Eurographics Symposium on Parallel Graphics and Visualization (2006)

Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Sorted Pipeline Image Composition

Marcus Rotht! and Dirk Reiners*2

!Fraunhofer IGD, Darmstadt, Germany
2Virtual Reality Applications Center, Iowa State University

Abstract

The core advantage of sort last rendering is the theoretical nearly linear scalability in the number of rendering
nodes, which makes it very attractive for very large polygonal and volumetric models. The disadvantage of sort
last rendering is that a final image composition step is necessary in which a huge amount of data has to be
transferred between the rendering nodes. Even with gigabit or faster networks the image composition introduces
an overhead that makes it impractical to use sort last parallel rendering for interactive applications on large
clusters. This paper describes the Sorted Pipeline Composition algorithm that reduces the amount of data that
needs to be transferred by an order of magnitude and results in a frame rate that is at least twice as high as the

widely used binary swap image composition algorithm.

Categories and Subject Descriptors (according to ACM
CCS): 1.3.2 [Computer Graphics]: Graphics SystemsDis-
tributed/networked graphics;

1. Introduction

High-performance computing nowadays is dominated by
clusters of simple systems. The economics of scale make it
more cost-efficient to use lots of cheap components, even if
they are not quite as well integrated and have less perfor-
mance than a large, single unit. The same is true for graph-
ics systems, where affordable PC-based systems dominate
the market. The parallel development in cheap projectors
has given rise to a large number of tiled screen system for
high-quality, high-resolution displays, nearly always driven
by a cluster of Common Off The Shelf PCs. Using cluster-
capable software [Rot02, HHN*02, Ols02] it is easy to dis-
tribute the rendering tasks over multiple machines to gener-
ate the different parts of the large display. However, using
the combined rendering power of a whole cluster to drive
a high complexity model to a single display is done much
more rarely.

The main reasons are the large bandwidth demands and

f e-mail:mroth@igd.thg.de
f e-mail:dreiners @iastate.edu

(© The Eurographics Association 2006.

higher software complexity this places on the whole system.
It is relatively straightforward if the screen can be broken up
into small pieces, each of which is rendered by a single node
(sort-first [Mol91]). In this case, every node just renders a
smaller viewing frustum and transfers its screen part to the
display node, which adds up to a single screen worth of data.

The problem with this approach is its scalability. With a
growing number of nodes it moves significantly below the
desired linear speedup. This is caused by the overhead of
rendering the pieces of the scene that straddle tile bound-
aries on every affected tile [Mol91]. With a large number of
nodes, this overhead alleviates all the gains of adding nodes
to the system.

This overhead can be avoided by splitting the scene instead
of the screen into independent parts, and assigning scene
parts exclusively to individual nodes (sort-last). In compar-
ison to sort-first this approach makes good use of the avail-
able rendering performance, scales linearly and has the addi-
tional benefit that it is possible to work with scenes that are
significantly larger than the memory of a single node. But
the integration of the partial results becomes more costly, as
pixels used by multiple objects need to be transferred from
all the affected nodes, usually with depth information for oc-
clusion resolution. In the special case of volume rendering
this depth transfer can be avoided, as volumes can easily be
split into non-overlapping parts. This makes sort-last meth-

delivered by
|

www.eg.org

- EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

M. Roth & D. Reiners / Sorted Pipeline Image Composition

ods especially attractive and many of the previous methods
have been developed in this context. For polygonal scenes
the splitting is possible, but it is much more costly and intro-
duces similar scalability constraints as sort-first rendering.

A number of different approaches have been developed to
attack the data volume problem for sort-last composition, but
the most effective ones have some undesirable limitations.

2. Previous Work

In the following the most commonly used approaches for
sort-last image composition are discussed.

Central composition [NZ0O]: Central composition is the
most simple image composition strategy. Each parallel ren-
dering node sends its image with depth information to a sin-
gle display node, which composes all images according to
the pixel depth values to a final image. As a consequence
the amount of data grows linearly with the number of nodes,
all of which needs to be processed by the display node. It is
simple to implement but scales only for a very small number
of parallel rendering nodes.

Binary Composition [Hei94, RS99]: The binary image com-
position tries to relieve the burden on the display node by
parallelizing the composition step. In each step pairs of
nodes combine their respective partial results with one node
sending its image to the other, and recursively combining
the intermediate results until the final image is created. The
main disadvantage of binary composition is that is does not
fully use the available computing power of the cluster, as in
the second step already only half of the nodes are involved,
with successively smaller percentages in subsequent steps.
Even if the binary composition is much more efficient than
the central composition, its resource usage is far from opti-
mal.

Direct Send [MPHK94, MWPO]I J: In direct send image com-
position each parallel renderer is responsible for a separate
region of the final image. After each node has rendered its
local image, it splits up the image and sends each part to
the responsible host. In contrast to the binary composition
all nodes are working during the whole composition and the
display node only needs to receive the final image (similar
to sort-first), but the overall amount of data is not reduced,
which limits scalability.

Binary Swap [MPHK94]: The core idea of binary swap is to
alleviate the load imbalance of binary composition. The dif-
ference is that during each composition step two nodes swap
only half of their image with each other. After a composition
step each node has half of the composed image of two nodes.
In the next step new nodes pairs are created. Two nodes swap
a quarter of the remaining image with each other. At the end
of the composition each node holds a part of the final image.
The amount of data that has to be transferred is equal to di-
rect send. Two effects work together to reduce the amount

of data that is transfered in binary swap. In the first stages
every node only has the data it rendered itself to transfer,
which for optimized models is rather compact, allowing a
sparse approach (i.e. only transfering the parts of the image
that are actually covered by objects) to transfer only a small
part of the full screen. In later stages only small parts of the
full image are under consideration, also keeping the amount
of data to be transfered for each node low.

Pipeline Composition: Pipelines are mostly used in hard-
ware image composition. Examples are PixelFlow [MEP92],
Orad’s DVG [Ora04] or Sepia [MHS99, HM99]. All or part
of the image is sent through a pipeline. In each pipeline stage
one node composes the incoming pixels with its local pixels
and sends the result to the next pipeline stage. The final com-
posed image is then located at the last node in the pipeline.
As composition is done on each pixel independently it is
possible to forward processed pixels to the next stage in the
pipeline as soon as the processing is done. This can keep the
latency per pipeline stage very low. One differentiator be-
tween different systems is whether the pipeline order is de-
fined by the actual physical connection of nodes or whether
it can be reconfigured in software, and the different compo-
sition modes available.

Parallel Pipeline Composition: In [LRN96] Lee, Raghaven-
dra and Nicholas describe a modified pipeline composition,
where the nodes are connected to each other in a circle. Each
node is responsible for one part of the screen, and sends all
regions for which it is not responsible to the next node in the
ring. After n-1 steps each node holds a composed image for
the region for which it is responsible, which then needs to be
transfered to the dispay node. The parallel approach avoids
the initial phase of filling the pipeline, which can be rather
long, especially for software-based pipelines.

Hybrid Sort-First and Sort-Last Parallel Rendering: The
amount of data that has to be transferred for image space
parallel rendering (sort-first) is much smaller than that of
sort-last. [SFLSO00] tries to unite the efficiency of sort-first
and the scalability of sort-last by combining them. It tries
to split the scene in a way that allows parts of the screen
to be rendered by a single node. For these parts, no depth
compositing is necessary, eliminating a large amount of net-
work traffic. The remaining parts are distributed among the
nodes and composed using binary swap. Therefore the worst
case is a standard binary swap, while the best case is equal
to sort-first composition. This approach can yield very high
efficiency, but only under certain circumstances.

The efficiency depends strongly on the locality of objects in
the scene. If large objects cover the whole screen, it is not
possible to get a good load balancing and also find exclu-
sive regions on the screen. Thus to get good efficiency the
scene needs to be split up into a large number of small parts,
to increase the probability of finding exclusive parts. This
splitting might not be possible for some applications that de-
pend on the integrity of the objects in the scene. Even if the

(© The Eurographics Association 2006.

M. Roth & D. Reiners / Sorted Pipeline Image Composition

split is possible, it comes at a cost. Larger numbers of ob-
jects result in a more expensive load balancing step, as the
screen footprint of each object needs to be calculated to de-
tect exclusivity and to assign scene parts to nodes. This cost
reduces the benefit over sort-last, which needs no load bal-
ancing calculations, but also performs well on scenes with
many small objects. But the hybrid approach shares one of
the main drawbacks of sort-first rendering, in that every node
needs to be able to render any part of the scene in order to
have a chance for exclusivity. As a consequence the maxi-
mum model size is limited to that of a single machine and not
the potentially much larger combined capacity of the cluster.

Image Layer Decomposition: Another approach to reduce
the amount of data was proposed by Nguyen and Zahor-
jan [NZ00]. The scene is divided in parts that can be sorted
back to front. These parts are then composed by layering
without the need to transfer the depth component of a pixel.
For dynamic scenes where objects are moving the subdivi-
sion is view dependent and has to be done per frame. The
disadvantages for large scenes are the same as for the previ-
ous hybrid approach.

Sort-last approaches have very desirable advantages over
sort-first and hybrid approaches (scalability, ability to han-
dle large scenes), but they come at a high price in terms of
network load.

In addition to the number of pixels the performance of the
image composition is dependent on the number of messages
that have to be transferred. This is relevant because most
cluster interconnects introduce a constant overhead for each
message independent of the size of the message. Pipeline
methods are very efficient here, but they need elaborate hard-
ware implementations to overcome latency constraints. Bi-
nary swap is the most efficient pure software-based approach
in this respect, it is the most widely used and therefore serves
as a benchmark to compare against.

3. Contributions

The main contributions of the Sorted Pipeline method pre-
sented in this paper are

e Cross-node occlusion culling is employed for bandwidth
reduction.

o Significantly reduced network bandwith compared to al-
gorithms like Binary Swap, typically a factor of 4 less per
individual nodes, and a factor around 10 when looking at
the overall network bandwidth.

e As a pure sort-last approach it allows handling models as
big as the sum of all nodes’ memory. No model transfer
for load balancing is necessary.

e No visibility or geometry preprocessing necessary, fully
dynamic scenes are handled directly.

(© The Eurographics Association 2006.

o e

Intermediate results

_ESEE‘.-!!’PE'...'l I | layered = | penetration ..,! o |

o B — + S o

- — P
campasition pipeline

Figure 1: Depth relation situations

e Arbitrary numbers of nodes are supported, not limited to
powers of two.

4. Sorted Pipeline Composition

The basis for the Sorted Pipeline Composition is the pipeline
approach. Each node reads pixels from its predecessor. If a
read pixel is in front of a local pixel, then the value is passed
unchanged to the following node. Otherwise the local pixel
is sent to the successor in the pipeline. After all pixels are
processed, the final image is available at the node at the end
of the pipeline.

To improve on the original algorithm global information is
used to avoid unnecessary data transfers and to reduce the
length of the pipeline, in addition to splitting up the image
into tiles to allow parallelism to improve usage of the cluster
nodes.

Assuming there is a global knowledge of depth values, then
data transfers can be avoided in the following situations (see
fig. 1):

a) If all pixels are filled with the background, then the cur-
rent node can be removed from the pipeline.

b) If on one node all pixels are set and no background is vis-
ible, then this node occludes all other nodes that have no
pixels that are in front of the farthest pixel of its image.
All occluded nodes can be ignored by the image compo-
sition and can be removed from the pipeline.

c) If all pixels of the current node are behind all pixels of
following nodes, then the pixels can be combined simply
by layering the current node behind the following node.
A depth value comparison is not necessary.

Situation d) is the default case with penetrating depth ranges
that need depth composition.

The data reduction possible with these rules depends
strongly on two factors. The first is the ordering of objects
in the pipeline. If they are sorted back to front rules b) and
¢) will apply more often, significantly reducing the need to
transfer data. The second is the granularity of the test, be-
tween the two extreme approaches of a per-pixel test and a
global per-image test. The following section describes the
approach used to optimize both factors.

M. Roth & D. Reiners / Sorted Pipeline Image Composition

4.1. Overview

In contrast to the original pipeline composition the screen
is split into equal sized tiles. For each tile an indepen-
dent pipeline composition is done, giving each area its own
pipeline. As described above there are some situations where
a simplified composition is possible. To raise the likelihood
of such situations each pipeline is sorted in a way that areas
with pixels that are far away from the viewer are first in the
pipeline and areas with pixels near to the viewer are at the
end of the pipeline. The farthest pixel of each area that is not
a background pixel is used as a sorting key to achieve this.
Nodes whose tiles are empty or fully occluded are removed
from the pipeline.

With this approach a huge part of the normally required data
transfer can be avoided. In a cluster environment where the
composition is mostly limited by the network bandwidth,
this data reduction leads to higher frame rates, or the per-
formance improvement can be used to render more complex
objects.

The main problem in realizing this sorted pipeline composi-
tion is the global data gathering and the independent sorting
of many composition pipelines. An additional optimization
factor is choosing the size of the composition area to get the
best performance.

4.2. Pipeline Sorting

As described before data reduction can be increased if the
visible objects in a pipeline are sorted from back to front.
For this sorting it is enough to take the pixel farthest from the
viewer as the sorting key. There are two possible solutions to
form a sorted pipeline.

It would be possible to assign each node a fixed position in
the pipeline and then assign each node a part of the scene in
such a way that the first node renders the farthest and the last
node renders the nearest part of the scene. This approach has
the disadvantage that the assignment of scene parts is view
dependent and as a result of this each node must be able to
render all parts of the scene. Additionally this kind of sort-
ing only provides a global sorting for the whole image. For
the small image area composition described below, a local
sorting will be more efficient.

Using a switched network like Ethernet allows dynamic re-
ordering of the pipeline, and therefore assigning scene parts
exclusively to any given node (pure sort-last) is possible. As
a consequence the distance of the closest and farthest pixel
of a node are view-dependent. They are calculated by each
node for each frame and are transferred to a master node,
which sorts the nodes in the pipeline back to front.

4.3. Gathering A Global State

To be able to do pipeline sorting and optimization, informa-
tion of all parallel rendered images has to be transferred to
the master node. For each node the depth of the nearest and
the farthest pixel for each tile are needed. Additionally for
the occlusion test it is necessary to know if any background
pixels are visible.

To find the nearest and farthest pixels the depth buffer needs
to be read back into main memory. An approximated test
would be possible based on objects’ bounding volumes, but
that would significantly limit the possible gains.

The time cost for this operation differes widely from card to
card, for the nVidia QuadroFX 1100 used in this paper about
50 million depth buffer values can be read back per sec-
ond. Color frame buffer readbacks need about the same time,
which allows reading back a 1280x1024 screen 19 times per
second. In practice less time is needed, as for most nodes the
visible geometry does not cover the whole screen, but buffer
readback accounts for a major part of the time used.

For the pipeline check it is necessary to find out whether a
part of the screen is totally empty or if it occludes the back-
ground completely. This can be done in software or using
the GL_ARB_occlusion_query OpenGL extension by draw-
ing a rectangle at the far clipping distance. The number of
visible pixels for this rectangle defines occlusion or visiblity.
Our implementation shows that in many cases a speedup is
possible, but unfortunately composition is time consuming if
the occlusion test fails. In these cases the time for the occlu-
sion test increases the overall composition time. Therefore
the occlusion test makes fast situations faster and slow situa-
tions slower. The presented implementation does not use the
occlusion test to optimize for the worst case.

After the min and max depth and occlusion values for all
tiles and all nodes are calculated, they have to be transferred
to a central node which is then responsible for the optimiza-
tion and pipeline definition. This data gathering process is a
potential bottleneck.

The amount of data depends on the number and size of the
composition tiles. More tiles increase the chances for hitting
one of the efficient cases listed above, but they also consume
more collection bandwidth. A simple optimization is using
run-length encoding for the transfer. The geometry of a sin-
gle node will only touch a small number of the possible tiles,
run-length encoding will compress the data for the unused
tiles very efficiently, on average by a factor of 10. But the
tile size still remains an important optimization factor.

The extreme cases are separate pipelines for each pixel and
a single pipeline for the whole screen. Fig. 2 shows the rela-
tion between the tile size and the total amount of information
that needs to be transfered, using the Lucy animation path as
an example. For small tile sizes the data transfer for the tile
sort dominates the data transfer whereas the transfer for the

(© The Eurographics Association 2006.

M. Roth & D. Reiners / Sorted Pipeline Image Composition

25

| " Precheck

i Compose -------
!

MBytes

0 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160
Tile size

Figure 2: Relation between tile size and transferred data

Frames/s

Fl’owerplapt

1 1 1 1 1
20 40 60 80 100 120 140 160
Tile size

Figure 3: Relation between tile size and framerate

composition is very small. For very large tiles transfer for
the sorting is small but data reduction is also small so a lot
of data has to be transferred for the image composition. A
minimum of the overall data load can be found for 40-50
pixel tiles, with rather similar values for the different scenar-
ios. Fig. 3 shows the rendering performance with different
tile sizes. For the rest of this work 40 pixel tiles were used.

4.4. Optimizing The Pipeline

Not all parallel rendering nodes contribute pixel values to
all regions of the display. Therefore the pipeline length can
be reduced by removing all nodes that contribute no pixel
or only background pixels to a region. Further reduction is
possible by removing all nodes where all pixels are occluded
by another node.

An area is completely occluded if on one node no back-
ground pixel is visible and no depth value of the area is
smaller then the farthest depth of the occluding node. This
is the most efficient optimization as it allows drastic short-
ening of the pipeline. It occurs in all scenes where parts of
the scene are occluded by walls or other features. In the used
tests it occurred often in the BMW model where the carriage
covers a lot of the internal geometry. It rarely occurs in the

(© The Eurographics Association 2006.

scanned models like the Stanford Lucy because the model
has very few self-occluding parts and low depth complexity.

The tiles that are not occluded and not empty are then sorted
from back to front, using the the maximum depth value as the
key. Looking at the smallest depth value that can come out
of the previous node in the pipeline allows deciding whether
depth composition is necessary or not. If it is not needed, the
depth buffer transfer can be skipped and simple layering can
be used instead for the composition.

As a result of all optimizations we have a position in a
pipeline for each tile, and whether depth composition is nec-
essary or not. This information is then transferred to each
node. Similar to the data compression for data gathering a
simple run length encoding is used to efficiently compress
information about empty or occluded tiles.

Fig. 4 shows the pipeline length for three models, distributed
across 32 nodes, resulting in an initial pipeline length of 32
for all regions. In the power plant model a lot of geometry is
located in the building, which creates a rather long remaining
pipeline. Even in this case the longest remaining pipeline has
length 23, less than three quarters of the initial length. The
average pipeline length for the whole image is 1.37. For the
BMW model the maximum length is shorter (16), but the
complex regions cover a larger part of the screen, resulting
in an average pipeline length of 1.628. In the Lucy model
the small covered screen space gives rise to a lot of empty
areas that push the average down to 1.01, and because of
the relatively low depth complexity the maximum pipeline
length is limited to 10.

4.5. Image Composition

After each rendering node gets its pipeline information, the
composition is started.

As each tile’s pipelines are totally indepepdent of each other,
they can all be processed independently and in parallel. The
process is started from the tiles that have no incoming pix-
els, these are just sent out to the next node in the pipeline
by a sender thread. An independent reader thread waits for
incoming data and puts it into a processing queue, which
composes the data and puts into the the queue of the sender
thread.

This data-driven on-demand approach ensures maximum
utilization of the available bandwith.

5. Results
5.1. Test Scenarios

The described approach has been implemented in the
OpenSG Open Source scenegraph and is available as part
of the OpenSG system. All tests were run on a 48 node
cluster running 2.4 GHz Pentium 4 machines with nVidia
QuadroFX 1100 graphics cards, generating a final output

M. Roth & D. Reiners / Sorted Pipeline Image Composition

BMW Power Plant

Pipeline length

Pipeline length

Clustered Lucy

Pipeline length

Figure 4: Tile pipeline lengths for the different models

image of 1024x768 pixel. The computers are directly con-
nected to a Cisco gigabit switch.

The described algorithm was tested on different types of
scenes. The first is the well known power plant from the
University of North Carolina. It consists of 13 million poly-
gons, and is primarily interesting because of its significant
depth complexity, which makes it a very interesting case for
the pipeline optimizations described above. The second is a
model of a BMW 7 series car, with 3 million polygons. It has
a widely varying object sizes (e.g. the whole carriage is a sin-
gle object, while the interior is finely split), but good occlu-
sion. The third scene type are high-polygon scanned models
from the Stanford 3D Scanning Repository. Lucy (28 mil-
lion polygons) and David (56 million polygons) were used.
Lucy was used in two different versions. One was created by
striping the full model and selecting random strips to split
the model into pieces, the other using a clustering-based al-
gorithm similar to [IG03]. The first version has object pieces
that span a large part of the model (long strips) and con-
sequently cover large parts of the screen, the pieces of the
second are much more compact. For all models an anima-
tion path was generated that includes close-up and overview
shots.

All of these models don’t really tax todays graphics cards
any more, which can be seen in the small amount of time
taken by the actual rendering in fig. 8, but they represent
different model characteristics that are relevant to the per-
formance of the presented algorithm, emphasizing the im-
portance of the transfer bandwidth.

5.2. Bandwidth Reduction

To judge the quality of the algorithm independent of the spe-
cific implementation the amount of data that needs to be
transfered per frame was recorded for the power plant ani-
mation path. To put the results in perspective the binary swap
approach was also implemented and used as a comparison.
Both algorithms are optimized and use a sort-last-sparse ap-
proach, which is partially responsible for the large variability
in the frame rate.

Fig. 5 shows the maximum amount of data that needs to be

Power plant composition data

N WA O N

Max read MBytes/frame

1k =T) Bin‘ary;/S«w -~ 4
Solrted Pipleline T

0 10 20 30 40 50 60 70 80 90
Frame

Figure 5: Maximum data received by a single node per

Power plant composition data

T T T
Binary Swap
160 |- Sorted Pipeline ------- 7

Transfered MBytes/s

Figure 6: Sum of all transferred data for all nodes

transfered into a single node, which can then quickly become
the bottleneck for higher resolution images. The binary swap
approach needs to transfer between 2 and 8 times as much
data into a node, with an average around 4.

The situations gets even worse when looking at the total
amount of data that needs to be transfered (see fig. 6). This
can become a serious problem for a switched network, as
most switches have a lower internal bandwidth than the sum
of all connections, i.e. not every node can send to another
node at full speed at the same time. The Cisco gigabit switch
used on the test cluster for example provides an internal

(© The Eurographics Association 2006.

M. Roth & D. Reiners / Sorted Pipeline Image Composition

bandwidth of 6 gigabit/sec. In this metric binary swap on
average needs to transfer between 4 and 34 times as much
data as that sorted pipeline, with an average around 10.

5.3. Performance Improvement

Figure 7 shows the impact on actual framerate that is in-
curred by the overhead on the data side. The power plant is
very dense in the core of the model, leading to very long
pipelines and limited gain. Nonetheless, the sorted pipeline
is always faster that binary swap. On average 65% faster, in
the best case 3 times faster. The BMW model is a good ex-
ample for the sorted pipeline, as there is a lot of occlusion
to be exploited. It renders 3-4 times faster than binary swap.
The Lucy model with its low depth complexity benefits less,
but still significantly. On average it renders 2 times faster
than binary swap.

Figure 8 shows the time distribution for the different tasks.
The two most prominent parts are reading the frame buffer
and the composition. The pipeline sorting and the actual ren-
dering only take up a small part of the time, especially in a
close-up view the frame buffer read clearly dominates the
needed time.

This large impact of buffer reads has both good and bad as-
pects. It is bad because there is very little that can be done
about it, it just takes a certain amount of time to read the
frame and depth buffers. The good part is that it is on the de-
velopment curve of graphics hardware. Using PCI Express
connections and newer graphics cards, the readback time
will be reduced significantly. Another good aspect is that it
can be done in parallel with composing the previous image.
This would allow a further improvement in frame rate of a
factor of up to 2, at the cost of not reducing latency. This is
left as future work.

All tests are showing that a noticeable speedup is possible
with the sorted pipeline algorithm. Excluding the time for
rendering and buffer read which are equal for all sort-last al-
gorithms, the composition with the sorted pipeline algorithm
is at least twice as fast as the binary swap.

5.4. Scalability

Figure 9 shows the speedup for rendering with different
numbers of parallel rendering nodes, averaged over the
whole animation path. It shows that an arbitrary number of
nodes can be used with the sorted pipeline, compared to
binary swap which only works with power-of-two cluster
sizes. It also shows the impact of using clustered vs. un-
clustered model splitting, which allows the sorted pipeline
to run much more efficiently as it increases the probability
of occlusion events. This is caused by the compactness of
the clustered model parts and the fact that they have fewer
holes, covering more area completely.

It shows that it’s easily possible to handle dynamic billion

(© The Eurographics Association 2006.

David Performance
25 I —

ISortled Plipelir%e

Average frame rate

5 10 15 20 25 30 35 40 45
Number of renderers

Figure 9: Scalability compared to Binary Swap, for clus-
tered and unclustered models

polygon models without any preprocessing or simplification
with parallel polygon rendering.

6. Future Work

The core ideas presented here are orthogonal to some of
the hybrid sort-first/sort-last ideas presented in [SFLS00].
It would be possible to combine them to further reduce the
amount of bandwidth needed by replacing their binary swap
with a sorted pipeline.

As the two most expensive parts (readback and composi-
tion) are independent, it would be possible to do them in
a pipelined fashion to increase performance. The OpenSG
clustering framework is not yet designed for that, but it’s a
logical step.

Acknowledgements

Parts of the described research were funded the Ger-
man Ministry for Research and Education (BMBF) in the
OpenSG Plus project.

We would like to thank the University of North Carolina and
their anonymous donor for releasing the power plant model,
and the Stanford Digital Michelangelo Project for the Lucy
and David models.

We would also like to thank the authors of [IG03] for actu-
ally citing the libraries that they used (Metis and ANN), as
that enabled us to develop the out-of-core clustering tool in a
single day. Information sharing about implementation basics
is a good thing!

References

[Hei9%4] HEILAND R.: Object-oriented parallel polygon
rendering. In ACM Graphics and Visualization Confer-
ence (1994), ACM, pp. 19-26. 2

M. Roth & D. Reiners / Sorted Pipeline Image Composition

Power Plant Performance

BMW Performance

Clustered Lucy Performance

" Sorted Pipeline —
Binary Swap

" Sorted Pipeline —
Binary Swap

Frames/s

10 20 30 40 50 60 70 80 90 100
Frame

10 20 30 40 50 60 70 80 90 100
Frame

Figure 7: Performance comparison between sorted pipeline and binary swap

Time

Lucy Time Distribution
T T T T 17 T T 11

Clustered Lucy Time Distribution
T 1T T T 1T 17T 177

Time

T T T T T

T T IIT

I T T T o T I
10 20 30 40 50 60 70 80 90 100
Frame

10 20 30 40 50 60 70 80 90 100
Frame

Read Buffer
Rendering -

Read Buffer
Rendering ----------

Compose Compose
Sort Pipeline ————- Sort Pipeline —-——-

Figure 8: Frame time distributions

soF T T T g T T T T T] 18 T T
Sorted Pipeline 16
25 | Binary Swap --f--- . 14
R4 o 12
4 3 10}
5 § er
w - 6
4 -
2 -
0 1 1 1 1 1 1 1 1 1 0 1 1 1
10 20 30 40 50 60 70 80 90 100
Frame
Power Plant Time Distribution BMW Time Distribution
o2 FT T T T T T InT T3 v2FT T T T T T T T 173
0.1 - .
o 008 — "
E oos o £
0.04 -
002 """ . -
0'1'I'|"I'I"l"lul'l’ S il SIS CEUOT] it SSPTS] [SSTSS ST M s
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Frame Frame
Compose Read Buffer ----- Compose Read Buffer
Sort Pipeline —-—-- Rendering -+ Sort Pipeline —-—-- Rendering -+
[HHN*02] HUMPHREYS G., HOUSTON M., NG R.,

FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI
J. T.: Chromium: A stream processing framework for in-
teractive graphics on clusters, 2002. 1

[HM99] HEIRICH A., MOLL L.: Scalable distributed vi-
sualization using off-the-shelf components. In /IEEE Par-
allel Visualization and Graphics Symposium, pages 55—
59, October 1999 (1999), IEEE. 2

[IGO3]
pression for gigantic polygon meshes.
Graph. 22,3 (2003), 935-942. 6,7

[LRN96] LEE T.-Y., RAGHAVENDRA C. S., NICHOLAS
J. B.: Image composition schemes for sort-last polygon
rendering on 2d mesh multicomputers. In /EEE Trans-
actions on Visualization and Computer Graphics. 2(3)
(1996), IEEE, pp. 202-217. 2

[MEP92] MOLNAR S., EYLES J., POULTON J.: Pix-
elFlow: High-speed rendering using image composition.
Computer Graphics 26,2 (1992), 231-240. 2

[MHS99] MoLL L., HEIRICH A., SHAND M.: Sepia:
scalable 3D compositing using PCI Pamette. In IEEE
Symposium on FPGAs for Custom Computing Machines
(Los Alamitos, CA, 1999), Pocek K. L., Arnold J., (Eds.),
IEEE, IEEE Computer Society Press, pp. 146—155. 2

ISENBURG M., GUMHOLD S.: Out-of-core com-
ACM Trans.

[Mol91] MOLNAR S.: Image-Composition Architectures
for Real-time Image Generation. PhD thesis, University
of North Carolina, 1991. 1

[MPHK94] MaA K.-L., PAINTER J. S., HANSEN C. D.,
KROGH M. F.: Parallel volume rendering using binary-

swap compositing. [EEE Computer Graphics and Appli-
cations 14,4 (1994), 59-68. 2

[MWPO1] MORELAND K., WYLIE B., PAVLAKOS C.:
Sort-last parallel rendering for viewing extremely large
data sets on tile displays. In IEEE 2001 Symposium
on Parallel and Large-Data Visualization and Graphics
(2001), IEEE, pp. 85-154. 2

[NZ00] NGUYEN T., ZAHORIJAN J.: Image layer decom-
position for distributed rendering on nows. In 2000 Inter-
national Parallel and Distributed Processing Symposium,
Cancun, Mexico, May 1-5 (2000), IEEE. 2,3

[O1s02] OLSON E.: Cluster Juggler - PC cluster virtual
reality. Master’s thesis, lowa State University, 2002. 1

[Ora04] ORAD: Dvg technical presentation,
http://www.orad.co.il/visual.htm, 2004. 2
[Rot02] ROTH M.: Integration paralleler rendering-

verfahren fuer lose gekoppelte systeme in opensg. In

OpenSG Symposium, Januar 2002 (2002), OpenSG. 1

[RS99] RAMAKRISHNAN C. R., SiLvA C. T.: Optimal
processor allocation for sort-last compositing under bsp-
tree ordering. In SPIE Electronic Imaging, Visual Data
Exploration and Analysis IV (January 1999), SPIE. 2

[SFLS00] SAMANTA R., FUNKHOUSER T., L1 K.,
SINGH J. P.: Hybrid sort-first and sort-last parallel ren-
dering with a cluster of pcs. In 2000 SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware (2000), ACM,
pp- 97-108. 2,7

(© The Eurographics Association 2006.

