use  the  SIMD
instructions available in modern CPUs [Int05] to speed up
the  tetrahedron  projection  object-space  stage.  Then,  we
execute the image-space stage on the GPU, including ray
segment sorting and compositing.

In  this  paper,  we first  present  related  work,  including
relevant  single-GPU  algorithms  and  existing  parallel
unstructured volume rendering algorithms. In the following
section,  we  present  our  CPU/GPU  object-space/image-
space  hybrid  approach.  We  then  present  performance
results,  including  scalability  tests  as  a  function  of  node
number.  Finally,  we  discuss  the  limitations  of  our
implementation,  and  how to  overcome them,  as  well  as
how our approach could be extended to take advantage of
current and  upcoming architectures.

2. Related work

Most of the research work in parallel volume rendering on
distributed  architectures  has  been  done  on  rendering
algorithms for  uniform grids,  using  a  sort-last  rendering
architecture  [SMW*04].  This  architecture  consists  in
redistributing the pixels of partial images, rendered at the
end of the graphics pipeline,  in order to generate a final
image  by  compositing  [MCE*94].  Usually,  the  whole
dataset is partitioned into a set of sub-volumes between N
nodes, each generating a partial image. The depth-ordering
of  all  of  the  sub-volumes  with  respect  to  the  viewpoint
gives the correct composition order of the N partial images.

Most  existing parallel volume rendering algorithms for
unstructured  meshes have been developed  on specialized
architectures  (either  shared-  or  distributed-memory).  An
image-space raycasting  algorithm was developed by Ma
[Ma95] on a distributed memory architecture, partitioning
the dataset  and the  image-space between N nodes.  Each
node  performs  raycasting  on  its  local  dataset  subset,
producing ray segments,  and also  composites  all  the  ray
segments  lists  associated  to  the  pixels  belonging  to  its
image part. As a given ray segment may belong to a pixel
composited  by  another  node,  a  N-to-N  ray-segment
redistribution  phase  occurs  between  raycasting  and
compositing. Furthermore, the two stages are overlapped in
order  to  decrease  rendering  time.  Building  upon  this
approach, Ma et al. [MC97] have developed a hybrid objet-
space/image-space  algorithm  on  a  distributed  memory
architecture. It arbitrarily partitions the dataset between N
nodes.  Each  node  projects  and  scan-converts  its  dataset
partition, generating ray-segments equivalent fragments. As
in [Ma95],  ray segments are redistributed between nodes
according to their image-space position. After a depth-sort,

each fragment list  is then composited.  Furthermore, each
node partitions its data subset into an identical copy of a
kD-tree, in order to implement viewing volume culling and
to reduce fragment list growth, as each leaf is processed in
serial order according to its distance to the viewpoint.

Another hybrid method has been developed by Farias et
al.  [FMS00].  It  uses  a  sweeping  plane  algorithm  to
compute  an approximate  object-space visibility  ordering.
As cells are encountered by the plane, they are projected
onto  the  viewing  plane  and  rasterized  into  fragments,
which  are  inserted  into  pixel  lists.  Pixel  list  sorting
provides  an  image-space  correct  ordering.  The  parallel
implementation partitions the image-space between the N
rendering nodes and maintains an octree storing the whole
dataset.  Each  node  determines  the  octree  leaves
intersecting the viewing volume portion relevant to each of
its  image-space  tile.  Then,  it  executes  the  sweeping
algorithm on the data subset contained into the intersected
leaves, producing a depth-correct image. As no fragments
are redistributed between nodes, minimal communication is
required.  More  recently,  Childs  et  al.  [CDM06]  have
presented  a parallel  algorithm suited to  the  rendering of
very large datasets (100 million tetrahedra) on a PC cluster.
They  used  a  hybrid  approach,  similarly  to  [MC97].  By
deferring large-element rasterization to a further stage, they
were able to bound the workload performed by each node
during  each  of  the  two  phases,  allowing  quasi-linear
scalability up to 400 nodes. Furthermore, by using a 3D-
grid sampling approach during the object-space phase, they
alleviated  the  need  for  sorting  during  the  image-space
phase,  the  compositing  order  being  given  by  sample
ordering along the grid depth axis. However this approach
might lead to sampling artifacts and underestimation of the
contributions  of  elements  whose  depth  extent  is  smaller
than the grid depth step size.

Several GPU image-space depth-sorting algorithms have
been  developed  in  the  recent  years.  Callahan  et  al.
[CIC*04] implemented a hybrid object-space/image-space
unstructured  volume  rendering  algorithm  using  a  fixed-
depth sorting network: the k-buffer. During a first phase, a
partial object-space visibility ordering is determined on the
CPU,  by  sorting  tetrahedron  faces  according  to  their
distance to the viewing plane. During the following GPU
rasterization  phase,  fragments  (depth  and  interpolated
scalar value) are stored, for each pixel, into the k-buffer,
which is implemented using k image-size 2D buffers and a
fragment program. As a new fragment is inserted, the two
closest  fragments  are  determined,  a  ray  segment
contribution is computed and the closest fragment is then
taken off the list. A correct image-space visibility ordering
is computed as long as the difference in fragment position
between partial  and correct orderings does not exceed k.
This  depends  on  the  dataset  and  the  viewing  position.
Kipfer  et  al.  [KSW04]  implemented  a  particle  system
rendering engine on the GPU. In order to perform visibility
ordering,  which  is  necessary  to  correctly  render  semi-
transparent particles, they developed a GPU-based bitonic
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sorting  algorithm.  By  taking  advantage  of  the  GPU's
multiple  fragment  processing  units,  their  algorithm  was
able to sort between 1 and 2 million particles per second,
depending on the optimizations used.

3. CPU-GPU hybrid unstructured meshes parallel

volume rendering – distributed architecture

In  this  section,  we  describe  our  distributed  parallel
unstructured  volume rendering approach.  As in  [MC97],
we use two main overlapping stages (Figure 1), interlinked
by a N to P communication phase:

• the object-space stage, performed on the CPU, during
which tetrahedron  are projected,  and scan-converted
into ray segments,

• and  the  image-space  stage,  executed  on  the  GPU,
during  which  ray  segments  are  depth-sorted  and
composited to produce final pixel values.

These two stages are pipelined in such a way that the
projection  stage  performs  processing  of  the  i-th  frame
while the sorting/compositing stage computes the (i-1)-th
frame. Moreover,  each stage is  executed in  parallel  with
respectively  N  projection  processes  and  P  compositing
processes.

Before  actual  execution  of  the  rendering  loop,  the
tetrahedral dataset is arbitrarily partitioned between the N
projection  processes.  Each  subset  may  have  arbitrary
geometry,  topology,  and/or  connectivity,  e.g.  irregular
boundaries,  holes,  or  multiple  disconnected  components.
Our only constraint is that no pair of cells should intersect,
otherwise  rendering  artifacts  might  occur.  During  the
object-space stage,  ray segments are written in  incoming
order into a ray segment buffer, stored into main memory,
which  is  a  set  of  W×H  lists,  W  and  H  being  the
image's dimensions. Each projection process maintains its
own ray segment buffer into its memory space (Figure 2).

After  tetrahedron  projection  ends,  ray  segments  lists
must be distributed to the compositing processes according
to their image-space location.  We use the MPI library in
order to implement communication between the two stages.
For each compositing process, a given projection process
sends segment lists data relevant to the image-space part

managed  by  the  destination  process.  Each
sorting/compositing process performs for each of its tile an
image-space  sorting  of  the  assembled  ray  segments  lists
using  the  GPU,  as  in  [CIC*04].  However,  our  sorting
algorithm,  based  upon  [KSW04],  operates  on  the  whole
fragment list relevant to a given pixel, to compute a correct
depth-ordering.

We  use  a  simple  tile-based  image-space  static

subdivision  scheme (Figure 3).  Let  nW  and  nH  be the

number of tiles respectively subdividing the image-space x
and  y  axes.  In  order  to  attribute  tiles  to  compositing
processes,  we scan the  whole tiling from left  to  right  in
ascending scanline order. For each sequence of  P  tiles,

we randomly shuffle the  {0,1, ..., P�1}  index sequence.

The  i-th  tile  in  the  sequence  will  be  attributed  to  the
process corresponding to the i-th shuffled process index.

All tiles are evenly sized, with tile width  wtile=W /nW
and tile height htile=H /nH . The final image is assembled

from the nW×nH  tiles after the parallel compositing stage

is  over.  Each  compositing  process  sends  its  nW×nH /P
tiles to the first compositing process, which assembles the
final image according to the global tile layout. Note that
this is the only sequential phase. In the following section,
we describe  in further detail  the two main stages of  our
architecture.

4. CPU and GPU stages implementation details

Figure 1: Parallel rendering pipeline.
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Figure 3: Image-space tile-based partitioning.
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4.1 CPU-based tetrahedron projection

We  now  present  an  overview  of  the  tetrahedron  CPU
projection  stage.  The  projection  processes  project  and
rasterize  each of  their  tetrahedra  in  a  sequential  way, as
described by the following pseudo-code:

Project the 4 vertices onto the viewing plane
Clip tetrahedron against viewing plane
Compute eye coordinates vertices-viewing plane distance
Determine  tetrahedron  face  orientation  relative  to  the
viewing direction
Rasterize back faces

Store each fragment into image-sized buffer B
Rasterize front faces

Fetch corresponding back-face fragment from buffer
Determine ray-segment from fragment pair 
and store into ray-segment buffer

Each  tetrahedron  vertex  has  two  associated  attributes:

z  the computed distance to the viewing plane and s  the
scalar  field  value  (Figure  4).  We  use  an  orthographic
projection  for vertices.  The projected tetrahedron  is  then
clipped in order to trivially reject it if its bounding box falls
outside  of  the  viewing  plane.  For  each  face,  orientation
relative to the viewing direction is determined. Depending
on the result,  each projected face is classified either as a
back-face  or  a  front-face.  For  any pixel  covered  by  the
tetrahedron's  projection,  there  is  an  associated  front-
face/back-face  fragment  pair,  corresponding  to  the  entry
and exit points of a ray originating from the covered pixel.

Each  fragment  pair  allows  to  define  a  ray  segment,

which is characterized by a 4-tuple  {zback , l , s front ,sback} ,

where  zback  is the eye coordinates depth of the ray exit

point,  l  the ray segment length, and  s front , sback   scalar

values  at  the  segment's  extremities.  These  values  are
computed during face rasterization by linear interpolation
between per-vertex values.  Ray segments  are  stored  into
the  ray-segment  buffer  according  to  their  screen-space

position:  for  every  pi , j  pixel  a  list   L i , j  stores

segments which project  onto  pi , j .  Ray segments are

added to the relevant lists in incoming rasterization order.

After  tetrahedron  projection  is  over,  ray-segment
redistribution occurs during the communication phase.

4.2 CPU SIMD face rasterization

Our SIMD-enhanced face rasterization algorithm processes
four  pixels  at  a  time  in  order  to  reduce  the  number  of
rasterization  steps.  It  uses  x86  SSE  instructions  [Int05]

implemented  with  C  intrinsics.  We  define  Vi  as  a  4-

component  vector  storing  four  interpolated  values  at

iteration  i and  {v }4  as a vector where  v  is replicated in

all 4 components. All vector operations performed during
rasterization use SIMD instructions. The following pseudo-
code describes our face triangle rasterization algorithm:

Sort vertices according to increasing y-coordinate

Determine edges orientation o0,o1,o2  (left or right)

Compute integer y-coordinate face extent  ymin , ymax
Rasterize all three edges
Rasterize scanlines

The sorted face vertices {min,  mid,  max} define three
associated  edges,  rasterized  according  to  the  following
order: {min, mid}, {mid, max} and {min, max} (Figure 5).

Each  edge  is  defined  by  vertices  vstart , vend  ,  being

respectively  the  lower  and  higher  y-coordinate  vertices.
Each  vertex  has  two  associated  attributes  A={s , z} ,
which are its unprojected two attributes,  and are linearly
interpolated along the edge during rasterization:

For each edge vstart , vend   k3

Determine edge array according to ok
Compute endpoints differences:  x=xend�xstart , 
 y=yend�ystart  and A=Aend�Astart
Compute inverse slope minv= x / y

Compute lower and higher scanline integer 

y-coordinates ya=⌈ ystart ⌉  and yb=⌈ yend ⌉

Compute y p  and x p=minv y p  pre-step values

Compute  pixels number nbpix=yb�ya
Compute iteration number: nbit=nbpix /4  if nbpix  is 

a multiple of 4, nbit=nbpix /41  else

Compute interpolation factor If 0  and X0  vectors 

For each 4-pixel interval inbit
Interpolate attributes A i={Astart}4If i{ A}4
Store A i  and Xi  into edge arrays at ya4 i  

Update interpolation factor If i1=If i{4/ y}4
Update x-coordinate vector Xi1=Xi{4minv}4

 Pre-step  values  allow  to  perform  interpolation  with
subpixel  accuracy.  At  each  iteration  i ,  the  interpolated

attributes A i  and x-coordinate Xi  vectors corresponding

to  4  edge-scanline  intersections  are  computed.  Attribute
computation  requires  one  addition  and  one  multiply  per
attribute  whereas  x-coordinate  and  interpolation  factor
vector update both require only one addition.

Figure  4: Tetrahedron  projection  and  ray  segment
determination.
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At the end of each step, the three computed vectors are
written into their  corresponding 1D array. After the three
edges  have  been  rasterized,  the  left  and  right  three  1D
arrays contain x-coordinate, distance and scalar values for

each  span  defined  by  two  endpoints vl and vr
(Figure 6). Scanlines are  then rasterized:

For each scanline i  from ymin  to ymax�1

Get xl , xr , and attributes Al , Ar  from edge arrays

and initialize per-line values

For each 4-pixel scanline interval jnbit
i

Interpolate attributes A j={Al}4If j{ A}4
Back face:

Unpack {s k , z k}  from S j  and Z j

Store nb f
j  fragments into buffer B

Front face:

Get nb f
j  fragments  from back fragments buffer

Pack Z j
back  and S j

back  vectors

Compute ray length L j=Zj
back�Zj

front {1 / le}4
Pack ray segments {zk

back , l k , sk
front , sk

back}

Store nb f
j  segments into ray-segment buffer

Update interpolation factor If j1=If j{4 / x}4

Decrement nbpix
i  by 4

As in  edge rasterization,  integer  coordinates,  endpoint

attributes differences A , interval pixel number nbpix
i  ,

interpolation  factor  If 0  and  iteration  number  nbit
i  are

computed prior  to the rasterization loop (Figure 6). Each
iteration  requires  one  addition  and  one  multiply  per
attribute  interpolation  and  one  addition  to  update  the
interpolation  factor.  In  order  not  to  overwrite  or  read
excess  fragments  at  step j ,  the  effective  fragment

number  is  computed  as  nb f
j=4  if  nbpix

i 4 ,  else,  as

nb f
j=nbpix

i  which occurs only at the last step.

During back face rasterization, the scalar value and depth

{s k , z k} ,  0≤k4 , are unpacked and then written to the

back fragments  buffer  B.  During front  face rasterization,

nb f
j  ray segments are packed and written into the segment

buffer.  First,  nb f
j  fragments  are  read  from  the  back

fragments buffer.  Ray segment normalized length is then

computed using  1 /le ,  which is the precomputed inverse

length of the largest tetrahedron edge in the whole dataset.

The four segments  {zk
back , l k , sk

front , sk
back}  are packed from

back fragments and the Z
j

, S
j
 and L

j
 vectors.

4.3 GPU image-space depth-sorting and compositing

We  present  here  the  GPU  stage  of  our  architecture,
implemented with the OpenGL library. GPU compositing
processes  process  their  associated  image-space  tiles
sequentially.  Each  tile  is  itself  composited  on  a  per-
scanline basis:

For each associated image-space tile in the tile list
For each tile line

Send unsorted ray segment lists to the GPU
Perform  depth-sort in decreasing distance order

using zback  as a sorting key

Composite (back-to-front) sorted ray segment 
lists and output line pixel values

Before  the  main  tile  composition  loop,  each  GPU
process  has  received  all  the  data  corresponding  to  the
unsorted segment lists. Remind that as shown in Figure 2,
ray segments associated to the same pixel in image-space
may have been generated by different projection processes.
Thus,  for a given tile  k ,  the total unsorted segment list

L i , j  corresponding to pixel i , j  , where 0≤iwtile
and  0≤ jhtile ,  is  obtained  by assembling  the  N  lists

{L0i , j ,, LN�1 i , j}  generated by the  N  projection

processes. Each L i , j  list contains S  i , j  elements.

We  implemented  the  multi-pass  GPU  bitonic  sorting
algorithm  developed  by  Kipfer  et  al.  [KSW04].  As

represented in  Figure 7, the  wtile×htile  element lists of a

Figure 5: SIMD triangle edge rasterization.
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given tile are sorted on a per-scanline basis. As any given

scanline j  is wtile  pixels wide, there are wtile  associated

fragment lists  L i , j , stored into a 2D sorting buffer in

order  to  be  sorted.  The  fragment  list  L i , j  therefore

corresponds  to   the  i-th  sorting  buffer  line.  The  sorting

buffer dimensions are D,wtile , where D  is equal to the

maximum hardware texture size (typically 4096 on current
graphics  hardware).  As  fragment  lists  are  sorted

independently, the maximum size  S max  of a given list is

equal to D . Thus, the maximum number of ray segments
associated to any image-space pixel (that is, its allowable
maximum depth complexity) is equal to D .

As in [KSW04], we use a ping-pong rendering technique
with  two different  2D buffers,  respectively  used  to  read
elements output by the previous pass and output the current
pass  results.  The  following  pseudo-code  describes  our
implementation of GPU-based bitonic sorting.

Compute maximum list length S max=max{S i , j}

Compute power-of-two length S 'max=2
⌊log2 Smax  ⌋1

Compute sorting phase number nbphase=log2 S ' max

Fill input buffer with unsorted lists

Complete lists up to S 'max  with null elements

For each sorting phase mnbphase
For each sorting step n (from n = 0 to m)

Perform bitonic sorting pass on the GPU
Swap input and output buffers

During each pass, a number of 2D quads are rendered to
span the whole output buffer. The span width is equal to

S 'max , which is S max  rounded up to the nearest power-of-

two, as the GPU bitonic sorting algorithm requires power-
of-two length lists. Lists are completed with null elements

{0,0, 0,0}  up to  S 'max  before sorting. A bitonic sorting

pass  essentially  compares  and  shuffles  elements  pairs,
depending on m, n and element position within its list. We
refer to [KSW04] for a full description. After sorting, null

elements will be put at list end, as they have z
back=0 .

At the end of sorting execution, the input buffer contains

the  wtile  sorted  lists  corresponding  to  scanline  j .  The

corresponding final pixel values are then determined by our
compositing algorithm,  using the aforementioned buffer as

an  input,  specified  as  a  2D  texture).  A  wtile×htile
framebuffer object is used to store composited pixel values;
for a given line  j ,  any pixel  i  corresponds  to the i-th
sorted  ray  segment  list  stored  into  the  input  buffer.
Compositing  proceeds  by  accumulating  all  the  input
buffer's fragment columns contributions from back to front
into the compositing buffer line (Figure 7).

For each input buffer element column kSmax
Rasterize line v0, v1  with associated texture 
coordinates s0, t0=k /D, 0  and s1, t1=k /D,1

Per-vertex  coordinates  s ,t   are  linearly  interpolated

by  the  GPU  in  order  to  associate  input  buffer  k , i
element to line fragment i , j  . The s  coordinate, which

depends on k , addresses the element column whereas the

t  coordinate addresses the element within the column (see
Figure  7).  Each  fragment's  color  and  transparency
contributions  are  computed  by  a  fragment  processing
program. The composited element is  looked up from the
input  buffer using the interpolated texture coordinate.  As
previously written, each sorting buffer element is defined

as a 4-component  vector  {s front , sback , l , zback} .  Color and

transparency  are  determined  from  the  first  three
components  by computing  a numerical  approximation  of
the  emission/absorption  optical  model  volume  integral
[Max95].  It  is  performed  by  executing  a  loop  over  the

number of samples N s , fixed for every fragment:

Set accumulated contribution to {0, 0, 0, 1}
Look up input buffer element using 1st texture coordinate

Compute step length dx=l /Ns

For each sample pN s

Interpolate s  p  between sback  and s front  values

Look up color and optical density c  p , p
from  transfer function texture using s  p
Compute sample color and transparency

C p=c pdx , p=e
� pdx

Accumulate: I= IC pp , T=T p

Write result to output

For each sample p , the associated scalar value s  p  is

computed by linear interpolation. Then, the corresponding

color  and  optical  density  values  c  p , p  are  read

from a 1D RGBA floating-point  transfer function texture

with  a  dependent  look-up  using  s  p .  The  sample

contributions are  then computed and accumulated into the
total  contribution  using  the  back-to-front  compositing
equations.  At the end of the loop,  the final  ray segment

contribution  values   I ,T   are  output.  After  output,

Figure  7: Depth-sorting and compositing. Element color
and number indicate CPU process origin and depth order.
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fragment contributions are accumulated into the associated
pixel using OpenGL floating-point alpha-blending. This is
consistent with a tile framebuffer using a 16-bit per RGBA
component  pixel  format.  The  blending  mode  used
corresponds to back-to-front compositing.

As described above,  lists  are filled with null  elements

from S  i , j  up to S max . As each null element is defined

as  the  {0,0, 0,0}  vector,  it  ensures  that  the  associated

contribution has no effect on the accumulated final pixel
values. As l=0 , the final color contribution will be 0, as

C p=c p×0=0  and the final transparency contributions

will be 1, as p=e
�0=1 .

5. Performance results

In this section, we present performance evaluation results
of our rendering architecture on an 8-node PC cluster. Each
node  is  a  dual-processor  Intel  3.4  GHz  Xeon,  with  8
Gbytes RAM, and a PCI-Express x16 Nvidia Quadro FX
4400 graphics board with 512 MB RAM. All the nodes are
interconnected  with  a  Gbit  Ethernet  switch,  via  a  Gbit
Ethernet network IC. Each node has the Red Hat Enterprise
Linux Release 4 installed as an operating system and the
8174 Nvidia drivers version.

We evaluated aggregated rendering performance, that is,
the total number of tetrahedron rendered per second, as a
function  of  node  number.  We  used  two  datasets  with
respectively 15.7  (Figure  8)  and 51.1  million  tetrahedra.
These datasets  represent  the  impact  of  a  meteor  into  the
ocean,  computed  with  an  adaptive  meshing scheme.  For
each  single  measurement,  a  sequence  of  50  images  was
rendered. We varied the number of nodes from 2 to 8, each
node running one tetrahedron projection process and one
depth-sorting and compositing process, the total number of
processes  therefore  ranging from 4  to  16.  A 1024x1024
image resolution was used, with a fixed 16x16 tiling. Due
to memory restrictions, we couldn't perform tests on only

one  node,  as  the memory footprint  of  the two processes
exceeded 8 GB. We therefore chose the 2 nodes results as a
reference in order to compute parallel rendering efficiency.

Dataset Node number 2 4 8

15.7 Mtets kTetrahedra/s 878 1572 2533

Efficiency 1 0.89 0.72

51.1 Mtets Ktetrahedras/s 1021 1861 3406

Efficiency 1 0.91 0.83

Table 1: Parallel Rendering performance.

At 8 nodes, we observe that parallel efficiency is 0.72 for
the 15.7 Mtetrahedra dataset whereas it is equal to 0.83 for
the  larger  one  (Table  1).  We also  performed  a  detailed
evaluation of the different steps of the two main stages in
order to evaluate their impact on the overall rendering time
for the 15.7 Mtetrahedra dataset. For both projection and
sorting/compositing  processes,  we  measured  the  average
execution time over the total  number of nodes.  For each
step of the overall execution, we also measured its average
execution time over the total number of nodes, the sum of
the steps average execution times being equal to the total
stage execution time, for both kinds of processes.

Figure  9 a)  represents  the  breakdown  of  the  average
projection  time  as  a  function  of  node  number  whereas
Figure 9 b) shows the detailed breakdown of the average
compositing  process  execution  time.  Concerning  the
projection  stage,  we  observe  that  the  average  projection
time makes up for the largest part of the overall execution
time. Furthermore, it appears to decrease as a function of
the inverse node number. However, we observe that as the
number of  nodes  increases,  the  communication  and wait
phase duration makes up for a bigger part  of the overall
projection  execution  time.  Similarly,  a  detailed
examination  of  the  sorting/compositing  stage  shows that
the  sorting  and  compositing  execution  time  appears  to
decrease  a  a  function  of  the  inverse  node  number.

Figure 9: CPU and GPU stages breakdown.
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However, the average communication and wait time makes
up for at least half the overall compositing execution time
(about 56% for 8 nodes).

By  comparing  the  projection  and  compositing  stages
breakdowns,  we  can  conclude  that  our  rendering
architecture is limited by the projection stage, as for any
node number the average projection time is greater than the
sorting and compositing phases average execution time. On
the average, compositing processes spend a large part  of
their communication/wait phase to wait for the projection
processes to end their projection phase. The average final
image  assembly  time  is  expected  to  remain  constant  as
node number increases, as it is performed by only the first
compositing  process,  receiving  and  assembling  all  the
image  tiles,  while  the  other  compositing  processes  send
their image tiles to the first process. We actually observe
that it slightly increases as node number grows: this may be
caused  by  communication  inefficiencies,  as  a  larger
number of processes send their tiles to the first compositing
process,  even  if  the  total  amount  of  transmitted  data
remains constant.

6. Conclusion and future work

As  discussed  in  4.3,  the  GPU-based  depth-sorting
algorithm  does  not  allow  per-pixel  fragment  lists  being
larger  than  the  maximum texture  size,  and  thus  cannot
correctly  render  datasets  with  a  maximum  depth
complexity  larger  that  the  maximum  texture  size.  We
intend to modify and enhance it  in order to support  per-
pixel arbitrary-length fragment lists. As shown by detailed
performance breakdowns, the CPU projection phase is the
current  bottleneck  of  our  parallel  rendering  architecture.
We intend to take advantage of current multi-core CPUs in
order  to  decrease  the CPU projection  phase  time.  Using

multithreading with nt  threads per projection process, nt
being equal  to  the  number  of  cores  per  CPU,  we could

ideally expect a nt  speedup.

In  order  to  reach  the  target  performance  of  1  frame
rendered/s  with  the  15.7M  tetrahedra  dataset,  we  would
need  at  least  8x15.7/2.5=50  nodes,  extrapolating  the  8-
node  results  from  Table  1 and  supposing  that  parallel
efficiency does  not  further  decrease.  However,  we think
that  the  communication/wait  phase  duration  could  be
reduced  by  using  an  interconnect  system with  a  higher
bandwidth  than  Gbit  Ethernet,  which  would  probably
improve the overall rendering performance.

Finally, we would like to perform  rasterization entirely
on the GPU rather than on the CPU,  as cell projection is
at  least  one  order  of magnitude faster on the former.  It
would require  being able to  store the ray-segment buffer
into  graphics  memory,  which  might  be  allowed  by  the
latest GPU architectures.
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