
Hybrid CPU-GPU Unstructured Meshes Parallel Volume

Rendering on PC Clusters

M. Juliachs1, T. Carrard2 and J.-P. Nominé2

1Laboratoire PRiSM, Université de Versailles, France
2CEA/DIF, Bruyères-le-Châtel, France

Abstract
Large-scale numerical simulation produces datasets with ever-growing size and complexity. In particular,
unstructured meshes are encountered in many applications. Volume rendering provides a way to efficiently
analyze such datasets. Recent advances in graphics hardware have enabled the implementation of efficient
unstructured volume rendering algorithms on the GPU. However, GPU architecture limitations make these
methods difficultly amenable to a parallel implementation, which is necessary to render very large datasets
at interactive speeds and high resolutions. Many previous parallel approaches have focused on software-
based algorithms. In this paper, we present a hybrid object-space/image-space CPU-GPU distributed
parallel volume rendering method, taking advantage of the flexibility afforded by the CPU, including SIMD
processing capabilities, and using GPUs to perform repetitive tasks like depth-sorting and compositing. We
present the impact of the different phases on the overall rendering time as a function of node number.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics, I.3.8 [Computer Graphics]: Applications

1. Introduction

Numerical simulation of unsteady physical phenomena
routinely produces datasets with ever-increasing element
number and complexity. Datasets based on unstructured
meshes are encountered in many application domains. We
want to focus on volume rendering for such datasets with a
large number of elements, ranging from 106 to 108

elements, and a high-dynamic range, both in time and
space. During the last few years, the dramatic increase in
graphics processors (GPU) computing speed and features
has enabled the development of novel unstructured volume
rendering algorithms, taking advantage of GPU user-
programmable features to reach interactive rendering
speeds for relatively modest-sized tetrahedral datasets.
Unfortunately, their performance is often not high enough
yet to be able to render the largest datasets generated by
large-scale numerical simulation at interactive rates (at
least 1 frame rendered/s). By distributing the rendering
workload and dataset, parallel rendering allows to
aggregate the rendering performance of N nodes.

Several uniform grids parallel volume rendering
algorithms have been developed on PC clusters with GPUs.

These methods generally partition the whole dataset into
sub-volumes distributed among the N nodes. As in
sequential rendering, the global visibility ordering can be
determined from the position of each sub-volume in the
global volume relative to the viewpoint. Enforcing a global
visibility ordering is more difficult with unstructured
volume rendering, as mesh geometric and topological
characteristics such as non-convex boundaries, holes, or
multiple disconnected components require suited visibility
ordering algorithms. Moreover, parallel rendering dataset
partitioning may generate further irregularities such as
sawtooth boundaries. For these reasons, parallel
unstructured volume rendering is difficult to perform on
GPU clusters, as sequential algorithms generally execute
all of the rendering pipeline on the GPU and do not easily
allow retrieving intermediate data which might be required
by a parallel implementation. A hybrid object/image-space
parallel algorithm retains advantages from both object-
space and image-space based rendering algorithms:

• it allows an arbitrary partition of the dataset between
projection nodes, thus allowing dataset size to scale
with the number of nodes,

• it determines a per-pixel image-space depth ordering

Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

of tetrahedron ray-segment-equivalent contributions:
this ordering is unaffected by mesh geometric and
topological particularities and dataset partitioning.

We base our parallel rendering approach on an existing
distributed rendering algorithm [MC97], which uses a
hybrid object-space/image-space 2-stage pipeline. Our
contribution is two-fold: first, we use the SIMD
instructions available in modern CPUs [Int05] to speed up
the tetrahedron projection object-space stage. Then, we
execute the image-space stage on the GPU, including ray
segment sorting and compositing.

In this paper, we first present related work, including
relevant single-GPU algorithms and existing parallel
unstructured volume rendering algorithms. In the following
section, we present our CPU/GPU object-space/image-
space hybrid approach. We then present performance
results, including scalability tests as a function of node
number. Finally, we discuss the limitations of our
implementation, and how to overcome them, as well as
how our approach could be extended to take advantage of
current and upcoming architectures.

2. Related work

Most of the research work in parallel volume rendering on
distributed architectures has been done on rendering
algorithms for uniform grids, using a sort-last rendering
architecture [SMW*04]. This architecture consists in
redistributing the pixels of partial images, rendered at the
end of the graphics pipeline, in order to generate a final
image by compositing [MCE*94]. Usually, the whole
dataset is partitioned into a set of sub-volumes between N
nodes, each generating a partial image. The depth-ordering
of all of the sub-volumes with respect to the viewpoint
gives the correct composition order of the N partial images.

Most existing parallel volume rendering algorithms for
unstructured meshes have been developed on specialized
architectures (either shared- or distributed-memory). An
image-space raycasting algorithm was developed by Ma
[Ma95] on a distributed memory architecture, partitioning
the dataset and the image-space between N nodes. Each
node performs raycasting on its local dataset subset,
producing ray segments, and also composites all the ray
segments lists associated to the pixels belonging to its
image part. As a given ray segment may belong to a pixel
composited by another node, a N-to-N ray-segment
redistribution phase occurs between raycasting and
compositing. Furthermore, the two stages are overlapped in
order to decrease rendering time. Building upon this
approach, Ma et al. [MC97] have developed a hybrid objet-
space/image-space algorithm on a distributed memory
architecture. It arbitrarily partitions the dataset between N
nodes. Each node projects and scan-converts its dataset
partition, generating ray-segments equivalent fragments. As
in [Ma95], ray segments are redistributed between nodes
according to their image-space position. After a depth-sort,

each fragment list is then composited. Furthermore, each
node partitions its data subset into an identical copy of a
kD-tree, in order to implement viewing volume culling and
to reduce fragment list growth, as each leaf is processed in
serial order according to its distance to the viewpoint.

Another hybrid method has been developed by Farias et
al. [FMS00]. It uses a sweeping plane algorithm to
compute an approximate object-space visibility ordering.
As cells are encountered by the plane, they are projected
onto the viewing plane and rasterized into fragments,
which are inserted into pixel lists. Pixel list sorting
provides an image-space correct ordering. The parallel
implementation partitions the image-space between the N
rendering nodes and maintains an octree storing the whole
dataset. Each node determines the octree leaves
intersecting the viewing volume portion relevant to each of
its image-space tile. Then, it executes the sweeping
algorithm on the data subset contained into the intersected
leaves, producing a depth-correct image. As no fragments
are redistributed between nodes, minimal communication is
required. More recently, Childs et al. [CDM06] have
presented a parallel algorithm suited to the rendering of
very large datasets (100 million tetrahedra) on a PC cluster.
They used a hybrid approach, similarly to [MC97]. By
deferring large-element rasterization to a further stage, they
were able to bound the workload performed by each node
during each of the two phases, allowing quasi-linear
scalability up to 400 nodes. Furthermore, by using a 3D-
grid sampling approach during the object-space phase, they
alleviated the need for sorting during the image-space
phase, the compositing order being given by sample
ordering along the grid depth axis. However this approach
might lead to sampling artifacts and underestimation of the
contributions of elements whose depth extent is smaller
than the grid depth step size.

Several GPU image-space depth-sorting algorithms have
been developed in the recent years. Callahan et al.
[CIC*04] implemented a hybrid object-space/image-space
unstructured volume rendering algorithm using a fixed-
depth sorting network: the k-buffer. During a first phase, a
partial object-space visibility ordering is determined on the
CPU, by sorting tetrahedron faces according to their
distance to the viewing plane. During the following GPU
rasterization phase, fragments (depth and interpolated
scalar value) are stored, for each pixel, into the k-buffer,
which is implemented using k image-size 2D buffers and a
fragment program. As a new fragment is inserted, the two
closest fragments are determined, a ray segment
contribution is computed and the closest fragment is then
taken off the list. A correct image-space visibility ordering
is computed as long as the difference in fragment position
between partial and correct orderings does not exceed k.
This depends on the dataset and the viewing position.
Kipfer et al. [KSW04] implemented a particle system
rendering engine on the GPU. In order to perform visibility
ordering, which is necessary to correctly render semi-
transparent particles, they developed a GPU-based bitonic

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters86

sorting algorithm. By taking advantage of the GPU's
multiple fragment processing units, their algorithm was
able to sort between 1 and 2 million particles per second,
depending on the optimizations used.

3. CPU-GPU hybrid unstructured meshes parallel

volume rendering – distributed architecture

In this section, we describe our distributed parallel
unstructured volume rendering approach. As in [MC97],
we use two main overlapping stages (Figure 1), interlinked
by a N to P communication phase:

• the object-space stage, performed on the CPU, during
which tetrahedron are projected, and scan-converted
into ray segments,

• and the image-space stage, executed on the GPU,
during which ray segments are depth-sorted and
composited to produce final pixel values.

These two stages are pipelined in such a way that the
projection stage performs processing of the i-th frame
while the sorting/compositing stage computes the (i-1)-th
frame. Moreover, each stage is executed in parallel with
respectively N projection processes and P compositing
processes.

Before actual execution of the rendering loop, the
tetrahedral dataset is arbitrarily partitioned between the N
projection processes. Each subset may have arbitrary
geometry, topology, and/or connectivity, e.g. irregular
boundaries, holes, or multiple disconnected components.
Our only constraint is that no pair of cells should intersect,
otherwise rendering artifacts might occur. During the
object-space stage, ray segments are written in incoming
order into a ray segment buffer, stored into main memory,
which is a set of W×H lists, W and H being the
image's dimensions. Each projection process maintains its
own ray segment buffer into its memory space (Figure 2).

After tetrahedron projection ends, ray segments lists
must be distributed to the compositing processes according
to their image-space location. We use the MPI library in
order to implement communication between the two stages.
For each compositing process, a given projection process
sends segment lists data relevant to the image-space part

managed by the destination process. Each
sorting/compositing process performs for each of its tile an
image-space sorting of the assembled ray segments lists
using the GPU, as in [CIC*04]. However, our sorting
algorithm, based upon [KSW04], operates on the whole
fragment list relevant to a given pixel, to compute a correct
depth-ordering.

We use a simple tile-based image-space static

subdivision scheme (Figure 3). Let nW and nH be the

number of tiles respectively subdividing the image-space x
and y axes. In order to attribute tiles to compositing
processes, we scan the whole tiling from left to right in
ascending scanline order. For each sequence of P tiles,

we randomly shuffle the {0,1, ..., P�1} index sequence.

The i-th tile in the sequence will be attributed to the
process corresponding to the i-th shuffled process index.

All tiles are evenly sized, with tile width wtile=W /nW
and tile height htile=H /nH . The final image is assembled

from the nW×nH tiles after the parallel compositing stage

is over. Each compositing process sends its nW×nH /P
tiles to the first compositing process, which assembles the
final image according to the global tile layout. Note that
this is the only sequential phase. In the following section,
we describe in further detail the two main stages of our
architecture.

4. CPU and GPU stages implementation details

Figure 1: Parallel rendering pipeline.

●Project tetrahedron
●Rasterize faces
●Determine ray segments

Object-space stage

(N processes)

●Redistribute ray segments according

to image-space position

N to P communication phase

●Depth sort and composite

fragment lists of each tile
●Assemble final image

Image-space stage

(P processes)

Figure 3: Image-space tile-based partitioning.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

x

y

Process 1

Process 2

Process 3

Process 4

nW=4, n
H=4, P=4

Figure 2: Mesh and image-space partitioning.

Projection process 1

Projection process 2

Compositing process 1

Compositing process 2

T
0

i+3

i+2

i+1

i

T
1

T
3

T
5

T
4

T
2

T
8

T
7

T
6

T
6

T
8

T
4

T
5

T
7

T
2

T
3

T
6

T
7

T
1

T
2

T
0

Ray segment lists

Viewing plane

y

z

Assembled lists

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters 87

4.1 CPU-based tetrahedron projection

We now present an overview of the tetrahedron CPU
projection stage. The projection processes project and
rasterize each of their tetrahedra in a sequential way, as
described by the following pseudo-code:

Project the 4 vertices onto the viewing plane
Clip tetrahedron against viewing plane
Compute eye coordinates vertices-viewing plane distance
Determine tetrahedron face orientation relative to the
viewing direction
Rasterize back faces

Store each fragment into image-sized buffer B
Rasterize front faces

Fetch corresponding back-face fragment from buffer
Determine ray-segment from fragment pair
and store into ray-segment buffer

Each tetrahedron vertex has two associated attributes:

z the computed distance to the viewing plane and s the
scalar field value (Figure 4). We use an orthographic
projection for vertices. The projected tetrahedron is then
clipped in order to trivially reject it if its bounding box falls
outside of the viewing plane. For each face, orientation
relative to the viewing direction is determined. Depending
on the result, each projected face is classified either as a
back-face or a front-face. For any pixel covered by the
tetrahedron's projection, there is an associated front-
face/back-face fragment pair, corresponding to the entry
and exit points of a ray originating from the covered pixel.

Each fragment pair allows to define a ray segment,

which is characterized by a 4-tuple {zback , l , s front ,sback} ,

where zback is the eye coordinates depth of the ray exit

point, l the ray segment length, and s front , sback  scalar

values at the segment's extremities. These values are
computed during face rasterization by linear interpolation
between per-vertex values. Ray segments are stored into
the ray-segment buffer according to their screen-space

position: for every pi , j pixel a list L i , j stores

segments which project onto pi , j . Ray segments are

added to the relevant lists in incoming rasterization order.

After tetrahedron projection is over, ray-segment
redistribution occurs during the communication phase.

4.2 CPU SIMD face rasterization

Our SIMD-enhanced face rasterization algorithm processes
four pixels at a time in order to reduce the number of
rasterization steps. It uses x86 SSE instructions [Int05]

implemented with C intrinsics. We define Vi as a 4-

component vector storing four interpolated values at

iteration i and {v }4 as a vector where v is replicated in

all 4 components. All vector operations performed during
rasterization use SIMD instructions. The following pseudo-
code describes our face triangle rasterization algorithm:

Sort vertices according to increasing y-coordinate

Determine edges orientation o0,o1,o2 (left or right)

Compute integer y-coordinate face extent  ymin , ymax
Rasterize all three edges
Rasterize scanlines

The sorted face vertices {min, mid, max} define three
associated edges, rasterized according to the following
order: {min, mid}, {mid, max} and {min, max} (Figure 5).

Each edge is defined by vertices vstart , vend  , being

respectively the lower and higher y-coordinate vertices.
Each vertex has two associated attributes A={s , z} ,
which are its unprojected two attributes, and are linearly
interpolated along the edge during rasterization:

For each edge vstart , vend  k3

Determine edge array according to ok
Compute endpoints differences:  x=xend�xstart ,
 y=yend�ystart and A=Aend�Astart
Compute inverse slope minv= x / y

Compute lower and higher scanline integer

y-coordinates ya=⌈ ystart ⌉ and yb=⌈ yend ⌉

Compute y p and x p=minv y p pre-step values

Compute pixels number nbpix=yb�ya
Compute iteration number: nbit=nbpix /4 if nbpix is

a multiple of 4, nbit=nbpix /41 else

Compute interpolation factor If 0 and X0 vectors

For each 4-pixel interval inbit
Interpolate attributes A i={Astart}4If i{ A}4
Store A i and Xi into edge arrays at ya4 i

Update interpolation factor If i1=If i{4/ y}4
Update x-coordinate vector Xi1=Xi{4minv}4

 Pre-step values allow to perform interpolation with
subpixel accuracy. At each iteration i , the interpolated

attributes A i and x-coordinate Xi vectors corresponding

to 4 edge-scanline intersections are computed. Attribute
computation requires one addition and one multiply per
attribute whereas x-coordinate and interpolation factor
vector update both require only one addition.

Figure 4: Tetrahedron projection and ray segment
determination.

Viewing

direction

Projection plane

Front-face fragment

Back-face fragment

rayl

f 2

f 1

f 0

{z1, s1}

{z0, s0}

{z2, s2 }

{z front , s front} {zback , sback}

v0

v2

v1

z

y

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters88

At the end of each step, the three computed vectors are
written into their corresponding 1D array. After the three
edges have been rasterized, the left and right three 1D
arrays contain x-coordinate, distance and scalar values for

each span defined by two endpoints vl and vr
(Figure 6). Scanlines are then rasterized:

For each scanline i from ymin to ymax�1

Get xl , xr , and attributes Al , Ar from edge arrays

and initialize per-line values

For each 4-pixel scanline interval jnbit
i

Interpolate attributes A j={Al}4If j{ A}4
Back face:

Unpack {s k , z k} from S j and Z j

Store nb f
j fragments into buffer B

Front face:

Get nb f
j fragments from back fragments buffer

Pack Z j
back and S j

back vectors

Compute ray length L j=Zj
back�Zj

front {1 / le}4
Pack ray segments {zk

back , l k , sk
front , sk

back}

Store nb f
j segments into ray-segment buffer

Update interpolation factor If j1=If j{4 / x}4

Decrement nbpix
i by 4

As in edge rasterization, integer coordinates, endpoint

attributes differences A , interval pixel number nbpix
i ,

interpolation factor If 0 and iteration number nbit
i are

computed prior to the rasterization loop (Figure 6). Each
iteration requires one addition and one multiply per
attribute interpolation and one addition to update the
interpolation factor. In order not to overwrite or read
excess fragments at step j , the effective fragment

number is computed as nb f
j=4 if nbpix

i 4 , else, as

nb f
j=nbpix

i which occurs only at the last step.

During back face rasterization, the scalar value and depth

{s k , z k} , 0≤k4 , are unpacked and then written to the

back fragments buffer B. During front face rasterization,

nb f
j ray segments are packed and written into the segment

buffer. First, nb f
j fragments are read from the back

fragments buffer. Ray segment normalized length is then

computed using 1 /le , which is the precomputed inverse

length of the largest tetrahedron edge in the whole dataset.

The four segments {zk
back , l k , sk

front , sk
back} are packed from

back fragments and the Z
j

, S
j
 and L

j
 vectors.

4.3 GPU image-space depth-sorting and compositing

We present here the GPU stage of our architecture,
implemented with the OpenGL library. GPU compositing
processes process their associated image-space tiles
sequentially. Each tile is itself composited on a per-
scanline basis:

For each associated image-space tile in the tile list
For each tile line

Send unsorted ray segment lists to the GPU
Perform depth-sort in decreasing distance order

using zback as a sorting key

Composite (back-to-front) sorted ray segment
lists and output line pixel values

Before the main tile composition loop, each GPU
process has received all the data corresponding to the
unsorted segment lists. Remind that as shown in Figure 2,
ray segments associated to the same pixel in image-space
may have been generated by different projection processes.
Thus, for a given tile k , the total unsorted segment list

L i , j corresponding to pixel i , j  , where 0≤iwtile
and 0≤ jhtile , is obtained by assembling the N lists

{L0i , j ,, LN�1 i , j} generated by the N projection

processes. Each L i , j list contains S  i , j elements.

We implemented the multi-pass GPU bitonic sorting
algorithm developed by Kipfer et al. [KSW04]. As

represented in Figure 7, the wtile×htile element lists of a

Figure 5: SIMD triangle edge rasterization.

y
p
5

 y

y
p
1

 y

y
p
4

 y

y
p
6

 y

y
p
7

 y

y
p
3

 y

y
p

 y

y
p
2

 y

max

mid

min

1st iteration pixels

2nd iteration pixels

Excess pixel

x
a
= x

start
x

p

x
a
2m

inv

x
a
3m

inv

x
a
4m

inv

x
a
5m

inv

x
a
6m

inv

x
a
7m

inv

A
0

A
1

{4m
inv
}
4

{4/ y }4

x
p

y
p

x
a
m

inv

If
1

If
0

x
start
, y

start


x
end
, y

end


X
0

X
1

Face vertex

right

right

le
ft

y
b

y
a

x

y
Figure 6: SIMD scanline rasterization.

line

A0 A1

1st iteration pixels

2nd iteration pixels

Excess pixels

x
p

 x

x
p
1

 x

x
p
2

 x

x
p
3

 x

x
p
4

 x

x
p
5

 x

x
p
6

 x

x
p
7

 x

If
0

If
1{4 / x}

4

x
p

x
a

x
a
1 x

a
2 x

a
3 x

a
4 x

a
5

Scanline endpoint

x
a
7

x
a
6=x

b

v
l
{x

l
, A

l
} v

r
{x

r
, A

r
}

y
min
1

 x

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters 89

given tile are sorted on a per-scanline basis. As any given

scanline j is wtile pixels wide, there are wtile associated

fragment lists L i , j , stored into a 2D sorting buffer in

order to be sorted. The fragment list L i , j therefore

corresponds to the i-th sorting buffer line. The sorting

buffer dimensions are D,wtile , where D is equal to the

maximum hardware texture size (typically 4096 on current
graphics hardware). As fragment lists are sorted

independently, the maximum size S max of a given list is

equal to D . Thus, the maximum number of ray segments
associated to any image-space pixel (that is, its allowable
maximum depth complexity) is equal to D .

As in [KSW04], we use a ping-pong rendering technique
with two different 2D buffers, respectively used to read
elements output by the previous pass and output the current
pass results. The following pseudo-code describes our
implementation of GPU-based bitonic sorting.

Compute maximum list length S max=max{S i , j}

Compute power-of-two length S 'max=2
⌊log2 Smax  ⌋1

Compute sorting phase number nbphase=log2 S ' max

Fill input buffer with unsorted lists

Complete lists up to S 'max with null elements

For each sorting phase mnbphase
For each sorting step n (from n = 0 to m)

Perform bitonic sorting pass on the GPU
Swap input and output buffers

During each pass, a number of 2D quads are rendered to
span the whole output buffer. The span width is equal to

S 'max , which is S max rounded up to the nearest power-of-

two, as the GPU bitonic sorting algorithm requires power-
of-two length lists. Lists are completed with null elements

{0,0, 0,0} up to S 'max before sorting. A bitonic sorting

pass essentially compares and shuffles elements pairs,
depending on m, n and element position within its list. We
refer to [KSW04] for a full description. After sorting, null

elements will be put at list end, as they have z
back=0 .

At the end of sorting execution, the input buffer contains

the wtile sorted lists corresponding to scanline j . The

corresponding final pixel values are then determined by our
compositing algorithm, using the aforementioned buffer as

an input, specified as a 2D texture). A wtile×htile
framebuffer object is used to store composited pixel values;
for a given line j , any pixel i corresponds to the i-th
sorted ray segment list stored into the input buffer.
Compositing proceeds by accumulating all the input
buffer's fragment columns contributions from back to front
into the compositing buffer line (Figure 7).

For each input buffer element column kSmax
Rasterize line v0, v1 with associated texture
coordinates s0, t0=k /D, 0 and s1, t1=k /D,1

Per-vertex coordinates s ,t  are linearly interpolated

by the GPU in order to associate input buffer k , i
element to line fragment i , j  . The s coordinate, which

depends on k , addresses the element column whereas the

t coordinate addresses the element within the column (see
Figure 7). Each fragment's color and transparency
contributions are computed by a fragment processing
program. The composited element is looked up from the
input buffer using the interpolated texture coordinate. As
previously written, each sorting buffer element is defined

as a 4-component vector {s front , sback , l , zback} . Color and

transparency are determined from the first three
components by computing a numerical approximation of
the emission/absorption optical model volume integral
[Max95]. It is performed by executing a loop over the

number of samples N s , fixed for every fragment:

Set accumulated contribution to {0, 0, 0, 1}
Look up input buffer element using 1st texture coordinate

Compute step length dx=l /Ns

For each sample pN s

Interpolate s  p between sback and s front values

Look up color and optical density c  p , p
from transfer function texture using s  p
Compute sample color and transparency

C p=c pdx , p=e
� pdx

Accumulate: I= IC pp , T=T p

Write result to output

For each sample p , the associated scalar value s  p is

computed by linear interpolation. Then, the corresponding

color and optical density values c  p , p are read

from a 1D RGBA floating-point transfer function texture

with a dependent look-up using s  p . The sample

contributions are then computed and accumulated into the
total contribution using the back-to-front compositing
equations. At the end of the loop, the final ray segment

contribution values  I ,T  are output. After output,

Figure 7: Depth-sorting and compositing. Element color
and number indicate CPU process origin and depth order.

Sorting buffer

Tile image bufferDepth-sorting

Currently composited

fragment column

Compositing

order

Processed scanline

Tile buffer pixel

z

x

y

2 1 2 3
3

1

2 4

1
3

1

4
2

5

0
00

000

3 2 4 5
2

1

1 3

2

1

4

3

2

1

0

0

0

0

00

0 Null element

s

t

v
1

v
0

1,�1 j

htile
�1,�1 j

htile


k /D
h
tile

w
tile

S
max

=5

Elements

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters90

fragment contributions are accumulated into the associated
pixel using OpenGL floating-point alpha-blending. This is
consistent with a tile framebuffer using a 16-bit per RGBA
component pixel format. The blending mode used
corresponds to back-to-front compositing.

As described above, lists are filled with null elements

from S  i , j up to S max . As each null element is defined

as the {0,0, 0,0} vector, it ensures that the associated

contribution has no effect on the accumulated final pixel
values. As l=0 , the final color contribution will be 0, as

C p=c p×0=0 and the final transparency contributions

will be 1, as p=e
�0=1 .

5. Performance results

In this section, we present performance evaluation results
of our rendering architecture on an 8-node PC cluster. Each
node is a dual-processor Intel 3.4 GHz Xeon, with 8
Gbytes RAM, and a PCI-Express x16 Nvidia Quadro FX
4400 graphics board with 512 MB RAM. All the nodes are
interconnected with a Gbit Ethernet switch, via a Gbit
Ethernet network IC. Each node has the Red Hat Enterprise
Linux Release 4 installed as an operating system and the
8174 Nvidia drivers version.

We evaluated aggregated rendering performance, that is,
the total number of tetrahedron rendered per second, as a
function of node number. We used two datasets with
respectively 15.7 (Figure 8) and 51.1 million tetrahedra.
These datasets represent the impact of a meteor into the
ocean, computed with an adaptive meshing scheme. For
each single measurement, a sequence of 50 images was
rendered. We varied the number of nodes from 2 to 8, each
node running one tetrahedron projection process and one
depth-sorting and compositing process, the total number of
processes therefore ranging from 4 to 16. A 1024x1024
image resolution was used, with a fixed 16x16 tiling. Due
to memory restrictions, we couldn't perform tests on only

one node, as the memory footprint of the two processes
exceeded 8 GB. We therefore chose the 2 nodes results as a
reference in order to compute parallel rendering efficiency.

Dataset Node number 2 4 8

15.7 Mtets kTetrahedra/s 878 1572 2533

Efficiency 1 0.89 0.72

51.1 Mtets Ktetrahedras/s 1021 1861 3406

Efficiency 1 0.91 0.83

Table 1: Parallel Rendering performance.

At 8 nodes, we observe that parallel efficiency is 0.72 for
the 15.7 Mtetrahedra dataset whereas it is equal to 0.83 for
the larger one (Table 1). We also performed a detailed
evaluation of the different steps of the two main stages in
order to evaluate their impact on the overall rendering time
for the 15.7 Mtetrahedra dataset. For both projection and
sorting/compositing processes, we measured the average
execution time over the total number of nodes. For each
step of the overall execution, we also measured its average
execution time over the total number of nodes, the sum of
the steps average execution times being equal to the total
stage execution time, for both kinds of processes.

Figure 9 a) represents the breakdown of the average
projection time as a function of node number whereas
Figure 9 b) shows the detailed breakdown of the average
compositing process execution time. Concerning the
projection stage, we observe that the average projection
time makes up for the largest part of the overall execution
time. Furthermore, it appears to decrease as a function of
the inverse node number. However, we observe that as the
number of nodes increases, the communication and wait
phase duration makes up for a bigger part of the overall
projection execution time. Similarly, a detailed
examination of the sorting/compositing stage shows that
the sorting and compositing execution time appears to
decrease a a function of the inverse node number.

Figure 9: CPU and GPU stages breakdown.

2 4 8

0

100

200

300

400

500

600

700

800

900

Projection stage

Projection Comm/wait

Node number

T
im

e
 (

s
)

2 4 8

0

100

200

300

400

500

600

700

800

900

Sorting/compositing stage

Sorting/co

mpositing

Comm/wait Image

assembly

Node number

T
im

e
(s

)

a) b)

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters 91

However, the average communication and wait time makes
up for at least half the overall compositing execution time
(about 56% for 8 nodes).

By comparing the projection and compositing stages
breakdowns, we can conclude that our rendering
architecture is limited by the projection stage, as for any
node number the average projection time is greater than the
sorting and compositing phases average execution time. On
the average, compositing processes spend a large part of
their communication/wait phase to wait for the projection
processes to end their projection phase. The average final
image assembly time is expected to remain constant as
node number increases, as it is performed by only the first
compositing process, receiving and assembling all the
image tiles, while the other compositing processes send
their image tiles to the first process. We actually observe
that it slightly increases as node number grows: this may be
caused by communication inefficiencies, as a larger
number of processes send their tiles to the first compositing
process, even if the total amount of transmitted data
remains constant.

6. Conclusion and future work

As discussed in 4.3, the GPU-based depth-sorting
algorithm does not allow per-pixel fragment lists being
larger than the maximum texture size, and thus cannot
correctly render datasets with a maximum depth
complexity larger that the maximum texture size. We
intend to modify and enhance it in order to support per-
pixel arbitrary-length fragment lists. As shown by detailed
performance breakdowns, the CPU projection phase is the
current bottleneck of our parallel rendering architecture.
We intend to take advantage of current multi-core CPUs in
order to decrease the CPU projection phase time. Using

multithreading with nt threads per projection process, nt
being equal to the number of cores per CPU, we could

ideally expect a nt speedup.

In order to reach the target performance of 1 frame
rendered/s with the 15.7M tetrahedra dataset, we would
need at least 8x15.7/2.5=50 nodes, extrapolating the 8-
node results from Table 1 and supposing that parallel
efficiency does not further decrease. However, we think
that the communication/wait phase duration could be
reduced by using an interconnect system with a higher
bandwidth than Gbit Ethernet, which would probably
improve the overall rendering performance.

Finally, we would like to perform rasterization entirely
on the GPU rather than on the CPU, as cell projection is
at least one order of magnitude faster on the former. It
would require being able to store the ray-segment buffer
into graphics memory, which might be allowed by the
latest GPU architectures.

7. Acknowledgments

We would like to thank Philippe Ballereau for the
meteor datasets. We would also like to thank the reviewers
for their helpful remarks.

References

[CIC*04] CALLAHAN S. P., IKITS M. , COMBA J. L. D.,
SILVA C. T.: Hardware-Assisted Visibility Sorting for
Unstructured Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics 11, 3 (May
2005), 285-295

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A
Scalable, Hybrid Scheme for Volume Rendering
Massive Data Sets. In Proc. of the Eurographics
Symposium on Parallel Graphics and Visualization
(2006), pp. 153-162.

[FMS00] FARIAS R., MITCHELL J. S. B., SILVA C.T.:
ZSWEEP: An Efficient and Exact Projection
Algorithm for Unstructured Volume Rendering, In
Proc. of the 2000 IEEE Symposium on Volume
Visualization (2000), pp. 91-99.

[Int05] INTEL: IA-32 Intel Architecture Software
Developer's Manual, Basic Architecture, April 2005.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
UberFlow: A GPU-Based Particle Engine. In Proc. of
the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics Hardware (2004), pp. 115-122.

[Ma95] MA K.-L.: Parallel Volume Ray-Casting for
Unstructured-Grid Data on Distributed-Memory
Architectures. In Proc. Of the IEEE symposium on
Parallel Rendering (1995), pp. 23-30.

[MC97] MA K.-L., CROCKETT T.W.: A Scalable Parallel
Cell-Projection Volume Rendering Algorithm for
Three-Dimensional Unstructured Data. In Proc. of the
IEEE Symposium on Parallel Rendering (1997), pp.
95-104.

[Max95] MAX N.: Optical Models for Direct Volume
Rendering. IEEE Transactions on Visualization and
Computer Graphics 1, 2 (June 1995), 99-108.

[MCE*94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A Sorting Classification of Parallel
Rendering. IEEE Computer Graphics and
Applications, (1994), 23-31.

[SMW*04] STRENGERT M., MAGALLON M.,
WEISZKOPF D., GUTHE S., ERTL T.: Hierarchical
Visualization and Compression of Large Volume
Datasets Using GPU Clusters, In Proc. of the
Eurographics Symposium on Parallel Graphics and
Visualization (2004), pp. 41-48.

c© The Eurographics Association 2007.

M. Juliachs, T. Carrard & J.-P. Nominé / Hybrid CPU-GPU Parallel Volume Rendering on PC Clusters92

