
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Distributed Collaborative Data Analysis with Heterogeneous
Visualisation Systems

T. Düssel1, H. Zilken1, W. Frings1, T. Eickermann1, A. Gerndt3, M. Wolter2 and T. Kuhlen2

1Central Institute for Applied Mathematics, Research Centre Jülich GmbH, Germany
2Virtual Reality Group, RWTH Aachen University, Germany

3Louisiana Immersive Technologies Enterprise, University of Louisiana, Lafayette, LA, USA

Abstract
A system for the distributed, collaborative online visualisation in heterogeneous visualisation environments was
developed and tested in the application project KoDaVis, which is part of the german optical network testbed
VIOLA. The aim of KoDaVis is the visualisation of huge data sets from atmosphere research. The core of the
presented distributed computer supported collaborative work system is a framework for the coupling of heteroge-
neous visualisation systems and the design and implementation of two distinct servers, one for the collaborative
aspects and one for the direct remote access to centrally stored data. Interfaces to the VTK-based virtual real-
ity visualisation system ViSTA and to the modular visualisation environment AVS/Express were implemented and
tested. The successful coupling of these two different visualisation systems as well as the benefit of a fast optical
network for parallel data access and for distributed collaboration could be demonstrated in a test setup.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing I.3.2
[Computer Graphics]: Distributed/Network Graphics I.3.7 [Computer Graphics]: Virtual Reality I.6.6 [Simulation
and Modeling]: Simulation Output Analysis

1. Introduction

In 2004, the german project VIOLA [VIO] (Vertically In-
tegrated Optical Testbed for Large Applications in DFN)
started to establish a testbed for innovative optical network-
ing. A consortium of 13 partners from industry, universities
and research centres jointly work together to set up an optical
network infrastructure in Germany in the area of Aachen-
Cologne-Bonn and an extension to Erlangen-Nuremberg.
The main goals of VIOLA are to test and evaluate ad-
vanced optical network technologies and equipment, to de-
velop tools for dynamic bandwidth reservation and quality of
service (QoS), to provide required middleware, and to anal-
yse the behaviour of the network with a couple of network
challenging sample applications. One of these applications
is the KoDaVis (Collaborative Data Visualisation) project.
The aim of KoDaVis is to utilise the fast optical network for
the analysis of atmosphere data. This is done by the devel-
opment of a heterogeneous, distributed, collaborative visu-
alisation infrastructure, allowing direct access to huge data
sets stored on a central data server.

The paper is structured as follows: In section 2 we give an
overview about the area of application and a motivation for
our approach. Section 3 describes the design and the three
most important aspects of our system in more detail. A test
set up and first experiences with the application of our sys-
tem are presented in section 4. The last section discusses first
results and outlines possible future improvements.

2. Background and Related Work

To understand global phenomena of the atmosphere of the
earth, the dynamics and the chemistry of the stratosphere, an
air layer located about 15-50 km above the earth’s surface,
has to be analysed. For this reason high resolution measur-
ing instruments for the use on satellites, planes and balloons
are used in big international campaigns [SMS∗04]. The mea-
sured data is evaluated and compared with simulation runs,
which are calculated on supercomputers [GSKK04]. Visual-
isation systems are used for the explorative analysis of both
types of data, giving the scientists the opportunity to visu-
alise selected features with interactive framerates. A major

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


problem comes from the enormous size of the data in the
range of one terabyte (TB) for a single simulation run. To
compare multiple simulations, computed e.g. with different
parameter sets or different mathematical models, the visual-
isation system even has to access several TB of data. Data
of this size cannot be transferred to the local workstations
of the scientists as a whole. Instead it is stored on dedicated
data servers or, in the case of simulation data, on the super-
computer where the calculation took place. Unfortunately,
conventional visualisation systems, which are widely used in
the scientific community, do not offer the possibility to get
direct access to remotely stored data natively. Therefore one
goal of KoDaVis is the design and implementation of a paral-
lel infrastructure for the fast and transparent access to remote
stored data directly from arbitrary visualisation systems by
means of compute cluster. Although clusters could also be
used for efficient, visualisation specific data processing, as
implemented in the ParaView project [CGM∗06], they are
just used for parallel data access here.

As groups of scientists are often organised in geographi-
cally distributed teams, the development of an infrastructure
for distributed collaborative data analysis is a second goal
of the KoDaVis project. To allow direct communication in a
collaborative session, a conventional video conference sys-
tem is used. This topic is not discussed in detail in this article
as KoDaVis is merely utilising existing technologies here.
In addition to video conferencing, the visualisation systems
have to be coupled and synchronised to allow concerted ac-
tions of the participants in a collaborative session. Visual-
isation systems meeting these requirements are falling into
the class of the so called distributed collaborative visuali-
sation systems [BDG∗04]. Examples for such systems are
COVISE [WLR93] (COllaborative VISualization Environ-
ment) and Avango (formerly named Avocado) [Tra99]. A
general introduction into remote and collaborative visuali-
sation is given in [SME02] and [FT00].

At the presentation level, immersive, projection based sys-
tems, likes workbenches [KBF∗94] or CAVEs [CNSD93]
can be seen as optimal tools for the visual inspection of sci-
entific data. The so called collaborative virtual environments
(CVEs) [GLG03] allow for a stereoscopic presentation of
data as well as head tracking and tracked 3D interaction.
However CVEs, as they are very complex and costly sys-
tems, are not available at all sites so that data analysis often
is done with common desktop displays. Generally, it can be
observed that distributed groups of scientist use a wide range
of very different visualisation systems, both at software and
at hardware level. Therefore the approach presented here has
the ambition to allow collaborative data analysis within in-
terconnections of heterogeneous visualisation systems. Our
philosophy is to let each scientist work with the visualisa-
tion environment he is familiar with and which is available
at his site. While the above mentioned visualisation toolk-
its allow collaboration only within the same base system, a
framework for the collaborative coupling of different visual-

isation systems as well as their applications in a fast optical
network is presented here.

3. System Design

The application field of the framework presented here is the
distributed collaborative analysis of scientific data by geo-
graphically separated groups of scientists. Combined with
a video conference system, it is aimed to serve as a plat-
form for interactive data exploration and for discussing re-
sults. According to the classification scheme of Applegate
[App91], who discriminates where and when collaboration
takes place, such a system falls into the ’different place, same
time’ category, also known as synchronous collaboration. In
synchronous collaboration, shared control data can be seen
as transient. That is also true for our framework as it has not
the intention to address methods for data persistence, like
saving intermediate results or saving the system state. As
a distributed system is designed, we have to analyse what
kind of services are needed and where the service processes
should be placed physically in the distributed environment.
We have to distinguish between services for data fetching
and services for collaboration.

As the scientific data is stored on dedicated file systems, it
is a natural way to follow the common client/server approach
and get access to the data by a data server located at the site
where the data is placed. A well known system enabling ac-
cess to remotely stored data is developed in the Open source
Project for a Network Data Access Protocol (OPeNDAP)
(http://www.opendap.org). In OPeNDAP, the access to
remotely stored data is done by network-enabled interfaces
to common data formats like NetCDF or HDF. A web server
is used to deliver the requested data to the clients by en-
voking CGI scripts. Although the OPeNDAP approach is
promising, it could not be used here as it does not meet some
of our requirements. The main goal of our system is to gain
as much profit from the fast optical VIOLA network as pos-
sible. Therefore the overhead arising from using common
web servers calling CGI scripts was avoided. One important
feature of our system is to exploit the bandwidth of the VI-
OLA network to give all clients in a collaborative session
the same fast data access with a maximum of 1 GBit/sec per
client. This is achieved by installing multiple gigabit net-
work adapters in the data server, one reserved for each con-
nection. The elimination of unnecessary overhead leads to
the development of a purpose-built data server and an un-
derlying slim communication protocol. We have developed
a parallel data server architecture, utilising a compute cluster
to drive more than one network connection simultaneously
and to use the distributed main memory of the cluster as a
large, fast data cache. Details of the data server are given in
section 3.2.

To describe the collaborative aspects of our system, the
model of Wood, Wright, and Brodlie [WWB97] is used for
reference. Wood’s model is an expansion of the well known

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis22

http://www.opendap.org


process parameters

control

raw data

control

data

data

image
F M R

Figure 1: Wood’s model for collaborative visualisation. Col-
laborative visualisation is designed as a sequence of filter
(F), mapper (M) and render (R) processes, enriched by im-
and export of intermediate data and control parameters.

model of Haber and McNabb [HM90], which characterises
a visualisation task as a sequence of processes for data en-
richment, visualisation mapping and rendering, also known
as filter, mapper and render processes. Wood extended this
model for collaborative systems by adding im- and export
possibilities for intermediate data and control parameters
(figure 1). Our system offers the possibility to distribute con-
trol parameters, which is sufficient for a synchronised dis-
tributed collaborative work environment. The synchronisa-
tion and distribution of control parameters is managed by a
collaboration server, which distributes parameter changes to
all clients of a collaborative session. A detailed description
of the collaboration server can be found in section 3.3. The
exchange of intermediate results, though possible in general,
is difficult to implement here, because in our approach differ-
ent visualisation systems can be connected. The distribution
of intermediate data in a heterogeneous environment would
result in a huge amount of conversions of complex, highly
system specific data structures, which is not within the scope
of the KoDaVis project.

As a distributed system is designed here, it is potentially
possible to place the filter, mapper and render processes at
dedicated servers. The option to relocate filter and mapper
processes to a parallel computer and let the render process
remain on the local visualisation hardware is discussed in
section 5. An example for a complete remote rendering ap-
proach is the SGI Vizserver [Oha99], where the whole pro-
cess chain takes place on a high performance SGI render
server, streaming the images to visualisation clients. In our
case remote rendering is not possible for two reasons. The
first reason is a more technical one. Our system supports
different visualisation systems with a broad range of out-
put devices, ranging from monitors to n-sided stereoscopic
projection displays. Remote generation of n stereo images
for immersive, head tracked environments would result in a
bandwidth of about n ∗ 2.1GBit/sec for uncompressed im-
ages of size 1600x1200 pixels with 25 frames per second,
even more for images with higher resolution. This very high
bandwidth demand can hardly be concentrated at one output
device, even in a fast optical network. The bandwidth could
be reduced by using adequate compression techniques, as

e.g. shown in [MC00], but due to the additional lag coming
from image compression and decompression, this seems not
to be a passable method for highly interactive VR-systems.
Generally, we would expect that the remote image genera-
tion in conjunction with local tracking would result in an
unacceptable lag, destroying the immersive impression and
making fluent 3D interaction impossible. The second reason
is a more conceptual one. Our system has the intention that
the user, though participating in a collaborative session, can
still use the visualisation system he is familiar with. So we
do not want to force him to use a remote rendering software
he is not experienced with.

For these reasons we decided to adapt the whole visual-
isation process chain of the application to specific visuali-
sation software packages and place it on the particular local
hardware. An overview of the system components and their
interconnections is given in figure 2.

F M R

F M R

Parallel
Data Server

Collaboration
Server

control

control

control
...

Client 1

Client n

Image

Image

Figure 2: The distributed KoDaVis collaboration system. All
visualisation clients get direct access to remote stored data
by a parallel data server. Collaboration is achieved by the
exchange of control parameters, which is managed by a col-
laboration server.

3.1. Support for Heterogeneous Environments

Support for visualisation systems of different kinds and
flavours requires generalised interfaces both for raw data re-
trieval as well as collaboration. Such interfaces, available for
several systems and programming languages, have to pro-
vide data conversion on at least two layers. First, one needs
low-level conversions, necessary to match the machine spe-
cific representation of numbers on each supported platform.
Second, one has to exchange visualisation specific objects
like vectors, matrices and color tables during collaborative
work. These objects need to be represented in a generic man-
ner and converted to formats that the particular visualisation
system can read and write. These visualisation specific con-
versions will be explained in 3.3.

In order to exchange numerical base types, arrays and
strings we have chosen the communication API VISIT
[FE03,EFG∗05]. The read/write functions in VISIT are able
to send/receive numerical data applying machine specific
conversions transparently. The package comes with inter-
faces for C/C++, Fortran and Perl and is available under

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis 23



an open source license from the VISIT homepage http://
www.fz-juelich.de/zam/visit/.

3.2. Data Server

A typical use case in an explorative visualisation session is
to visualize the dynamics of physical processes in an ani-
mation sequence. Such a sequence may consist of several
hundreds of timesteps. We have tested our system with data
from atmosphere research in which one timeslice amounts
3.3 MByte of raw data. In this case, the bandwith of one gi-
gabit link makes it possible to transfer up to 25 timesteps per
second which allows for interactive workflow.

In collaborative sessions, client requests for a single
timestep are synchronised via the collaboration server. The
data server is designed to fulfil requests of several clients
concurrently and to deliver the data in a time that should
be essentially independent of the number of clients. There-
fore the most important feature of our data server is to pro-
vide maximal bandwidth for each connected client. This is
achieved by using multiple gigabit network adapters. In or-
der to handle the data efficiently we have designed a paral-
lel cache architecture with strided pages for the collabora-
tive scenario. When n cluster nodes are used, every loaded
data array (e.g. the data for one property) is split into n sub-
arrays. Each node only stores one of these parts. When a
client requests the array, it is reassembled on all nodes by
means of the fast internal cluster network. This mechanism
is combined with a caching strategy for the sub arrays.

3.2.1. Parallelism

We have designed and implemented a parallel data server
which can be started on a cluster with multiple external net-
work interfaces. Within our design, the parallelism is ex-
ploited twofold. First, we use multiple server processes, each
bound to a separate network interface, in parallel. Second,
we use the internal network and the distributed memory
of the cluster to manage collective retrieval and efficient
caching of the archived data.

The whole parallelisation is implemented with MPI. Our
data server can be started on many clusters which support
MPI. Given the situation that the requested data are stored
locally on each of the server nodes, no communication be-
tween these nodes is necessary to achieve parallel respon-
siveness. In fact the simulation data we have tested our sys-
tem with, is stored on a non-parallel filesystem which is
mounted separatly on each of the cluster nodes.

Reading the complete data on each of the server nodes
from a non-parallel file system is inefficient for two rea-
sons. First, the connection from the file system to the cluster
becomes a bottleneck through which the data have to pass
N times for N connected clients. We have designed a sys-
tem, which reads the data once from the archive and trans-
fers them to the nodes involved using the internal network

cached pages
(level 2)

cached page fragments
(level 3, parallel)

M
PI

_S
en

dr
ec

v(
)

�����
�����
�����

���
���
���

���������������
���������������
���������������
���������������

PC
(parallel cache)

M
PI

_S
en

dr
ec

v(
)

PC

PCS

PCS

PCS
memcpy()VIOLA

Figure 3: On the left side, the architecture of the parallel
data server is shown. The server processes (S) resp. the par-
allel cache processes (PC) are separate MPI tasks. On the
right side, the cache hierachy is shown. Blocks of the strided
data array are assembled on each server process with the
MPI_Sendrecv() command. The first cache level is within the
server process and not sketched here.

of the cluster with maximal efficiency. Second, the common
filesystem caching is applied on each of the server nodes
separately and the available memory is not used as a whole.
We have implemented a parallel cache which is linked to the
server nodes via MPI. Each of the server nodes is connected
to one of the cache nodes and hosted at best in the same SMP
node. The number of cache nodes can exceed the number of
server nodes. The architecture is sketched in fig. 3.

3.2.2. Implementation Details

We have implemented a cache using the CLOCK replace-
ment policy [Cor68] algorithm. In order to provide a send
buffer for the server processes, a reconstruction buffer for
the cache processes and the parallel cache itself, the whole
caching is organised in three layers.

The flow control within our parallel cache is managed by
means of a token ring. If a client request is received by one
of the cache nodes and if the requested array is not stored in
the cache, our cache works as follows:

1. The cache process to which the request was passed ac-
quires a cycling token which indicates, that the state of
the parallel cache is idle. Then it reads the requested ar-
ray from a file system.

2. Then it sends a token indicating a striding cycle to the
next cache process in the ring. That followed by sending
the N − 1 page fragments which have to be placed in the
pages of the parallel cache on the other nodes. After the
striding cycle each cache node holds one fragment of the
original page in its parallel cache (level 3).

3. Afterwards, a token indicating a reconstruction cycle is
passed. After that, each cache node holds a copy of the
complete array in its reconstruction cache (level 2). This
concurrent reconstruction is due since we have to expect
identical requests on the other server nodes following im-
mediately in a collaborative session.

4. From the reconstruction cache the array is copied to the

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis24

http://www.fz-juelich.de/zam/visit/


send cache (level 1) via MPI. From there it is send to the
Client which requested it.

The time needed for reading the array from the archive can-
not be reduced within our system. The time to stride the
arrays over the cache nodes as well as the time to recon-
struct the arrays concurrently depends basically on the size
of the array and the throughput of the internal cluster net-
work. Since we send/receive N−1 fragments with size 1

N the
number of nodes involved appears only on the level of laten-
cies if the cluster provides independent bandwidth between
adjacent nodes. The time needed to read, stride and/or recon-
struct the arrays concurrently overlaps with the time that is
needed to synchronise the requests among all the clients in a
collaborative session.

The number of cache pages in each layer is adjustable to
different user requirements. For a maximal number of cache
pages, the parallel cache can be instanciated using a maxi-
mum of the available memory and the other cache levels are
instanciated with only one page each and serve as simple
buffers. In collaborative scenarios with delays between con-
current requests, it is useful to instanciate the reconstruction
cache with more than one page. When users sliding forth and
back in small time intervals, the send cache can be extended
to speed up array retrieval by avoiding any MPI communi-
cation within the cluster in such cases.

3.3. Collaboration Server

To integrate multiple applications into a computer supported
collaborative work (CSCW) environment means to synchro-
nise internal state variables of the applications appropriately.
Generally, there are two approaches to do this. In the event
based approach, an application has to publish any event trig-
gered by user interaction or by the system, which leads to a
new state. Typically the events are mouse clicks or keyboard
inputs. These events have to trigger analogous events in the
other applications to change their state accordingly. In the
state based approach, an application has to publish changed
states. These states have to be fed into the other applications
directly. Both approaches can be combined reasonably.

Another criteria is the way, how events/states are pub-
lished in terms of the topology of connections. One way is
the client/server approach, where a central CSCW server is
set up and each client establishes a connection to it. Another
way is to connect each client with each other directly. This
peer to peer (P2P) approach can be more robust as it does
not depend on a single component and therefore has no sin-
gle point of failure. Also, even though it has a connectivity
of N2, such a system could be scaled to a number of clients
that is sufficient for our purposes. On the other hand consis-
tent flow control in a distributed system with P2P connec-
tivity is hard to manage. Therefore we have chosen a design
with a central collaboration server which brings all incoming
messages into a unique linear sequence before publishing

changed states. Our collaboration server works according to
the principle of a repeater. Incoming objects from one of the
clients are repeated to any client which has registered for this
object previously. Sending the objects from the server to the
clients requires an acknowledgement. This way the whole
system becomes synchronised. The slowest of the clients de-
fines the speed of the whole system.

Our system allows to define sharable datatypes. After log
on to the server, a client can register as a sender, a receiver,
or a sender and receiver for any of these types. Since this
registration can be altered during a session, we have a basis
for many different collaboration scenarios. Actual we have
defined structures for data retrieval parameters, view param-
eters and visualisation options. The data retrieval parameters
specify the selected array that the visualisation clients have
to retrieve from the data server. The view parameters contain
an object transformation matrix and the visualisation options
specify e.g. the selected orthoslice and the mapping from
data values to colour table entries.

4. System Validation

Two conceptually different visualisation toolkits were inte-
grated in our framework, and a visualisation application for
the given atmosphere data was implemented both of them.
First, the modular visualisation environment AVS/Express
[UTFK∗89] was chosen, because it is widely used in the
scientific community for desktop based visualisation. Sec-
ond, as an example for a VR capable software package, the
VTK-based toolkit ViSTA FlowLib [vRKG∗00, SGvR∗03]
was selected. For validation purpose a simple visualisation
application was implemented which renders a selected data
property for one atmospherical height level on a spherical
surface. The selection of timestep and data property as well
as the viewing angle, scaling and color mapping parameters
are synchronised in the distributed system.

The given atmospheric and environmental data consist of
50-100 arrays describing different chemical tracers or phys-
ical properties. Each of these arrays represents the global at-
mosphere (3D) or the surface of the earth (2D) in several
hundreds of timesteps. A typical use case in an explorative
visualisation session is to visualise the dynamic of physical
processes in an animation sequence by cycling through all
timesteps. Our system should serve 2-8 connected clients,
sending the same request concurrently to the data server.
These requests need to be answered simultaneously.

Our test setup was made up of one AVS/Express client and
two ViSTA FlowLib clients. The AVS/Express system and
one ViSTA FlowLib client were located in Sankt Augustin
(near Bonn). The ViSTA FlowLib system was connected to
a single sided, backprojection stereo-wall with headtracking.
A further ViSTA client was installed on a render cluster at
the RWTH Aachen University, attached to a CAVE-like dis-
play. Both sites were connected with the video-conference
system DVTS [OKS∗00] (figure 4).

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis 25



Figure 4: Left: Screenshot from the AVS/Express application. Middle: Video transmission from the CAVE-like system at RWTH
Aachen to St. Augustin (approx. 80 km). Right: Screenshot of the Vista FlowLib application.

The two servers were started on computers in the Re-
search Centre Jülich. The parallel data server has been
launched on a Cray-XD1 cluster and the collaboration server
ran on a Linux PC. Connections between the visualisation
clients and the server components have been established via
the VIOLA network, using the web service ARGON [BPE∗]
to establish the connections between the sites and to re-
serve the needed bandwidth. The main components of the
test setup can be seen in figure 5.

4.1. Results

The tests we have made with this setup showed that dis-
tributed data analysis is feasible even in a heterogeneous
distributed environment. Though each client uses its own
presentation medium, from conventional monitor up to a
CAVE-like system, as well as its own software package, ev-
ery participant could easily join in a valuable discussion and
cooperative data exploration. Our experiences showed that
equality on a per pixel basis of the rendered images on each
site is not necessary. Instead it is sufficient to generate sim-
ilar images, showing the same features with corresponding
visualisation methods. This is valid at least under the propo-
sition that the underlying methods are relying on the same or
very similar algorithms, which is a reasonable assumption
as standardised algorithms are implemented in many visu-
alisation packages. Certainly there is also a class of critical
visualisation algorithms where the final result differs highly
in dependence from subtle implementation details. An ex-
ample is the generation of streamlines by means of time-
integration. The task of integrating those algorithms into our
framework has to be examined more closely in the future.

It is also useful to study the behaviour of the system in
the VIOLA network. For pure communication without visu-
alisation, transport times of 40 ms for chunks of 3.3 MByte,
which is the size of one property of the data for one timestep,
could be measured, resulting in an effective bandwidth of
660 MBit/sec for each client independently. This throughput
theoretically allows rates of 25 timesteps/sec, which is suit-
able for interactive workflow. Coupled with the visualisation
clients, about 140 ms total were needed for retrieving and

rendering one timestep due to additional 100 ms for data
processing and rendering. This results in an update rate of
about 7 timesteps/sec in a real world application. However,
although we could not reach the pure network-limited rate of
25 timesteps/sec, using the VIOLA network results in a sig-
nificant improvement over fast-ethernet, where the transport
time of 400 ms and the rendering time of 100 ms sum up,
giving a rate of only 2 timesteps/sec. Further improvements
within the data-processing and rendering part of the clients
will yield higher update rates.

For the collaboration of N clients connected to the col-
laboration server and sending/receiving short messages, the
maximal number of messages is limited by the network la-
tency. The other way round, this means for a desired up-
date rate of u updates per second, the network latency must
not be greater than 1/(2uN) seconds. This accounts for the
acknowledgements required to guarantee a consistent flow
control. The latencies in the VIOLA network are about 1 ms
and thus sufficient for synchronising fast updated states,
e.g. from mouse interaction, in our collaborative scenario.
With four clients connected to the collaboration server we
have proven that update rates of at least 30 fps are feasi-
ble. With these results we reached the range of update rates
which in [FKE98] are suggested to be sufficient for tele-
immersive work, that is to say 100 ms for data updates and
30 ms for control updates.

5. Discussion and Future Work

With the implementation of our framework, we were able
to demonstrate that collaborative data exploration in hetero-
geneous visualisation environments is possible and useful,
and that remote data access as well as collaboration gains
profit from an advanced optical network. Though the pre-
sented system is in an early stage of development, it can be
applied by the end user as is. On the other hand it could be
improved in certain aspects.

It is easy to see that a major drawback and overhead
comes from the need to re-implement the specific visualisa-
tion application, the so-called logical visualisation design,
for every single base visualisation system participating in

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis26



FZ Juelich

FhG
St Augustin

RWTH
Aachen

3D
(immersive)

2D

3D

Dataserver CSCW−server

AVS/Express
Linux PC

ViSTA FlowLib
Windows PC

Render−cluster
ViSTA FlowLib

2 x 1 Gbps
approx. 30 km

N x 10 Gbps
approx. 60 km

3 x 1 Gbps
1 Gbps

Figure 5: The KoDaVis demonstration environment with three visualisation clients, data and collaboration server.

a heterogeneous collaborative session. This problem can be
solved by the definition of a generalised meta description of
the logical design in conjunction with conversion routines,
translating the meta description into actual visualisation pro-
cessing networks for all used base systems on the fly. Having
this method established, it would also be possible to store
the logical design on a server and load it at the start of a ses-
sion, as it is described in [BDG∗04]. This way the user could
choose from a variety of different visualisation applications,
all offered by the server, at runtime.

During our tests, it turned out that the filter, mapper and
render processes, which, in our approach, are computed on
the local visualisation hardware, are likely to be a bottleneck
and could be a limiting factor, just when processing huge
sets of scientific data. To overcome this bottleneck, and al-
ready mentioned in section 3, it is possible to place time con-
suming filter and mapper processes on fast parallel servers.
This approach is implemented in the Viracocha framework
[GHW∗04], developed at RWTH Aachen University, where
VTK modules are used for parallel data processing of visu-
alisation specific tasks. An integration of Viracocha with our
framework could solve upcoming performance problems. In
this case the local base visualisation system would be used
for rendering and user interaction only. However, the use of
Viracocha would be almost transparent for the end user, as
the look and feel of the local system remains nearly the same
with or without it.

Another important topic of research is the integration of
services for collaboration, data fetching and visualisation
into grid infrastructures. Enhanced by appropriate grid com-
patible interfaces, e. g. based on the Open Grid Service Ar-
chitecture (OGSA) [FKNT02], grid enabled versions of our
data and collaboration server could be implemented. In this
way, the services for data fetching and collaboration pre-
sented in this paper could be made available for a wide range
of user groups and applications in the grid.

6. Acknowledgements

The work reported was supported by the German Federal
Ministry of Education and Research (BMBF) under grant
number 01AK605L.

References

[App91] APPLEGATE L. M.: Technology support for co-
operative work: A framework for studying introduction
and assimilation in organizations. In Journal Organiza-
tional Computing (1991), pp. 11–39.

[BDG∗04] BRODLIE K. W., DUCE D. A., GALLOP J. R.,
WALTON J. P. R. B., WOOD J. D.: Distributed and col-
laborative visualization. In Computer Graphics Forum
(2004), vol. 23, pp. 223–251.

[BPE∗] BARZ C., PILZ M., EICKERMANN T.,
KIRTCHAKOVA L., WÄLDRICH O., ZIEGLER W.:
Co-allocation of compute and network resources in the
viola-testbed.

[CGM∗06] CEDILNIK A., GEVECI B., MORELAND K.,
AHRENS J., FAVRE J.: Remote large data visualization
in the paraview framework. In Eurographics Symposium
on Parallel Graphics and Visualization (EGPGV) 2006
(Braga, Portugal, May 11-12, 2006), pp. 163–170.

[CNSD93] CRUZ-NEIRA C., SANDIN D. J., DEFANTI

T. A.: Surround-screen projection based virtual reality:
The design and implementation of the CAVE. In Com-
puter Graphics Proceedings, Annual Conference Series,
ACM Press (New York, 1993), pp. 135–142.

[Cor68] CORBATO F. J.: A paging experiment with the
multics system. MIT Project MAC Report MAC-M-384
(May 1968).

[EFG∗05] EICKERMANN T., FRINGS W., GIBBON P.,
KIRTCHAKOVA L., MALLMANN D., VISSER A.: Steer-
ing UNICORE applications with VISIT. Philosophical

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis 27



Transactions of the Royal Society of London Series A, 363
(2005), 1833, 1855–1865.

[FE03] FRINGS W., EICKERMANN T.: VISIT: Ein Tool
zur Online-Visualisierung und Steuerung von parallelen
Simulationsrechnungen. Mitteilungen - Gesellschaft für
Informatik e. V., Parallel-Algorithmen und Rechnerstruk-
turen, ISSN 0177-0454, 20 (2003), 35–42.

[FKE98] FOSTER I., KESSELMAN (EDS.) C.: The Grid:
Blueprint for a New Computing Infrastructure, 1. ed.
Morgan Kaufman Publishers, Inc., San Francisco, Cali-
fornia, 1998.

[FKNT02] FOSTER I., KESSELMAN C., NICK J.,
TUECKE S.: The physiology of the grid: An open service
architecture for distributed systems integration, January
2002. Technical Report, Argonne National Laboratory.

[FT00] FRIESEN J. A., TARMAN T. D.: Remote high-
performance visualization and collaboration. IEEE Com-
puter Graphics and Applications 20, 4 (2000), 45–49.

[GHW∗04] GERNDT A., HENTSCHEL B., WOLTER M.,
KUHLEN T., BISCHOF C.: Viracocha: An Efficient
Parallelization Framework for Large-Scale CFD Post-
Processing in Virtual Environments. In The International
Conference for High Performance Computing and Com-
munications (November 2004).

[GLG03] GOEBBELS G., LALIOTI V., GÖBEL M.: De-
sign and evaluation of team work in distributed collabo-
rative virtual environments. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology
(2003), pp. 231–238.

[GSKK04] GÜNTHER G., SCHILLER C., KONOPKA P.,
KREBSBACH M.: Simulation of transport processes in
the tropopause region during spurt using a lagrangian
model. In Geophysical Research Abstracts (2004), vol. 6,
p. 2609.

[HM90] HABER R. B., MCNABB D. A.: Visualization id-
ioms: A conceptual model for scientific visualization sys-
tems. Visualization In Scientific Computing, B. Shriver
and G. M. Neilson and L. J. Rosenblum (eds), IEEE Com-
puter Society Press (1990), 74–93.

[KBF∗94] KRÜGER W., BOHN C., FRÖHLICH B.,
SCHÜTH H., STRAUSS W., WESCHE G.: The respon-
sive workbench: A virtual work environment. In IEEE
Computer (1994), pp. 12–15.

[MC00] MA K.-L., CAMP D. M.: High performance vi-
sualization of time-varying volume data over a wide-area
network. In Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (Dallas, Texas, United States,
2000).

[Oha99] OHAZAMA C.: White paper OpenGL vizserver,
SGI, 1999.

[OKS∗00] OGAWA A., KOBAYASHI K., SUGIURA K.,
NAKAMURA O., MURAI J.: Design and implementation

of DV based video over RTP. In Packet Video Workshop
2000 (May 2000).

[SGvR∗03] SCHIRSKI M., GERNDT A., VAN REIMERS-
DAHL T., KUHLEN T., ADOMEIT P., LANG O.,
PISCHINGER S., BISCHOF C.: ViSTA FlowLib - A
Framework for Interactive Visualization and Exploration
of Unsteady Flows in Virtual Environments. In Proceed-
ings of the 7th Internationial Immersive Projection Tech-
nology Workshop and 9th Eurographics Workshop on Vir-
tual Environment (May 2003), ACM SIGGRAPH, pp. 77–
85.

[SME02] STEGMAIER S., MAGALLÓN M., ERTL T.: A
generic solution for hardware-accelerated remote visual-
ization. In VISSYM ’02: Proceedings of the symposium
on Data Visualisation 2002 (Aire-la-Ville, Switzerland,
Switzerland, 2002), Eurographics Association, pp. 87–ff.

[SMS∗04] STEFANUTTI L., MCKENZIE A. R., SAN-
TACESARIA V., ADRIANI A., BALESTRI S., BOR-
RMANN S., KHATTATOV V., MAZINGHI P., MERKULOV

S., MITEV V., RUDAKOV V., SCHILLER C., TOCI G.,
VOLK M., YUSHKOV V., FLENTJE H., KIEMLE C.,
NOONE K., REDAELLI G., CARSLAW K. S., PETER T.:
The ape-theseo tropical campaign: An overview. In Jour-
nal of Atmospheric Chemistry (2004), vol. 48, pp. 1–33.

[Tra99] TRAMBEREND H.: Avocado: A distributed virtual
reality framework. In Proceedings of the IEEE Virtual
Reality (Houston, Texas, 1999), pp. 14–21.

[UTFK∗89] UPSON C., THOMAS FAULHABER J.,
KAMINS D., LAIDLAW D. H., SCHLEGEL D., VROOM

J., GURWITZ R., VAN DAM A.: The application
visualization system: A computational environment for
scientific visualization. IEEE Comput. Graph. Appl. 9, 4
(1989), 30–42.

[VIO] VIOLA: Vertically Integrated Optical Testbed
for Large Applications in DFN. http://www.
viola-testbed.de/.

[vRKG∗00] VAN REIMERSDAHL T., KUHLEN T.,
GERNDT A., HEINRICHS J., BISCHOF C.: ViSTA: a
multimodal, platform-independent VR-toolkit based on
WTK, VTK and MPI. In Fourth International Immersive
Projection Technology Workshop (IPT2000) (Ames,
Iowa, 2000).

[WLR93] WIERSE A., LANG U., RÜHLE R.: Architec-
tures of distributed visualization systems and their en-
hancements. In Presented at fourth Eurographics Work-
shop on Visualization in Scientific Computing (Abington,
U.K., 1993).

[WWB97] WOOD J. D., WRIGHT H., BRODLIE K. W.:
Collaborative visualization. In Proceedings of IEEE
Vidualization ‘97 R. Yagel and H. Hagen (eds) (1997),
pp. 253–259.

c© The Eurographics Association 2007.

T. Düssel et al. / Distributed Collaborative Data Analysis28

http://www.viola-testbed.de/

