
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Parallel Reflective Symmetry Transformation for Volume
Data

Y. Hong†1 and H. W. Shen1

1the Ohio State University & Columbus OH, USA

Abstract

Many volume data possess symmetric features that can be clearly observed, for example, those existed in diffusion
tensor image data sets. The exploitations of symmetries for volume data sets, however, are relatively limited due
to the prohibitive computational cost of detecting the symmetries. In this paper we present an efficient parallel
algorithm for symmetry computation in volume data represented by regular grids. Optimization is achieved by
converting the raw data into a hierarchical tree-like structure. We design a novel algorithm to partition the tree and
distribute the data among processors to minimize the data dependency at run time. The computed symmetries are
useful for several volume data applications, including POF minimal opacity selection, transfer function generation
and slice position selection.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Symmetry; I.3.3 [Com-
puter Graphics]: Volume Rendering; I.3.3 [Computer Graphics]: Parallel Computing

1. Introduction

Symmetry detection has been well studied since the 1980’s,
mainly focused upon calculating global symmetry with re-
spect to planes passing through the center of an object. Re-
cently, [PSG∗06] introduced a symmetry transform that pro-
vides a continuous measure of the reflective symmetry of
an object with respect to all planes. The resulting symme-
try information can be applied to computer vision, computer
graphics, medical image processing and other various ar-
eas. In [PSG∗06] several examples were presented, includ-
ing alignment of objects into a canonical coordinate system,
geometric shape matching and optimal viewpoint selection.
The redundant symmetry information can also be used to re-
cover the missing data and object reconstruction [ZPA93].

In the field of volume visualization, symmetry informa-
tion has not been widely utilized due to the large data sizes
and hence the prohibitively expensive computation complex-
ity incurred. The volume symmetry, however, can be very
useful because many volume data intrinsically bear symmet-

† Computer Science Department

ric objects. One of the most obvious applications of volume
symmetries is to speed up rendering. Since symmetry rep-
resents data redundancy to some extent, having the geomet-
rically symmetric information in hand, we can only render
half of a nearly symmetric volume object and display the
another half reflectively. This is especially useful in the mul-
tiresolution rendering where the reflective portion can be re-
duced at a lower resolution. Knowing the volume symmetry
can also be helpful to accelerate the computation of Plenop-
tic Opacity Function (POF) in the procedure of visibility
culling [GHS∗03].

The key problem for symmetry computation in volume
data sets is to design an efficient algorithm, which is a
non-trivial task. Today’s scientific applications have gener-
ated high resolution, high dimensional data sets with large
sizes that are beyond the resource capacity of a single PC
or workstation. Although computer hardware has advanced
very quickly recently, the large sizes of those data sets make
it almost impossible to compute symmetry using only a sin-
gle PC or workstation. To address this challenge, a viable so-
lution is to utilize clusters of PCs to shift the computational

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

burden from one machine to a group of loosely coupled com-
puters .

In this paper, we present a parallel algorithm for sym-
metry computation with general volume data. We measure
the reflective symmetry of an object with respect to each
plane through its volume boundary [PSG∗06]. Although re-
searchers previously had proposed various methods for sym-
metry encoding and computing of large scale volumes on a
single graphics workstation, fewer studies were focused on
designing parallel algorithms for such a purpose using PC
clusters. The contributions of our work are three-fold. First,
we show the parallelization within the symmetry computa-
tion process. Second,we implement one parallel algorithm to
make some performance analysis and propose several opti-
mization methods to minimize both space and run-time com-
putation overheads. Third, we investigate several possible
applications in volume rendering. Figure 5 shows some vol-
ume datasets with primary reflective planes drawn in colors.
In many cases the best slicing-cross section coincides with
data’s main reflective plane, as we can observed in Figure 1.

The rest of the paper is organized as follows. First, we re-
view related work in Section 2. From Section 3 to Section
5, we describe our parallel symmetry computing algorithms,
including the proof of existence of parallelization in sym-
metry computation, construction of the octree tree with hi-
erarchical representation, data distribution with space-filling
curve traversal. Results on parallel symmetry computation
and load balancing among different processors are given in
Section 6, and some concise descriptions of symmetry appli-
cations in volume visualization are introduced in Section 7.
The paper is concluded in Section 8 with an outline of future
work for our research. Section 9 is our acknowledgments.

2. Related Work

Most existing symmetry detection methods deal with dis-
crete symmetries —perfect symmetry or imperfect sym-
metry under rotation, reflection, or translation. Many ef-
ficient algorithms have been designed to compute perfect
symmetry. Atallah presented a substring matching algorithm
[ATA85] to find perfect symmetry based upon the fact that
a circular string is perfectly symmetric if it consists of two
identical substrings. Ishikawa et al. [ISM∗92] and Minovic
et al. [MIK93] used an octree representation to find the sym-
metry of a 3D object. In [SS97], extended Gaussian images
were used to detect symmetry of an object based on the idea
that if an object is symmetrical, so is its extended Gaus-
sian image. Generally speaking, these models merely work
with perfect symmetry and only care about reflection about a
given plane. Their computational complexities are relatively
small, compared with symmetry measurement with respect
to all the planes though the object.

Perfect symmetry, however, is rare in reality, especially
with 3D objects. In few cases there is only one unique per-
fect symmetry plane through the object. Zabrodsky et al.

[ZPA93, ZPA95] defined the continuous symmetry distance
to quantify the degree of symmetry in an objects, which is
the L2 distance between the given shape and the smallest
shape that is perfectly symmetric with respect to the same
plane. Kazhdan et al. [KCD∗03] extended this concept and
defined a shape descriptor that calculates the symmetry of
an object with respect to all the planes going through the cen-
ter. Podolak et al. [PSG∗06] considered the continuous sym-
metry with respect to all planes through the object’s bound-
ing volume. This extension greatly increases the computa-
tion complexity, which is up to O(n5logn) even using the
convolution. To improve the efficiency, Podolak et al. de-
signed an efficient Monte Carlo sampling algorithm by ex-
ploiting sparsity in the data volume. Our work differs from
previous research on symmetry computation in that we ex-
ploit parallelism in symmetry computation instead of relying
upon stochastic method.

Nowadays the world is witnessing a rapid growth of data.
It is normal to see a scientific program produces petabytes
of data that was impossible several years ago. Therefore, to
visualize large volumes people have utilized parallel com-
puting to alleviate the burden incurred by the large data sets.
In some cases, distributed clusters or parallelism are the only
choice since no single machine can hold so much data.

Various parallel computing algorithms have been de-
scribed for volume visualization. For example, previously
researchers used a SIMD machine to speed up isosurface
extraction [HH92]; a dynamic block distribution scheme for
unstructured isosurface extraction [Ell95], and a parallel al-
gorithm to render large scale particle systems [CA97]. Shen
et al. [SHL∗96] devised a parallel isosurface extraction algo-
rithm based on span space subdivisions. Ma et al. [MPH∗94]
proposed a parallel algorithm that distributes data evenly to
the available computing nodes and produces the final image
using binary-swap composition. A parallelized shear-warp
volume rendering algorithm was provided in [SL03]. Some
other research [LMC02] achieved scalable volume render-
ing by utilizing lossy compression techniques to render time-
varying scalar data sets.

3. Background

In this section, we first provide some background informa-
tion for symmetry distance and very briefly explain how
to exploit parallelism to speed up computation. Zabrodsky
et al. [ZPA95] and Kazhdan et al. [KCD∗03] have already
given out the concept of symmetry distance, SD(f ,γ), with
L2 norm:

SD(f ,γ) = min
g|γ(g)=g

‖ f −g‖.

Here f is defined as a scalar-valued function and γ is the re-
flection plane. Symmetry distance, SD(f ,γ), describes a L2

c© The Eurographics Association 2007.

78

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

distance between f and the closest perfect symmetric func-
tion g. Kazhdan et al. [KCD∗03] further simplified SD(f ,γ)
by replacing the closest symmetric function g with the aver-
age of f and γ(f):

SD(f ,γ) = ‖ f − f + γ(f)
2

‖=
‖ f − γ(f)‖

2
. (1)

Here γ(f) is just the reflection of f with respect to γ . Podolak
et al. proved in [PSG∗06] that the calculation of the normal-
ized symmetry distance, SD2(f ,γ)

‖ f‖2 , can reduce to a series of
dot products between f and γ(f), if f is normalized too.
Their method is essentially same with [KCD∗03].

If function f is defined as a volume data N×N×N, f can
be decomposed into a collection of concentric spheres all
centered at the object center. The problem to measure reflec-
tive symmetry with respect to the reflection plane γ transfers
to approximately calculating a series of symmetries of con-
centric spheres. That is:

SD(f ,γ)≈

√√√√ N

∑
r=0

SD2(fr,γ). (2)

fr is the function defined on the ball with radius r.
Equation 2 naively shows the parallelism in symmetry
computation—by assigning individual fr to different pro-
cessors a preliminary parallel algorithm is obtained. It can
be seen that such an algorithm will not work efficiently be-
cause of the imbalanced work-loads at run-time. With the
increasing radius r the data described in fr becomes larger
and larger, in an exponentially growing speed which is intol-
erable for most applications.

In order to smooth the noise and capture the imperfect
symmetries we apply Gaussian Distance Transform (GDT)
to the volume data when we compute the reflective volume
symmetry. The GDT has the similar form as previously de-
scribed in [KCD∗03] and [PSG∗06], but with different deno-
tations:

GDT (x1,x2,M,σ) = e−D2(x1,x2,M)/σ 2
, (3)

where D(x1,x2,M) is the difference between two values
x1 and x2 in volume data M, σ is a user-defined coefficient
to delimitate the Gaussian curve. Equation 3 is a Gaussian
curve-like function that reaches the maximal value when x1
and x2 has the same values and gradually decreases when
x1 and x2 differ from each other. In details, when computing
reflective symmetry, the difference between values of point
x and its reflection γ(x) is smoothed by Equation 3 and be
summed up to compute the final global symmetry.

The key problem is to compute SD(f ,γ) efficiently which
is a challenging task in the traditional non-parallel environ-

ment. In Section 4 we discuss in details about our method to
build a parallel implementation.

4. Algorithm Overview

Our parallel symmetry computation algorithm consists of
three stages: preprocessing, compressed data compositing
and run-time computing. In the preprocessing stage, we first
distribute the data blocks among different processors along
a hierarchical space-filling curve to maintain load balance.
Section 5.1 introduces the statical data allocation technique
along a Space-Filling curve that can improve load balancing.
Then, for each processor, we build a hierarchical wavelet tree
and compress the corresponding wavelet coefficients using a
combination of run-length and Huffman encoding [KS99].
Section 5.3 shows the wavelet compression technique and
explains how multiresolution data can be used for symme-
try computation. A histogram of possible reflective points is
calculated in this stage. Clusters in the histogram are used to
determine which blocks will be frequently used in the sub-
sequent stages and those blocks are allocated to each proces-
sor.

In the compressed data composite stage, the locally-built
wavelet trees are sent back to the host node by using the bi-
nary swap algorithm introduced in [MJC∗94]. The basic idea
of binary swap is similar to that used in image composition
in [MJC∗94] except replacing the over operator with the ap-
pend operator: pairing-up processors will exchange half of
their local compressed wavelet blocks with each other that
are selected by the user-defined multiresolution error toler-
ance. Each processor will add the received blocks from its
partner to its own compressed wavelet block links. The main
goal of this stage is to grow the local wavelet tree residing in
each processor to reduce data request at run-time.

In the final stage, the processors compute the symmetry
distances from the distributed data according to Equation 1.
If the necessary data are not available REQUEST/REPLY
mechanism is called (see Section 5.4). The final global sym-
metry is generated by compositing the partially calculated
symmetries at different processors. Several optimizations
can be applied to our algorithm which will be discussed in
the section 5.

4.1. Parameterizations

In our implementation, we use spherical coordinates to rep-
resent the reflection planes which can be parameterized by
normals of the plane and the distances from the origin to
those planes. When working with 3D, the normal n̂ can be
expressed as:

n̂ =

sinθ cosφ

sinθ sinφ

cosθ


where θ ∈ [0 π

2] and φ ∈ [0 2π]. The distance from origin
to the plane is r ∈ [0 rmax].

c© The Eurographics Association 2007.

79

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

4.2. Algorithms

In the following, we will propose our parallel algorithm
for calculating symmetry distance of a N ×N ×N volume
dataset defined by function f . The following only describes
the main work-flow of our parallel algorithm. Some details
such as data exchanges and compression are described Sec-
tion 5.

A brute-force algorithm is obviously a trivial solution: to
calculate symmetry for every possible plane reflection γ for
every point separately, following the three stages described
above. The complexity of the brute-force algorithm for a p-
processor parallel system, is O(K6logK)+O(p), where K =
N
p and the second term of complexity, O(p), stands for the

communication and composition cost. If using convolution
the complexity becomes O(K5log2K)+O(p). It takes about
100 seconds in average to compute a volume data with 128×
128×72 grids.

In Algorithm 1 we use a multiresolution technique to
speed up the symmetry calculation and sample the points ac-
cording to the gradient magnitudes at those points, throwing
away those points the gradient magnitudes are smaller than
a user-defined threshold. The reason for importance sam-
pling lies in the fact that, in a volume data, those points with
smaller gradients most likely bear trivial importance, con-
tributing little to the object’s surfaces. Moreover, Since the
wavelet tree built in the previous stage has a highly hier-
archical nature we can utilize this by only partially recon-
structing the block data f based upon the user-defined error
tolerance. In details, we do not traverse the wavelet tree thor-
oughly from the root deep to the leaves during the retrieving
procedure. Given a user-defined error tolerance we stop at
a higher level of wavelet tree instead if the tolerance is sat-
isfied by the previously calculated information saved in the
wavelet tree nodes. The complexity of Algorithm 1, for a
p-processor parallel system, is O(K5C)+O(logp), where C
is related to the error tolerance. The calculated symmetries
then are interpolated to obtain higher accuracy by taking ad-
vantage of the continuity property showed in [PSG∗06].

5. Optimization Methods

This section introduces several optimization techniques used
in Alg. 1.

5.1. Data Distribution in Space-Filling Curve

When designing a parallel algorithm, it should ensure that
all the processors have an equal amount of workload at run
time. However, when symmetry computation is performed,
the processors with data blocks near the center will have
heavier workloads than other processors, if data blocks are
distributed in a spatially uniform way. This phenomenon was
observed in [PSG∗06]– portions of the model away from the
center naturally have lower reflective symmetries since their

Algorithm 1 Algorithm: Multiresolution Method
1: Compress the distributed volume data into a local

wavelet tree Tloc
2: Composite the global Tglobal by binary swap technique
3: for each plane γ do
4: for each sampled point x do
5: Retrieve f(x) from Tglobal , controlled by the user-

defined error tolerance
6: x′ ← γ(x)
7: Retrieve f(x’) from Tglobal , controlled by the user-

defined error tolerance
8: D(f ,γ)+← GDT (f (x), f (x′),γ)
9: end for

10: end for
11: Composite the global symmetry by binary swap tech-

nique

reflective counterparts are outside the bounding volume and
hence can be skipped (section 5.2). This imbalanced work-
load distribution needs to be avoided. The basic idea for our
optimization method is to utilize the spatial coherence in vol-
ume data. In general, a volumetric data set usually exhibits
strong spatial coherence. Kazhdan et al. [KCD∗03] demon-
strated that Equation 2 is stable even with the presence of
high-frequency noise. It allows the objects to be slightly de-
formed so that imperfect symmetries can still be captured.

In our algorithm, a space-filling curve is utilized to as-
sign the data blocks to different processors. The space-filling
curve is used for its ability to preserve spatial locality, i.e.,
the traversal path along a space-filling curve always visits
the adjacent blocks before it leaves the local neighborhood.
Therefore, when data are distributed following the space-
filling curve, in a consecutive round-robin manner, volume
blocks will tend to be distributed evenly among the proces-
sors, breaking the spatial locality. Each processor only com-
pute symmetries of the blocks statically assigned to it; such
static data distribution is especially desirable when dealing
with large-scale datasets. Moreover, the hierarchical prop-
erty of a space-filling curve also makes it suitable to be ap-
plied to a hierarchical algorithm. Figure 1 shows how 16 2D
blocks are traversed in a space-filling curve.

5.2. Bounding Data Representation

Another optimization method used to accelerate the com-
puting procedure is the octree representation of data. Since
we need to calculate reflective symmetry with respect to
all planes through the object’ bounding volume, for some
planes, most parts of the object will be reflected to the out-
side of the object’s bounding volume. It is unnecessary to
compute the symmetry distances for those regions.

The octree is built in a bottom-up manner with bounding
information stored in each node. To speed up the computa-
tion process, when computing the reflective symmetry, given

c© The Eurographics Association 2007.

80

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

Figure 1: A 2D example of data distribution along the
space-filling curve. A Hilbert curve is used in this example.
Data are visited along the red line. The black line stands for
the possible 2D shape. Block numbers are centered in dash
boxes. Since it is only one level of a hierarchical representa-
tion block numbers start from 5.

a specific reflective plane γ , we hierarchically test γ with the
node’s bounding volume and skip those blocks if the testing
results show that the reflected blocks are outside the object’s
bounding volume.

5.3. Wavelet Compression and Multiresolution
Symmetry Computation

In this paper, we apply an efficient wavelet-based compres-
sion method [KS99] for volume data compression to save
the storage space and reconstruction time at run-time. Here
we have selected the Haar wavelet as a basic function that
has a simple basis but is relatively easy to compute [KS99].

The procedure of a bottom-up blockwise wavelet-tree
construction is standard. Starting with subdividing the vol-
ume data into a sequence of blocks, each 3D wavelet trans-
form will produce a smoothing-filtered subblock and several
wavelet coefficient subblocks. The smoothing-filtered sub-
blocks from adjacent leaf nodes in the wavelet tree are then
collected and grouped into a lower resolution data block in
the wavelet hierarchy. We recursively apply this 3D wavelet
transform and subblock grouping process until the root of
the tree is reached. The wavelet coefficients associated with
a tree node resulting from the 3D wavelet transform will be
compared against a user-provided threshold and set to zero
if they are smaller than the threshold. These wavelet coeffi-
cients are then compressed using run-length encoding com-
bined with an encoder [KS99].

5.4. Reduce Data Dependency

Theoretically a geometric point in a volume data can have
reflected counterparts anywhere in the bounding volume.
However it is not practical to transfer the whole global
wavelet tree to every processor, even at a high compression
rate, due to the prohibitive size of volume data. It is also un-
reasonable to transport large amounts of data blocks merely
on the fly for the same reason. In this paper, we apply a hy-
brid method to address this problem.

Given a point x its reflective counterpart γ(x) can be
known thereafter by:

γ(x) = x+2rn̂−2(n̂.x)n̂

where the reflective plane γ is decided by the distance r and
its normal n̂.

In the preprocess stage we can calculate the histogram
of locations of γ(x) statically. Our strategy is to distribute
those wavelet blocks whose containing γ(x) are mostly used
in symmetry computation to every processor. A heuristic
method is to distribute the center parts of the volume data.
This static data distribution scheme reduces the amount of
requests and exchanges for data that are frequently needed
at the parallel computation stage.

During the run-time computing stage, when a processor
needs data at γ(x) that it dose not hold, the computing flow
continues but the unavailable γ(x) is inserted into a request
queue Req_Queue which contains all those unavailable γ(x).
At a later synchronization point the ReqQueue is broadcasted
and the requested processor continues its remaining compu-
tation jobs. Those processors holding the needy γ(x) will re-
sponse and send back the corresponding γ(x) which will be
accepted into a Recv_Queue by the requesting processor.

Since the data request time and the computation time
is overlapped the only overheads are the real transporta-
tion time. We use a multi-thread technique to deal with
REQUEST/REPLY issues which is supported by MVA-
PICH. Specifically, two extra threads, send_thread and
recv_thread, are invoked after the parallel initialization
stage: send_thread monitors Req_Queue. If Req_Queue
is full send_thread broadcasts it. recv_thread monitors
Recv_Queue. If Recv_Queue is full Recv_thread tells the
main thread to fetch available γ(x).

6. Results

In this section, we present the experimental results of our
parallel symmetry detection algorithm running on a PC clus-
ter consisting of 64 compute nodes, 6 storage nodes and one
front end. Each compute node is a dual processor Opteron
250 (single core) with 8GB of RAM and 2× 250GB SATA
disk. MVAPICH based on MPICH (MPI−1) is used for the
module mpi and the Infiniband network for MPI communi-
cation. The datasets in Figure 1 are a Lobster in 301×324×
56, a Frog in 256× 256× 44, a Teapot in 256× 256× 178
and a Man’s Leg in 341× 341× 93 volumes. Our main test
datasets include a 256×256×145 UNC brain dataset and a
512×512×1728 Visible Woman dataset. All tests were run
using 22, 36 or 64 nodes of the cluster.

Static data distribution along a space filling curve gives
our parallel symmetry computation algorithm a balanced
workload. In Figure 2, the small variation of the computing
times used by each of the 36 processors shows that, with a
Hilbert space-filling curve implemented, our algorithm can

c© The Eurographics Association 2007.

81

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

achieve better load balancing than the algorithm without it.
This implies good scalability for our parallel symmetry com-
putation algorithm.

Figure 2: The computation time via seconds (for Brain
dataset) on each of 36 processors: the blue line indicates
the algorithm without space filling-curve data distribution
and the red line indicates algorithm with space filling-curve
data distribution.

Figure 3 gives the speedup factors obtained using different
number of processors. Multiresolution Algorithm and brute-
force one are computed against their sequential counterparts
respectively. It is clearly shown that our multi-resolution al-
gorithm achieves better speedup performance than the brute-
force algorithm. About 87% and 81% parallel utilization
were observed for 16 and 32 processors, respectively.

Figure 3: Speedup factors (for Brain dataset) of our algo-
rithms when using 1, 2, 4, 8, 16, 32 and 36 processors. The
blue line is the ideal speedup , the red line is the speedup
using no multiresolution method and the yellow line the
speedup using multiresolution method with error tolerance
1500.

Our multiresolution algorithm is based on the observation
that symmetry held in data at high resolution data will per-
sist in the lower resolution data too. Figure 4 shows the sym-
metries calculated by Algorithm 1 with different error toler-
ances. With higher errors, i.e., data at higher resolution, the
resulting symmetry is closer to the symmetry calculated by
Brute-force algorithm.

Table 1 shows different average computation times under
three different error tolerances by utilizing multiresolution
optimization. Figure 6 and Figure 7 show the calculated pri-
mary symmetric planes for the tests described in table 1. The
primary symmetric planes are very close to each other. Con-
sidering the large amount of time saved, our multiresolution
symmetry computation algorithm can attain a good effect if
the user-defined error tolerance is properly selected.

Figure 4: The calculated reflective symmetries (for Brain
dataset) for one direction [θ = 0.1745φ = 0.1745]. The blue
line using brute-force algorithm and the red line and yellow
line using multiresolution algorithm. Red line has a higher
resolution.

7. Applications

Many previous researches have introduced various symme-
try applications. Here we only present a few novel ones
that are useful in volume visualization. POF calculation
[GHS∗03] requires minimal integral opacities for each vol-
ume block along the viewpoint ray direction which can be
solved by checking the minimal local symmetry of that block
with respect to the reflection perpendicular to the view direc-
tion; For some medical volume data reflective symmetries
can be applied to find reasonable transfer functions based
on the idea that the more an isovalue contributes to the final
symmetry the higher the possibility of its being on the sur-
face of an object, hence the larger opacity it might bear; It
might be an optimal choice to slice a volume data along the
plane with highest calculated symmetries: revealing more
inner information since most primary symmetric planes go
through the object’s center.

8. Conclusion and FutureWork

We present a parallel reflective symmetry computation algo-
rithm utilizing wavelet-tree and space-filling curve optimiza-
tions. We show that the algorithm is efficient and stable for
large volume datasets. Our experiments also show that, for
most of the volume data, the primary reflective symmetric
planes are going through the centers of the objects, a rea-
sonable phenomenon that coincides with people’s common
sense. In the future work we hope to extend our algorithm to

Dataset processors Test1 Test2 Test3
Viswoman 64 1256 745 205
Brain 36 96 34 11
Frog 22 35 18

Table 1: Computation times (for Viswoman) in seconds with
multiresolution optimization under three different error tol-
erances. In all the three cases, 64 processors are used for
Viswoman, 36 for Brain dataset and 22 for Frog dataset.
Tests are arranged for error tolerances of 5,000, 1,000, and
500 respectively (a higher value represents a higher resolu-
tion).

c© The Eurographics Association 2007.

82

Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

include other types of symmetry. For example, the rotational
symmetry is one of possible areas need to be considered.
We also notice that further optimization of symmetry com-
putation is possible if we can transform a 3D problem into
several of 2D subproblems which can be solved quickly in
parallel environment.

9. Acknowledgements

This wok was supported in part by NSF ITR Grant ACI-
0325934, NSF RI Grant CNS-0403342, NSF Career award
CCF-0346883, and DOE SciDAC DE- FC02-06ER25779.
The Visible Woman dataset is provided by the National
Library of Medicine. The Brain dataset is a partial copy
of datasets in the "University of North Carolina Volume
Rendering Test Data Set" archive. The Frog dataset is
copied from Information and Computing Sciences Division,
Lawrence Berkeley Laboratory, the Teapot from Terarecon
Inc, the Leg dataset from German Federal Institute for Ma-
terial Research and Testing (BAM), Berlin, Germany and
the Lobster dataset from VolVis distribution of SUNY Stony
Brook, NY, USA.

References

[ATA85] ATALLAH M.: On symmetry detection. IEEE
Trans. on Computers 34, (1985), pp. 663–666.

[CA97] CROSSNO P., ANGEL E.: Isosurface extraction
using particle systems. In Proc IEEE Visualization ’97
(1997), pp. 495–498.

[CDF∗03] CAMPBELL P. C., DEVINE K. D., FLAHERTY

J. E., GERVASIO L. G., TERESCO J. D.: Dynamic Oc-
tree Load Balancing Using Space-Filling Curves. Tech.
Rep. CS-03-01, Williams College Department of Com-
puter Science, 2003.

[Ell95] ELLSIEPEN P.: Parallel isosurfacing in large un-
structured datasets. Visualization in Scientific Computing
’95 (1995), pp. 9–23.

[GHS∗03] GAO J., HUANG J., SHEN H. W., KOHL J.:
Visibility Culling Using Plenoptic Opacity Function for
Large Scale Data Visualization. In IEEE Visualization
2003 ’03 (2003), pp. 341–348.

[HH92] HANSEN C., HINKER P.: Massively parallel iso-
surface extraction. In Proc IEEE Visualization ’92 (1992),
pp. 189–195.

[ISM∗92] ISHIKAWA S., SATO K., MINOVIC P., KATO

K.: An interactive 3D symmetry analysis system. in IAPR
Workshop on Machine Vision Applications, (Dec 1992),
pp. 375–378.

[KCD∗03] KAZHDAN M. AND CHAZELLE T. AND

DOBKIN D. AND FUNKHOUSER T. AND RUSINKIEWICZ

S. : A reflective symmetry descriptor for 3D models. Al-
gorithmica, 38,1 (Oct. 2003).

[KS99] KIM T. Y., SHIN Y. G: An Efficient Wavelet-
Based Compression Method for Volume Rendering. In
Proc. of Paciffic Graphics ’99, (1999), pp. 147–157.

[LM94] LACROUTE P., MARC L.: Fast volume rendering
using a shear-warp factorization of the viewing transfor-
mation. In Proc ACM SIGGRAPH ’94 (1994), pp. 451–
458.

[LMC02] LUM E., MA K., CLYNE J.: A hardware-
assisted scalable solution for interactive volume render-
ing of time-varying data. IEEE Trans. on Visualization
and Computer Graphics 8, 3 (2002), pp. 286–361.

[MJC∗94] MA K. L., JAMES S. P., CHARLES D. H.,
MICHAEL F. K.: Parallel volume rendering using bina-
ryswap compositing. IEEE Computer Graphics and Ap-
plications, 14(4), (1994), pp. 59–68.

[MIK93] MINOVIC P., ISHIKAWA S., KATO K.: Sym-
metry identification of a 3D object represented by oc-
tree. IEEE Trans. on Pattern Analysis and Machine In-
telligence 15, 5 (May 1993), pp. 507–514.

[MPH∗94] MA K. L., PAINTER J. S., HANSEN C. D.,
KROGH M. F.: Parallel Volume Rendering Using Binary-
Swap Compositing. IEEE Computer Graphics and Appli-
cations 14, 4 (1994), pp. 59–68.

[PSG∗06] PODOLAK J. AND SHILANE P. AND

GOLOVINSKIY A. AND RUSINKIEWICZ S. AND

FUNKHOUSER T.: A planar-reflective symmetry trans-
form for 3D shapes. In Proc. SIGGRAPH ’06 (Jul. 2006),
vol. 5.

[SHL∗96] SHEN H. W., HANSEN C. D., LIVNAT Y.,
JOHNSON C. R.: Isosurfacing in Span Space with Utmost
Efficiency (ISSUE). in Proc. IEEE Visualization ’96, 2
(1996), pp. 287–294.

[SL03] SCHULZE P., LANG U.: The Parallelized Perspec-
tive Shear-Warp Algorithm for Volume Rendering. Paral-
lel Computing 29, 3 (2003), pp. 339–354.

[SS97] SUN C., SHERRAH J.: 3D symmetry detection us-
ing the extended Gaussian image. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 2, 2 (Feb 1997),
pp. 164–168.

[ZPA93] ZABRODSKY H., PELEG S., AVNIR D. A.:
Completion of occluded shapes using symmetry. In Proc
CVPR, (1993), pp. 678–679.

[ZPA95] ZABRODSKY H., PELEG S., AVNIR D. A.:
Symmetry as a continuous feature. Trans. PAMI 17, 12
(1995), pp. 1154–1166.

c© The Eurographics Association 2007.

83

