
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Time Step Prioritising in Parallel Feature Extraction
on Unsteady Simulation Data

M. Wolter1, B. Hentschel1, M. Schirski1, A. Gerndt1, T. Kuhlen1

1Virtual Reality Group, RWTH Aachen University

Abstract
Explorative analysis of unsteady computational fluid dynamics (CFD) simulations requires a fast extraction of
flow features. For time-varying data, the extraction algorithm has to be executed for each time step in the period
under observation. Even when parallelised on a remote high performance computer, the user’s waiting time still
exceeds interactivity criteria for large data sets. Moreover, computations are generally performed in a fixed order,
not taking into account the importance of partial results for the user’s investigation.
In this paper we propose a general method to guide parallel feature extraction on unsteady data sets in order to
assist the user during the explorative analysis even though interactive response times might not be available. By
re-ordering of single time step computations, the order in which features are provided is arranged according to
the user’s exploration process. We describe three different concepts based on typical user behaviours. Using this
approach, parallel extraction of unsteady features is enhanced for arbitrary extraction methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing I.3.2
[Computer Graphics]: Distributed/Network Graphics I.3.7 [Computer Graphics]: Virtual Reality I.6.6 [Simulation
and Modeling]: Simulation Output Analysis

1. Introduction

Modern simulations of natural or technical phenomena, in
particular computational fluid dynamics (CFD), exhibit an
increasing temporal and spatial resolution. As raw data is too
large in size and not directly displayable, renderable extracts
have to be computed. Extracts are derived objects which
provide insight into the data, e.g. isosurfaces, cutplanes or
streamlines. Which kind of extracts are selected depends on
the problem under investigation.

In this context, van Dam et al. [vDFL∗00] proposed the
employment of Immersive Virtual Reality (IVR) which com-
bines interactive visualisation with immersive sensation (see
figure 1). Interactivity provided by virtual environments sup-
ports an exploration of the raw data, which resembles a dis-
covery rather than a mere presentation. This approach, also
called explorative analysis, works directly on the simulation
data set with the aim to extract characteristic structures as
fast as possible, to set up hypotheses, or to gain further in-
sights. The fundamental procedure is a trial and error ap-
proach. The user iteratively determines a set of visualisation

parameters until a comprehension of the flow characteristics
is attained.

Explorative analysis heavily relies on interactivity. We re-
fer to [BJ96], where interactivity is defined as the ability to
provide a response to the user’s input in less than 100 ms
and to maintain a minimal framerate of the application of 10
frames per second. [BJ96] additionally state that computa-
tional results should be presented in less than 500 ms. Pro-
viding interactivity with large data sets is a challenging task,
especially if the data set consists of a large number of dis-
crete time steps. While in some cases a precomputation of
features or feature related meta-data is possible, this meta-
data is mostly constricting and the amount of possible pre-
computations may cause secondary storage problems.

One common approach to speed up the extraction process
is to use parallel computation on high performance comput-
ers, which provide adequate resources in the form of CPUs,
main memory and high secondary storage bandwidth. The
Viracocha toolkit [GHW∗04] separates post-processing on a
parallel computer from visualisation on a graphics worksta-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

tion. In this work we apply Viracocha for the parallelisation
of transient feature extraction. Time steps are dynamically
assigned to processes and management tasks are overlapped
with computation. The integrated data management system
controls loading and caching of large data sets. Parallelising
time steps, we achieve good scalability for different extrac-
tion methods and unsteady data sets.

While this approach reduces the overall computation time
especially for large data sets, the user’s waiting time mainly
depends on the complexity of the extraction algorithm as
well as the applied data set. For most common extraction
algorithms, optimised computation methods and data struc-
tures for single time step computations exist. When executed
on several time steps, the order in which single computa-
tions are processed influences the user’s perception of the
unsteady feature. If the order of visualisation and computa-
tion diverge, additional waiting time is induced. This is due
to the fact that results for a given time step might be available
long before they are displayed in the animation loop.

In this paper, we propose a method to enhance explorative
analysis of unsteady data sets by responding to the temporal
characteristics of the visualization. Therefore, waiting times
become less noticeable for the user. Depending on the user’s
investigation behaviour, priorities are assigned to subtasks of
the overall computation. These priority values change the ar-
rival order and therefore the arrival time of computed results.
This method only affects the scheduling of single time step
computations and is independent of the underlying extrac-
tion algorithm. Based on the general concept, we introduce
solutions for three typical use cases:

• The user focusses his search by specifying a certain time
region of interest.

• The user stops the animation to investigate a single time
step and its temporal neighbourhood.

• The user demands a continuous visualisation of a feature
in order to investigate a feature’s temporal evolution.

The remainder of this paper is structured as follows: In
section 2 we briefly review previous and related work. In
section 3 we describe the framework used to extract features
from unsteady data sets in parallel. The results we present for
different extraction algorithms motivate the need for more
sophisticated methods to facilitate exploration. In section 4
we introduce our method of prioritising different tasks ac-
cording to the user’s interaction. This includes concepts for
handling the three use cases outlined above. A conclusion
and outlook is given in section 5.

2. Previous work

One of the first available systems for VR-based flow vi-
sualisation was the Virtual Wind Tunnel and its follow-up
Distributed Virtual Wind Tunnel [BGY92]. The latter intro-
duced a connection to a vectorized post-processing backend,

Figure 1: Explorative analysis of CFD simulations in virtual
environments using ViSTA FlowLib.

which then was responsible for post-processing computa-
tions. Recently, Allard et al. introduced FlowVR [AGL∗04],
a middleware which can be used to flexibly connect various
so-called modules to form a distributed VR-application. One
goal of their work is to alleviate software engineering prob-
lems when writing VR-applications for cluster platforms. By
distributing several identical modules to different nodes in a
cluster, data parallel execution of modules can be obtained.
According to the authors, the architecture can be applied to
a wide variety of problems.

Another distributed software environment is COVISE
(COllaborative VIsualization and Simulation Environment)
[RFL∗98], which focuses on cooperative work. One or
more users participate in a session controlled by a master
user. Modules containing processing steps like I/O, filter-
ing or rendering can be distributed across different work-
stations. COVISE also integrates a module for Virtual Re-
ality called COVER, supporting tracking systems and some
multi-screen display devices.

Ma and Camp [MC00] introduced a system for parallel
remote rendering of unsteady data sets. Simulation data is
volume rendered on a parallel computer and the resulting im-
ages are efficiently transmitted to some viewer application.
This work uses compression mechanisms to provide fast im-
age transmission using custom networks. Parallelisation is
done for spatial and temporal extents of the data set.

The ViSTA FlowLib [SGvR∗03] toolkit is developed for
scientific visualisation in virtual environments. It combines
the capabilities of the VR toolkit ViSTA [vRKG∗00] and re-
search activities in the area of CFD post-processing, which
are based on functionalities of the Visualisation Toolkit
(VTK).

3. Parallel Post-Processing of Unsteady Data Sets

This section describes the architecture used to parallelise
feature extraction on unsteady data sets for explorative
analysis in virtual environments. We evaluate the parallel

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

Figure 2: Viracocha setup and workflow of a typical command. The double lines depict process borders. The management,
algorithm and data layers (denoted left) use separate threads to overlap different subtasks.

post-processor with extracts of different complexity on two
time-varying data sets.

3.1. Parallel Architecture

The Viracocha software provides parallel post-processing
for connected visualisation applications in a client-server
setup, with Viracocha as server component. It makes use
of a layered abstraction design that is made up of four lay-
ers (see figure 2). The layers hide implementation details
and are exchangeable. For example, on the network layer,
processes of the parallelisation framework communicate via
MPI [GLS99], while requests and data are sent via TCP/IP
between visualisation client and Viracocha. The other three
layers attend to manage parallel resources, algorithms or
data.

Viracocha combines different forms of parallelisation.
The unsteady extraction task is parallelised using MPI,
therefore it may be distributed even on heterogenous
distributed memory machines. Subtasks of each layer,
such as loading data, computing the extraction algorithm
or management are parallelised using different threads. A
Viracocha application running on a parallel computer called
workhost consists of one scheduler process as central or-
ganising unit and multiple worker processes. The user of the
visualisation application may issue commands together with
a set of parameters to the workhost. Each new command is
assigned to a taskcontroller, which assigns needed resources
for the execution of the command and gathers a group of
worker nodes. While this workflow is part of the framework,
a user may integrate own methods into the algorithmic layer.
These methods are called taskcommand on a taskcontroller
and workercommand on a worker node accordingly. While
the workercommand contains the concrete feature extraction
algorithm, the taskcommand contains a control algorithm
used to coordinate these extractions.

Figure 2 depicts the workflow of an issued command. The
command and its associated parameters (yellow) are initially
assigned to a taskcontroller and a connected group of work-
ers. The taskcommand may alter the parameters prior to dis-
tribution. Based upon the parameters, the workercommand
requests required raw data (blue) and produces some sort of
result (red). The results are transmitted using the transport
layer to the requesting visualisation application.

For extraction of unsteady features, we apply parallelisa-
tion on distinct time steps. Each worker computes a number
of time steps iteratively. That is, after an initial setup phase
including communication and thread setup, the following
computations use the already existing objects, furthermore
reducing overhead.

Load balancing is applied with a self scheduling strategy
on time steps. As we do not balance single time step compu-
tations, load imbalancing may occur when execution times
for different time steps vary significantly. This imbalance is
adjusted when enough time steps are distributed. All time
steps to be processed are managed by the taskcommand,
which assigns them to free workers. Whenever the user is-
sues a parameter update of a running command, e.g. chang-
ing the isovalue, the same workflow occurs.

3.2. Visualisation in Virtual Environments

Virtual reality applications have special requirements includ-
ing stereoscopy, tracking and 3D input devices. For anal-
ysis of simulation data in virtual environments, we apply
the ViSTA FlowLib toolkit as visualisation application. Vira-
cocha handles all computationally expensive tasks requested
by the user in a virtual environment. This decoupling en-
ables ViSTA FlowLib to focus on visualisation with high
frame rates. Simple tasks like head tracking, transforma-
tion or navigation are interactively processed. All tasks that
would lower the framerate are sourced out to the remote par-
allelisation service.

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

Figure 3: Dynamic evolution of a pressure isosurface in the shock data set over several time steps. The isosurface is coloured
by mach number.

In this work we do not regard overhead on the visuali-
sation computer. This includes sending a command, receiv-
ing and preprocessing resulting data for visualisation. These
tasks are processed by a multi-threaded approach as well, to
avoid delaying the computing worker.

But, rendering of large results is not a trivial task. Result-
ing data may be too large to be rendered effectively. Several
different approaches for these problems exist, which often
depend on the type of extract. In the scope of this work, we
assume that produced results are small enough to be ren-
dered immediately. The extracts we use in section 3.3 are
only a few MB in size.

3.3. Evaluation Setup

Two large data sets were used to evaluate the parallelisation.
The first data set called shock consists of 919 time steps of a
rectilinear grid. Each time step contains approximately two
million grid points, added up to a total filesize of 70 GB.
The simulation data describes an ultrasonic shock induction.
Goal of the simulation is to investigate the vortex structures
depending on the induction angle. Extracts of several time
steps are depicted in figure 3. The second data set called
propfan is made up of only 50 time steps, each with 2.5 mil-
lion points in an unstructured grid. It simulates a counter-
rotating propulsion turbine. With every time step the blades
are rotated a few degrees, therefore the data set has a moving
grid. The total file size is 9.5 GB.

To show the efficiency of our framework we choose two
exemplary extracts. As we apply parallelisation on distinct
time steps, time-dependend extracts like pathlines are not
suitable. The computation of isosurfaces for a given isovalue
is a quite simple and fast algorithm. The computationally
more expensive extracts are vortex regions identified by a
helicity treshold method. On each grid point the normalised
helicity is computed. This value is compared to a treshold to
decide if this point belongs to a vortex region. This is for-
mulated in equation 1 (where v is the velocity, htresh is the

helicity treshold):

∇× v
|∇× v| ·

v
|v| ≥ htresh (1)

While helicity may be precomputed, we compute it
online as an example algorithm for high computational
load, to demonstrate a worst case extraction method. Both
extraction algorithms produce isosurfaces as results, which
have the same order of magnitude in terms of polygon count.

The system we used is a Sun Fire E25k computer with 72
UltraSparc IV 1.05 GHz dual core processors. This amounts
to a total of 144 processors, which have access to 288 GB
main memory. We utilised up to 64 worker nodes for 128
time steps of the shock data set and 32 worker nodes for 50
time steps of the propfan. The visualisation computer is a
workstation (3.2 GHz dual processor, 2 GB main memory,
NVIDIA GeForce 6800 GT) connected via a non-dedicated
100 MBit/s network.

3.4. Evaluation Results

Two isosurfaces of energy scalar values are extracted in
a time region of 128 time steps of the shock data set. A
single worker node needs more than 17 minutes for this
task on a total of 256 million grid points, which is only 14
% of the whole data set. We choose only a time region of
the complete data set, otherwise computation would take
too much time for an explorative analysis. As the propfan
data set consists of only 50 time steps, we compute the
whole data set. The results for both data sets and extraction
methods are depicted in figure 4. Vortex computation
takes approximately 10-15 times longer than isosurface
extraction. Using 32 worker nodes, computation times for
unsteady isosurfaces are reduced to 39 s (shock) and 23 s
(propfan). Vortex computation takes still too long with 386
s (shock) and 329 s (propfan).

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

Figure 4: Measurement results for parallel computation of isosurfaces and vortices on the shock and propfan data sets. Left:
Overall runtimes. Right: Speedup values. The optimal speedup is dashed red.

Speedup values are near to the optimal speedup for up
to 16 worker nodes (approximately 90 % efficiency). For a
larger number of processes efficiency decreases as only a
few time steps are processed per worker node. This results
in imbalanced computations, as the applied extraction algo-
rithms are not balanced.

The user’s total waiting time is reduced with high effi-
ciency, but the underlying extraction algorithm and the data
set’s size are too complex to provide fast results. The ques-
tion of the execution order of single time step computations
remains. The naive approach to compute a time region from
the lowest to the highest time step does not consider the
user’s exploration process. Additional waiting time is caused
if the time span currently under investigation is computed
last. Therefore we now propose methods to adapt the overall
computation time to the user’s investigation behaviour.

4. Interactive Exploration

Concerning direct manipulation, the separated visualisation
application continuously renders already computed extracts
in an animation loop. For most extraction results, a fre-
quency of more than 10 frames per second is achieved,
which accomplishes the formerly described interactivity cri-
teria. Whether one is able to achieve a fast result response
(in less than 500 ms [BJ96]) for unsteady extraction of flow
phenomena depends on the optimisation of the algorithm,
the size of the unsteady data set and the performance of
available hardware. Since we cannot guarantee interactive
response times, all the more important are interactivity is-
sues supporting the exploration process. If results are not
delivered fast enough, the user should at least be able to in-
fluence the longer computation time interactively. Especially
in an explorative analysis, where the user frequently changes
parameters to investigate the data set, a computation has to
adapt to the user’s behaviour. This includes obvious features
like the ability to cancel a running computation if the pre-
sented results are unsatisfying or the ability to change pa-

rameters of a running extraction. The introduced framework
for parallelising unsteady computations supports both abili-
ties.

To further support the user’s exploration process, we pro-
pose a concept of interactively influencing the order of com-
putation by assigning priorities to time steps of unsteady fea-
ture extractions. Time steps with higher priority are com-
puted first, that is their results are sooner available to the
user. While this does not fulfil a direct response time of less
than 500 ms independent of the extraction algorithm, occur-
ing computation times are arranged to overlap with the user’s
exploration process.

4.1. Time Step Priorities

This section explains the general setup of the time step pri-
ority system and its implementation. As the user may update
computation parameters of a running feature extraction, this
infrastructure is used to implicitly transmit visualisation and
animation parameters to the workhost. Whenever the user
changes animation speed, pauses, continues the animation
or starts an extraction, current animation parameters are
transmitted. The taskcommand, which assigns time steps to
workers dynamically, holds a priority queue which contains
all time steps to compute. Whenever a worker requests a
new time step, the queue’s element with highest priority is
assigned. Using this infrastructural concept, the remaining
task is to define the priority function which assigns a prior-
ity value to each time step. Based on previously collected
runtime information about different tasks, heuristic methods
are used to assign priorities to time steps independent of the
currently executed kind of extraction algorithm. Therefore,
these heuristics support exploration of unsteady data sets as
a general method.

These methods exploit the fact that by using Viracocha,
time steps are processed in parallel. While the time for a sin-
gle time step computation stays the same, in the same time

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

approximately n time steps are processed, if n workers com-
pute the whole task.

4.2. Time Scales

In the visualisation of simulation data, several time scales
occur. We distinguish between simulation time, animation
time and computation time, which have all different dura-
tions for one time step.

Simulation time tsim is the time scale of the simulated data,
e.g. months or weeks for meteorological data. Each time
step of a data set describes an instant of this simulation.

Animation time tanimation is the time scale in which time
steps are displayed. The animation time gives each dis-
tinct time step a concrete display length and may be arbi-
trarily adapted by the user. Typically one animation loop
of all time steps spans several seconds up to a couple of
minutes.

Computation time tcomp is the time scale of task computa-
tion runtime. The runtime for each time step is determined
by its size and its complexity regarding the applied extrac-
tion algorithm.

To adapt to the user’s temporal behaviour, the taskcommand
needs to know the current animation time, animation loop
time and the mapping from animation time to time steps.
This data is transmitted with the computation parameters.
From there on the taskcommand keeps a clock which is
synchronised with the animation loop, evading communica-
tion overhead for regular synchronisation. The clock is re-
synchronised on every user input concerning the computa-
tion.

While a data set may consist of several hundreds or thou-
sands of time steps, the user is mostly interested in a subset
of all available time steps. In the following, we will refer to
this subset as time region. This may be a fixed interval [t1, t2]
as well as a subsampling of the original time steps, e.g. ev-
ery tenth time step. To counteract imbalanced computation
for our heuristics, we assume tcomp

ts to be the worst case run-
time for a time step computation. Accordingly, tanimation

ts is
the constant time span one time step is displayed in the ani-
mation.

4.3. Prioritisation Methods

Based on the conceptual framework, several heuristics for
reordering tasks according to different assumptions on user
behaviour are implemented. As the reordering process is
done on the algorithmic layer, the implementations can be
easily expanded or variated. We present three different meth-
ods we consider useful for general data sets. These methods
cover three typical user actions: the user may be interested in
a coarse overview, in a detailed time step or in the dynamics
of a discovered feature.

Figure 5: Scheme of gaussian distributed priority for a time
region. The time of interest is the mean value of this distribu-
tion, the environment is its root mean square deviation. High
priorities are depicted red, lower priorities yellow.

4.3.1. Time of Interest

Region of interest is a common concept for spatial relation-
ship. This implementation helps to quickly discover dynamic
features in a temporal region. The user interactively specifies
a time step t he is interested in, as well as a coarse environ-
ment σ where the dynamic feature is expected. This informa-
tion is used as input for a normal distribution N(t,σ), which
randomly distributes the priority on the time region, as de-
picted in figure 5. Time steps near to the mean value t will be
computed prioritised, while time steps beyond the deviation
σ are assigned lower priorities. Due to the random priori-
ties, this results in disjoint time steps in the animation loop.
Nonetheless, this method may give a good impression of the
feature’s dynamics even without a complete computation of
the time region. Waiting time is shortened if the user quickly
discards the computation, otherwise the complete time re-
gion is computed.

4.3.2. Pausing

Figure 6: Priority of time steps when a user pauses the ani-
mation. The paused time step obtains highest priority, neigh-
bouring time steps are assigned lower priorities. Time steps
in line with the animation direction receive higher priorities.

The user may stop the visualisation animation every time.
We assume the user stops at a given time step t to analyse
a single timelevel of a transient feature in more detail. If
the user is also interested in the dynamics of that feature,
he will examine the temporal environment around t, step-
ping forward or backward in time. Whenever the animation
is stopped, the taskcontroller is informed. The time step at
this animation time is assigned the highest priority. All other
time steps are marked with a priority according to their dis-
tance to t (see figure 6). Time step neighbours in the same

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

estimated computation timecurrent visualization

estimated computation timecurrent visualization

covered timesteps leak time

worst runtime worst runtime

leak time

current visualization

Figure 7: Occuring scenarios of the continuous visualisa-
tion heuristics (top to bottom): the first estimation, leak times
and time buffering.

direction as the animation get a higher priority than neigh-
bours in the opposite direction. This makes sure that more
time steps are available in the direction of the animation, as
the animation may be started again. In short, the time a user
examines a certain time step is used to compute the temporal
environment around that time step. When the user decides to
step forward or backward in time, the appropriate data can
be available depending on the time he spent analysing the
paused time step.

4.3.3. Continuous Visualisation

The most common display mode is the continuous visuali-
sation of the animation loop. The complete simulation or a
time region are displayed in an endless loop to investigate
feature dynamics. The goal of this heuristic algorithm is to
provide a continuous visualisation of requested extracts af-
ter an initial waiting time. First, the shortest waiting time is
estimated. Then the algorithm tries to maintain a continu-
ous visualisation. Continuous visualisation helps to under-
stand the temporal evolution of a feature. Gaps in the visu-
alisation should not occur, as they disturb the correlation of
dynamic features. The connection between successive time
steps which form a dynamic feature can easily be lost.

We define tanimation
f irst to be the time between the user’s

input and the availability of the first result. tanimation
f irst

may be enhanced by optimisation of the single time step
computation. As the user moves forward in animation
time while waiting for results, the algorithm estimates the
time step the user reaches in the animation loop after the
worst case runtime. This estimation may not lie within
the requested time region. Therefore, we choose the time
step inside the time region that lies closest to the estimated
time for the first result. Starting with this time step, pri-
orities are assigned with decreasing values (see figure 7 top).

As we use the worst case runtime of all n workers, after
every computation time of tcomp

ts we cover an animation time
of n · tanimation

ts . After the inital gap of tanimation
f irst , a continuous

visualisation is therefore guaranteed if

tcomp
ts < n · tanimation

ts (2)

As we cannot make guarantees for an unknown extraction
algorithm, the system has three possibilities to fulfil equa-
tion 2. First, the number of workers n for this task may be
increased. Second, if not enough free resources are avail-
able, the visualisation application may reduce the animation
speed. This may not be desired by the user, as it changes the
perception of the flow dynamics. The third possibility is to
delay the first result until enough computational lead is col-
lected to cover all gaps in the continuous visualisation. The
naive approach is to delay a whole animation loop, which
gives the most computational lead, but extends the waiting
time to its worst case. Therefore, we compute the required
lead as follows.

The time span of the gap between computational time and
animation time is called leak time (see figure 7 center). If
n ·tanim

ts < tcomp
ts , the worst leak time is the time span between

the worst computation runtime and the amount of thereby
covered animation time:

tcomp
leak = tcomp

worst −n · tanimation
ts (3)

Similar to video streaming approaches, a time buffer is
introduced to counteract the effect of leak times. To cover
tcomp
leak , the first result is moved the time buffer ahead. This

additional waiting time allows the workhost to compute
enough results to provide a continuous animation (see figure
7 bottom). The time buffer covers the leak time a number of
times equal to the worker’s iterations k needed to compute
the whole command:

tbu f f er = tcomp
leak · k (4)

While this increases the initial waiting time to tanimation
f irst

+ tbu f f er , the user gains continuous visualisation even for
large data sets. Problems occur if the time buffer is greater
than the time for one animation loop. That is, first results
may be finished prior to the worst runtime and are therefore
displayed one animation loop too early. In these cases either
the animation time must be slowed down or the workhost
keeps results until the valid animation loop starts.

We applied the continuous visualisation algorithm on the
scenarios introduced in section 3.3. The overall computation
time for vortex extraction exceeds the animation loop time
considerably, which results in tanimation

ts of several seconds.
For continuous visualisation of vortex regions we suggest a
large number of processes or a smaller time region. Table
1 shows required time buffer lengths for computing isosur-
faces with 16 processors for different animation times per
time step. With only 16 processes, a continuous visualisation

c© The Eurographics Association 2006.

M. Wolter / Time Step Prioritising in Parallel Feature Extraction on Unsteady Simulation Data

Table 1: Continuous visualisation of isosurfaces with 16
workers.

data set tanimation
ts [s] tanimation

loop [s] tbu f f er [s]

shock 1 128 0
0.75 96 3
0.5 64 38

propfan 1 50 0
0.5 25 11
0.33 16.7 18

is possible without time buffer if one time step is displayed
per second. For small display times and many time steps,
the time buffer grows too large. Within these restrictions the
user is able to balance between waiting time and animation
speed.

5. Conclusions and Future Work

To support explorative analysis in virtual environments even
with large unsteady data sets, we utilised the Viracocha
framework for parallelising transient feature extraction, re-
sulting in near optimal speedup. But even when computing
simple extracts, interactive response times are not achieved.
So we focus on the interaction between the user’s behaviour
regarding the visualisation animation and the computation
of tasks. Three different concepts for supporting a faster and
more convenient explorative analysis are described, includ-
ing a way to provide a continuous presentation of results.

Our future research will focus on the following topics.
First, we will analyse further concepts of prioritising time
steps, e.g. a strided approach for the generation of a fast
overview. Second, we will develop more sophisticated meth-
ods of runtime estimations in order to improve the heuristics
outlined in section 4.3.3. Third, we will evaluate the pre-
sented methods by means of user studies.

Acknowlegement

The authors would like to thank the Institute of Aerody-
namics at Aachen University, the German Aerospace Centre
(DLR), Institute of Propulsion Technology at Cologne and
the FEV Engineering Services for the simulation data sets
kindly made available.

References

[AGL∗04] ALLARD J., GOURANTON V., LECOINTRE

L., LIMET S., MELIN E., RAFFIN B., ROBERT S.:
FlowVR: a Middleware for Large Scale Virtual Real-
ity Applications. In Proceedings of Euro-Par (2004),
pp. 497–505.

[BGY92] BRYSON S., GERALD-YAMASAKI M. J.: The
Distributed Virtual Windtunnel. In Proceedings of the
IEEE Supercomputing (1992), pp. 275–284.

[BJ96] BRYSON S., JOHAN S.: Time Management, Si-
multaneity and Time-Critical Computation in Interactive
Unsteady Visualization Environments. In Proceedings
of the IEEE Visualization (San Francisco, CA, 1996),
pp. 255–261.

[GHW∗04] GERNDT A., HENTSCHEL B., WOLTER M.,
KUHLEN T., BISCHOF C.: VIRACOCHA: An Efficient
Parallelization Framework for Large-Scale CFD Post-
Processing in Virtual Environments. In Proceedings of
the IEEE Supercomputing (November 2004).

[GLS99] GROPP W., LUSK E., SKJELLUM A.: Using
MPI: Portable Parallel Programming with the Message
Passing Interface, 2nd ed. MIT Press, 1999.

[MC00] MA K.-L., CAMP D. M.: High Performance Vi-
sualization of Time-Varying Volume Data over a Wide-
Area Network Status. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM)
(2000).

[RFL∗98] RANTZAU D., FRANK K., LANG U., RAINER

D., WÖSSNER U.: COVISE in the CUBE: An Envi-
ronment for Analyzing Large and Complex Simulation
Data. In 2nd Workshop on Immersive Projection Tech-
nology (IPT ’98) (Ames, Iowa, May 1998).

[SGvR∗03] SCHIRSKI M., GERNDT A., VAN REIMERS-
DAHL T., KUHLEN T., ADOMEIT P., LANG O.,
PISCHINGER S., BISCHOF C.: ViSTA FlowLib - A
Framework for Interactive Visualization and Exploration
of Unsteady Flows in Virtual Environments. In Proceed-
ings of the 7th International Immersive Projection Tech-
nology Workshop and 9th Eurographics Workshop on Vir-
tual Environment (May 2003), pp. 77–85.

[vDFL∗00] VAN DAM A., FORSBERG A. S., LAIDLAW

D. H., LAVIOLA J. J., SIMPSON R. M.: Immersive
VR for Scientific Visualization: A Progress Report. IEEE
Computer Graphics and Applications 20, 6 (2000).

[vRKG∗00] VAN REIMERSDAHL T., KUHLEN T.,
GERNDT A., HENRICHS J., BISCHOF C.: ViSTA: A
multimodal, platform-independent VR-toolkit based on
VTK, WTK and MPI. In Fourth International Immersive
Projection Technology Workshop (IPT 2000) (Ames,
Iowa, 2000).

c© The Eurographics Association 2006.

