Eurographics Symposium on Parallel Graphics and Visualization (2006)

Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Accelerated Volume Rendering with Homogeneous Region
Encoding using Extended Anisotropic Chessboard Distance
on GPU

A.Es'? H.Y. Keles!?,V. isler?

I Tiibitak-Bilten METU, Ankara, Turkey
2Department of Computer Engineering METU, Ankara, Turkey

Abstract

Ray traversal is the most time consuming part in volume ray casting. In this paper, an acceleration technique
for direct volume rendering is introduced, which uses a GPU friendly data structure to reduce traversal time.
Empty regions and homogeneous regions in the volume is encoded using extended anisotropic chessboard dis-
tance (EACD) transformation. By means of EACD encoding, both the empty spaces and samples belonging to the
homogeneous regions are processed efficiently on GPU with minimum branching. In addition to skipping empty
spaces, this method reduces the sampling operation inside a homegeneous region using ray integral factoriza-
tion.The proposed algorithm integrates the optical properties in the homogeneous regions in one step and leaps
directly to the next region. We show that our method can work more than 6 times faster than primitive ray caster

without any visible loss in image quality.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Parallel Processing, 1.3.3
[Computer Graphics]: Viewing Algorithms,Bitmap, 1.3.3 [Computer Graphics]: And Framebufter Operations

1. Introduction

Increasing programmability of commodity graphics process-
ing units enabled visualization of 3D scalar density fields in
high quality at interactive frame rates. Despite many suc-
cesses achieved in this field, there still exists accuracy and
efficiency problems in visualization of real world scientific
data. Rendering the whole volume content accurately takes
considerable amount of computational time.

Early acceleration methods use hierarchical data struc-
tures such as Kd trees [SS90] and octrees [Lev88] to skip
empty regions of volume data. Afterwards, several works
extended the usage of hierarchical data structures so as to
provide acceleration of rendering homogenous regions as
well as empty regions [DH92], [LH91]. However, usage of
complex data structures has its own cost (i.e. octrees). Re-
cent techniques explored other forms of encoding schemes
such as look-aside buffers, proximity clouds [CS94], and
shell encoding [UO93] to skip empty spaces. On the other
hand, more recent approaches proposed new algorithms and

(© The Eurographics Association 2006.

data structures in order to take advantage of internal paral-
lelism and efficient programmability of the dedicated graph-
ics hardware utilities [LKO03], [LMKO03], [KWO03]. In this
work, we focus on the advantages of using both the dis-
tance encoding schemes and the internal parallelism of the
new generation programmable graphics hardware to accel-
erate rendering.

GPUs are parallel stream processors and they favor sim-
ple localized data access, exploiting instruction level paral-
lelism and arithmetically intensive kernels for maximum ef-
ficiency [PFOS]. Thus GPU friendly data structures and al-
gorithms should conform to the stream processing model
for efficient processing. 3D regular grid acceleration struc-
tures are ideal for GPUs due to the simplicity of the struc-
ture. Many acceleration techniques have been proposed in
the past for ray casting. Refer to [Hav00] for detailed discus-
sion and comparison of different acceleration methods for
ray traversals. Some of the fastest known grid based traversal
algorithms use distance transformations or macro regions to

accelerate ray casting [ZKV92}1-{CS941,-[SKO0},-{Dev89}:
delivered by

www.eg.org

o @’m EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

68 Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU

Essentially, distance based methods utilize distance fields,
which are calculated during a preprocessing stage. Proximity
information to the nearest objects are stored in these fields.
Distance values are calculated using Euclidian, city block,
chessboard or chamfer metrics. Distance based algorithms
accelerate traversals by skipping empty macro regions with
the encoded information. In volume rendering, in addition to
skipping of the empty spaces for acceleration, it is also pos-
sible to make use of coherency and process homogeneous
regions in one step [FH98]. We define a homogenous region
as a group of neighboring voxels sharing the same or very
similar optical properties.

This work is about acceleration of volume ray casting us-
ing distance based techniques on the GPU. The main contri-
bution of this paper is the introduction of a GPU based ho-
mogeneous region skipping algorithm using (EACD) fields
[EsO5]. We extend anisotropic chessboard distance fields
[SKO00] and devised a GPU friendly ray casting algorithm.
Additionally, previously known distance based space skip-
ping and primitive ray casting algorithms are adapted to
GPU in order to compare performances. The adapted space
skipping methods include Cohen and Sheffer’s [CS94] prox-
imity clouds (PC) and Sramek and Kaufman’s [SKO00]
anisotropic chessboard distance based ray traverser (ACD).
A primitive ray caster sweeps the volume through the rays
by taking constant intervals in each turn even if the region
being traversed is empty. Distance field methods (PC, ACD,
EACD) on the other hand, skip range of empty voxels in big
steps. We also extend PC and ACD traversals to facilitate
the skipping of not only empty spaces but also any homo-
geneous regions in the volume. During the classification of
homogeneous regions, we impose a predefined error thresh-
old. This threshold is determined experimentally such that
human eye can not capture the errors caused by this minor
difference.

The remainder of the paper is organized as follows. The
next section discusses the volume ray casting and factoriza-
tion of ray integral that we use during homogeneous space
leaping. The third section explains the distance based ho-
mogeneous region leaping technique. Next, our GPU based
EACD volume renderer is explained. The test results are pre-
sented and discussed in the following chapter. Finally, the
conclusion is given.

2. Volume Ray Casting

Raw 3D volume data contains scalar density values in each
voxel grid. Optical parameters have to be determined for
each voxel in order to display light interaction with the vol-
ume densities and obtain realistic-looking rendering results.
This is performed in a preprocessing step by defining a trans-
fer function, which maps density values in each voxel to
opacity and color values. For this work we used the classifi-
cation method proposed by Mark Levoy [Lev88]. In addition
to opacity and color information, approximate surface gradi-

ents are determined during this classification method. In this
work, we use opacity and approximate surface gradients as
for the optical properties.

During the traversal, ray is sampled trough the ray direc-
tion from front-to-back viewing order with a constant step
size. At each sample point the effects of the optical proper-
ties are integrated with the effects of incoming sample’s op-
tical properties to obtain the accumulated color and opacity
values trough that ray. This is achieved with the well known
numerical solution for the ray integral (equation (1)).

Cr=Cia;+(1—0a;)C,
o = 0 +(1—(X])062

&)

2.1. Homogeneous Space Ray Integration

The sampling and reconstruction operation is very time-
consuming during the ray traversal. In order to minimize
this cost, our method groups the maximum number of vox-
els with similar optical properties as belonging to the same
region, namely homogeneous region with EACD encoding.
There is no need for multiple sampling and composition
operations in a ray segment inside a homogeneous region.
Our method exploits the ray integral factorization method
[FH98]. In this method, we make only one fetch operation
to obtain the optical properties of the sample points belong-
ing to the homogeneous ray segment. These parameters are
then used to calculate accumulated color and opacity values
for the entire segment. Ray integral factorization along a ray
is expressed as in equation (2).

n i—1
Cr= Z Ci0; H (I—OLJ‘)
i=1 j=1
m i—1
= Go; IT (1—aj) |+
= ! @)
m n i—1
{I—[(1 —Oﬂk)} Y |Goi I (1—-aj)
k=1 i=m+1 Jj=m+1

where,m € [1,n]

According to this factorization, when a ray enters into a
homogeneous region and passes n samples until exiting the
region, we calculate the accumulated color and alpha values
inside the region according to equation (3).

Ch,=C(1—(1—-a)")
o, =1—(1—a)" 3)

where, Cy, and o, are the accumulated color and opac-
ity values respectively for the homogeneous region i, with n
samples. The final accumulated color of the ray is computed
using regular ray integration formula (4).

(© The Eurographics Association 2006.

Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU 69

k

Cfinal = Z

i=1

i—1
¢ J[Ja- ow,)} @)

j=1

According to equation (4), k is the number of regions lo-
cated in sequence through the ray direction.

3. Distance Based Homogeneous Region Leaping

Distance based methods compute the distance values to the
nearest non-empty voxel per voxel basis. In homogeneous
region encoding, the values represent the distance to the
nearest voxel belonging to a different region. Thus there is
no simply empty or non-empty type classification. This type
of classification essentially affects the computation of dis-
tance fields and the traversal algorithm itself.

Previous works on distance fields based volume ray cast-
ing basically relies on proximity clouds. Cohen et al.’s PC
[CS94] utilize isotropic 3D distance field. Isotropy comes
from the fact that there is a single distance value per voxel,
representing the maximum interval that rays can advance re-
gardless the direction. When Euclidian metric is used, the
distance value represents the radius of the homogeneous re-
gion centered in the voxel. In the original algorithm, dis-
tance values are stored in background (empty) voxels. On
the other hand we do not classify voxels as empty or non-
empty. Instead, we treat all homogeneous regions as the
same (including non-empty and transparent voxels). There-
fore a secondary 3D grid is necessary for keeping the val-
ues of the distance field. Each voxel has a corresponding
distance value. Both the volume data and the distance field
are represented by 3D textures on GPU. In homogeneous re-
gions, a ray moves forward as long as its distance value. The
ray integration within the homogeneous segment of a ray is
performed using the factorization method explained in Sec-
tion 2.1. Number of sample points spanned by the ray in this
region (n), is calculated as the ceiling of the ratio of distance
value to the constant step size. In the vicinity of a differ-
ent region, the traversal switches to the primitive ray casting
mode with constant steps.

More recently Sramek and Kaufmann [SKOO] utilized
anisotropic chessboard distance fields to further accelerate
the ray casting. Their chessboard distance traversal method
does not need to switch between the stepping modes. In
the original algorithm empty regions can be skipped fully.
The algorithm can also work not only for regular grids but
also for rectilinear grids with some additional cost. They ob-
served that in distance based traversals, ray steps get shorter
as it gets closer to the objects, and many small steps are
taken until the ray gets far away from the close vicinity. To
alleviate this problem, they propose using anisotropic chess-
board distances depending on the ray directions. Rays are
classified by the component sign of their directions (£x, £y,
+7z) giving eight direction octants. Thus in ACD, instead of

(© The Eurographics Association 2006.

Figure 1: Isotropic distance field has single isotropic dis-
tance value per voxel, while ACD filed stores a distance
value for each direction quadrant. EACD on the other hand
stores different distance values for each primary axis. (a),(b)
and (c) depict example traversals based on the isotropic,
ACD and EACD fields respectively. EACD traversal signifi-
cantly reduces the number of traversal steps in this situation.

a single isotropic distance, one of the eight distance values
are utilized based on the ray direction. The appropriate dis-
tance value to be used is determined by the component signs
of the ray direction. The original ACD based traversal al-
gorithm has many conditional execution paths which cause
major performance hit for the current generation of graph-
ics processors. Therefore we use a more GPU friendly ray
casting algorithm based on [Es05]. Both ACD and EACD
methods use the same algorithm with a minor difference.
The details of the algorithm are given in the next section.
In this work, we use the same homogeneous ray integration
as in PC method for both ACD and EACD algorithms.

4. EACD Ray Casting

Note that although eight distance values form an anisotropic
shape around the voxel in ACD, the homogeneous regions
defined by each of these values are cubic (assuming unit
voxel dimensions). EACD extends this structure in such a
way that it allows the definition of non-cubic homogeneous
regions. We observe that non-cubic regions may reduce the
number of traversal steps considerably as shown in Figure 1.

The original traversal algorithm we developed in [Es05]
essentially addresses ray tracing. In this work the algorithm
is adapted for volume ray casting. In the original algorithm,
rays skip empty regions fully through the border of the next

70 Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU

/] Homogencous regions
—— Ray

- Sumple points

® Points sampled by
ACD anid EACD

Figure 2: ACD and EACD sample points are aligned with
the primitive ray caster’s sample points. In the figure, homo-
geneous region leaping requires 2 samples as opposed to 9
samples needed by a primitive ray caster.

region. In order to find next position, the ray is intersected
with the border planes defined by the homogeneous region.
The intersection point giving the minimum parametric dis-
tance is selected as the next ray position. On the other hand,
volume ray casting with homogeneous region leaping re-
quire some adjustments to this scheme. The image rendered
with EACD should be no different than the image of prim-
itive ray caster. For that reason contrary to [Es05], the next
position of a ray during the traversal is aligned with the prim-
itive ray caster’s sample points as shown in Figure 2. The
aligned position can be computed by dividing the homoge-
neous region distance to the constant ray step size. The ceil-
ing of this division gives how many samples we can safely
skip. The ray is advanced by the number of ray step times
the constant step size. This scheme works even if the homo-
geneous region is only one voxel. Note that, we use point
sampling (nearest neighbor) instead of tri-linear filtering. In
case of tri-linear filtering, opacity and normal values may
change in the border voxels due to the interpolation. Since
the optical properties of inner voxels are very similar, fetch-
ing one sample from this region is still sufficient for the ray
integral factorization.

4.1. Implementation

The implementation is done using OpenGL 2.0 and Cg 1.4
toolkit [MGAKO3] with FP40 profile. Our GPU allows for
dynamic looping and branching. Therefore the whole ray
casting operation can be executed within a single fragment
program.

The volume data itself contains a normal and opacity
value for each voxel. Volume is stored in a 4-component 16-
bit floating point formatted 3D texture. Similarly, the dis-
tance field is stored in another 3D texture. In order to reduce
memory requirements 16- bit packed color format (3 x 5 bits
for RGB, 1 bit for alpha) is used for EACD texture. Since
EACD and ACD utilize different distance values for each
direction octant, the distance field texture is enlarged by a
factor of 2 along each direction. As a result, for each volume
voxel, there are 8 corresponding distance field voxels.

Prior to ray casting, a ray generator program is run to cre-

floatd RayCast (Sampler2D TeXadiecton, T€Xarigin ,
Sampler3D TeXvoiume, T€Xastance ,
float2 rayldx ,
float e,
shadingParameters)

read ray direction and origin

float3 Dy = Fetch(TeXdrecion, rayldx)

float3 Oy = Fetch(TeXagin, rayldx)

A initialize final color and alpha

float3 Cina = (0,0,0)

float Agnai =0

loop while the ray is not fully opaque and is inside the volume
while (Asna< 1) and InsideScene(Oy)

read the voxel data
float3 voxcoords = floor(Oy)
floatd Normal = Fetch(TeXuoiume, VoXcoords).rgb
float Asampie = Fetch(TeXuoiume, VOXcoords).a
read distance value from the distance texture based on ray
position and direction
float3 distance = Fetch(TeXasuance |
ComputeDistanceTexCoords (Oay, Dray))
/ define the intersection borders for the region
float3 regionBorder = ComputeRegionBorders(voxcoords,
distance)
A compute the intersection borders for the region
floatd tiersecsans = IntersectRayWithRegionBorders(Oray, Dray,

regionBorder)
/ find the parametric distance of the nearest intersection point
float tastance = min(X, t y, t z)

// compute the number of ray steps that can be leaped

int n = ceil(tyisiance / tsep)

A compute the region color and alpha using Eq. (3)

float Acagion = (1-pow((1-Asamaie), N))

float3 Ciegion = Aregion * Phong(Ovay, Dray, Normal,

shadingParameters)

A accumulate the final color and alpha with the region color and
alpha using Eq. (4)

Ciinat = Cinat + Cregion"{1-Afinal)

Asinal = Psinal + Pragion™(1-Asinal)

A move ray

Oray = Oray + Dray"(n* tatep)

return floatd(Crna , Asnal)

}

Figure 3: Cg like pseudo-code for the EACD ray casting.
Note that most of the operations works on vectors. These
operations can be implemented using the SIMD instructions
of the GPU.

ate and clip rays to the bounding box of the scene. As for the
output, ray generator creates ray origin and direction textures
which have 4-component floating-point color format. Rays
intersecting the scene are then transformed into the volume
coordinate space. By this way, the voxel indices of a point
can be easily computed by taking the floor of its coordinates
during the ray casting.

The Cg like pseudo-code for the EACD ray casting is
given in Figure 3. Variable types are explicitly given in order
to reveal the vectoral nature of the algorithm. The code has
no data dependent branching inside the main traversal loop.
ACD traversal is almost identical to this one. The only differ-
ence is instead of three distance values, one value is fetched
from the distance texture. In the pseudo-code, TexXyjrecrions
Texorigin are the 2D ray textures created by the ray genera-
tor. Tex,y1ume 1 the 3D volume data texture which contains

(© The Eurographics Association 2006.

Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU 71

Figure 4: ACD field creation in 2D. Four masks are applied
in the shown directions. Four (anisotropic) distance fields
are generated as the result.

voxel normals and opacity values, while TexX j;sr4nce 1S the 3D
distance field texture as explained previously in this section.
rayldx is the ray index which is actually 2D texture coordi-
nates to the ray textures. tyep is the parametric distance for
the constant ray step. A primitive ray caster always moves
rays by this distance in each step. Finally shadingParame-
ters is the structure keeping the shading parameters such as
light position, diffuse and specular colors as well as the ma-
terial colors. The output of the program is the final accumu-
lated color of the ray. Note that this code needs some minor
adjustments for tri-linear filtering. The computation of the
number of ray steps should be altered in such a way that the
ray should take constant step in border voxels. Border vox-
els can be easily determined by looking at the distance value
(i.e. if any component of the distance vector is 0, it is consid-
ered as the border voxel). The resulting code should be like
below:

n = IsBorderVoxel(distance) ? 1 : floor(tyisance [tstep)

4.2. Construction of the EACD Field

A heuristic with a simple greedy search is used in order to
create EACD field. The heuristic is to find the largest homo-
geneous region per voxel basis. ACD fields representing the
largest cubic homogeneous regions around the voxels can
be constructed rather simply. On the other hand, finding the
largest non-cubic homogeneous regions from scratch can be
a very time consuming process. Therefore, we rely on the
ACD field and extend regions along the main axes to con-
struct the EACD field. As a result, building the acceleration
structure involves two phases: The first phase is exactly the
same as creating ACD field. The strategy to find the distance
values is based on the idea of propagating local distances
over the grid cells. Firstly, cell values of the distance field
are initialized to infinity. Then a mask is overlaid onto each
cell of the field in a specific direction (such as beginning
from top-left to bottom-right). Each element of the mask is
summed with the distance value of the underlying field ele-
ment. The resulting value of the cell is the minimum of these
sums and the initial distance value of the center element. In
this procedure, the distance value of the overlaid element is
computed using the following algorithm:

(© The Eurographics Association 2006.

=] —| —

II\JI\JI\-J—'

l_

. Full voxels
D Empty voxels
[:l Macro region

D Maximum axial region
borders

24
L’ d
Figure 5: Finding EACD region for the lower left cell. Only
(+x,+y) direction quadrant is shown. Arrows denote the ori-
entation of the distance values (a) is the base ACD grid. (b),

(c) are the axial distance grids along +x and +y directions
respectively. (d) is the resulting EACD distances.

DiSt(Vij k due to Vx,y’z) =
Dist(Vij K ,ifinSameGroup(VX,y’Z,Vij k-To:Ta)
0 ,otherwise

Where Vy y zare the voxel coordinates of the current cen-
ter voxel and V; ; are the voxel coordinates for the overlaid
element. Function inSameGroup reads the opacities and the
surface gradients of Vxyz and V; jr. V; i is classified as
belonging to a different region than Vy,, ., if the opacity dif-
ference is greater than the opacity threshold, T,, or the angle
difference is greater than the angle threshold, T,.

Generation of ACD field involves applying eight different
masks (four for 2D), to the grid data beginning from one of
the corners towards the opposite diagonal corner (Figure 4).
Consequently, eight distance fields for each direction octant
are created. These fields are then interleaved into a single
big grid with eight times the size. The computational com-
plexity of ACD transformation is O(n), where n is the num-
ber of voxels. In the second phase, we first create six axial
distance grids representing the range of voxels belonging to
the same group along the +x, +y and 4z axis directions.
In order to define EACD regions, by using the auxiliary ax-
ial distance grids and ACD field we determine how much
the cubic homogeneous regions can be extended in a greedy
manner. This operation is done for each voxel. The extension
procedure is carried as follows: Border voxels of the empty
regions are walked and maximum possible extension along
the main axes is computed. The cubic region is then extended
along the axis giving the maximum volume. This step is re-
peated once more, for one of the remaining two axes which
is giving the maximum volume. Figure 5 depicts computing
EACD macro region for a voxel in 2D.

72 Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU

Figure 6: (a)engine, (b) mrbrain, (c) teapot

Table 1: Performance results of the ray casting methods.
Results are in milliseconds. Last column is the speedup
achieved by EACD compared to primitive ray casting.

Data R.Cast PC ACD EACD Speedup
engine 183 83 42 33 554%

mrbrain 206 101 51 41 502%
teapot 346 121 62 49 706%

Distance field computation for tri-linear interpolation re-
quires some modifications to this method: Border voxels are
marked prior to the creation of ACD field. During the dis-
tance computation, voxels marked as the border voxels are
always classified as belonging to a different region.

5. Results And Discussion

For testing, a number of well known volume datasets were
used. The rendered images are shown in Figure 6. Tests were
run on a 512MB GeForce7800 GTX graphics board. The
frame size for the rendered images is 512x512. As seen
in Table 1, the speedup compared to ACD is around 25%,
while it is as much as 700% compared to primitive ray caster.
EACD is especially advantageous if the volume is composed
of many non cubic homogeneous regions. Since both ACD
and EACD use the same algorithm essentially, their perfor-
mances should be almost equal in the worst case. On the
other hand, for EACD, maximum distance limit of 32 (5 bits)
imposed by the low precision distance texture format may
cause some performance penalty in very large homogeneous
regions. But none of the volume datasets we experimented
on revealed such a problem. As an empty space skipping
technique, PC traversal does not perform as fast as EACD or
ACD. This is largely the result of shorter ray steps caused by
the isotropic regions. Although the loop body of the prim-
itive ray caster is fairly short and efficient, it performs the
worst compared to the region leaping methods.

Figure 7 illustrates the average number of loops per-
formed by rays to finish the rendering. Brighter regions in-
dicate higher loop counts. It is clearly seen from the image
that ACD and EACD require considerably lower loop counts
than PC. Among all methods, EACD can render the image
with the least average number of loops; the traversal step
counts are generally 10% to 30% lower than ACD.

Figure 7: Illlustration of loop counts for (a)Ray caster,
(b)PC, (c)ACD, (d)EACD. Brightness and contrast is ad-
Jjusted for visual clarity. Darker regions indicate lower loop
counts.

The opacity and angle thresholds T, and T4, generates dif-
ferent homogeneous regions. As threshold values increase,
larger homogeneous regions are formed and larger optical
variability within the regions is allowed. Although the ren-
dering speed may increase, this situation essentially causes
errors on the rendered image. The T, and T, parameters can
be adjusted to compromise between the image quality and
rendering time. Note that if the volume data has many empty
regions, huge speedup may be achieved even for the lower
threshold values. Figure 8 shows the images rendered with
several different T, and T, thresholds. Especially higher
opacity thresholds cause more artifacts as seen in Figure 8.c.
On the other hand increasing angle threshold did not cre-
ate any noticable difference for this data. The reason is that
most of the neighboring voxels in high curvature areas are al-
ready classified as different regions due to the chosen opacity
threshold.

The problem of ACD and EACD is that, the acceleration
structure is eight times as big as it is for PC. Since the maxi-
mum allowed 3D texture resolution is 512° in our hardware,
the largest dimensions of the volume data can be 256°. As
the size of the local graphics memory enlarges, this will be
less of a concern, but a better solution to this problem may
be to explore hybrid partitioning structures.

6. Conclusion

In this work we have introduced an acceleration technique
for volume ray casting by means of EACD transformations
on GPU. In this technique, we exploited the coherency exist-
ing in most of the scientific volume data. By this way traver-
sal through the empty regions and homogeneous regions is

(© The Eurographics Association 2006.

Es & Keles & Isler / Accelerated Volume Rendering with Homogeneous Region Encoding using EACD on GPU 73

Figure 8: Images rendered with ACD using different
segmentation thresholds. (a)Ty:0.01,T4:3, (b)T,:0.02,T4:3,
(c)Tp:0.1,T4:3, (d)T:0.01,T,:1, (e)Ty:0.01,T4:10,
(H)Tp:0.01,T4:20

achieved efficiently. Within a homogeneous region, ray inte-
gral is calculated in one step using a factorization method.
In order to compare the performance, GPU versions of some
of the previously known ray casting techniques are imple-
mented. Our EACD traversal algorithm extensively uses in-
struction level parallelism and requires minimum number
of dynamic branching, making it very efficient for the cur-
rent generation of GPUs. It is shown that the introduced
traversal algorithm is several times faster than a primitive
ray caster, and considerably faster than other distance based
homogeneous region leaping methods. In addition, our algo-
rithm suits well to the modern pipelined super-scalar CPU
architectures which support streaming parallel instructions.
Therefore, presented methods can be ported to SIMD capa-
ble CPUs easily.

References

[CS94] COHEN D., SHEFFER Z.: Proximity clouds: an
acceleration technique for 3d grid traversal. The Visual
Computer 10, 11 (nov 1994), 27-38.

[Dev89] DEVILLIERS O.: The macro-regions : an efficient

(© The Eurographics Association 2006.

space subdivision structure for ray tracing. In Proc. Of
Eurographics’89 (1989), pp. 27-38.

[DH92] DANSKIN J., HANRAHAN P.: Fast algorithms for
volume ray tracing. In Workshop on Volume Visualization
(1992), pp. 91-98.

[EsO5S] Es A.: Acceleration of regular grid traversals using
extended chessboard distance transformation on gpu. In
CAD/Graphics 2005 (2005).

[FH98] FUNG P., HENG P.: Efficient volume rendering by
isoregion leaping acceleration. In The Sixth International
Conference in Central Europe on Computer Graphics and
Visualization’98 (1998).

[Hav00] HAVRAN V.: Heuristic ray shooting algorithms.
PhD Dissertation,The Faculty of Electrical Engineering,
Czech Technical University, 2000.

[KWO03] KRUGER J., WESTERMANN R.: Acceleration
techniques for gpu-based volume rendering. In /EEE Vi-
sualization’03 (2003), pp. 287-292.

[Lev88] LEvOY M.: Display of surfaces from volume
data. In IEEE Computer Graphics and Applications
(1988), vol. 8, pp. 29-37.

[LH91] LAUR D., HANRAHAN P.: Hierarchical splatting:
A progressive refinement algorithm for volume rendering.
In Proc. of SIGGRAPH 91 (1991), pp. 285-288.

[LKO3] L1 W., KAUFMAN A.: Texture partitioning and
packing for accelerated texture-based volume rendering.
In Graphics Interface (2003), pp. 81-88.

[LMKO3] L1 W., MUELLER K., KAUFMAN A.: Empty
space skipping and occlusion clipping for texture-based
volume rendering. In [EEE Visualization’03 (2003),
pp. 317-324.

[MGAKO3] MARK W. R., GLANVILLE R. S., AKELEY
K., KILGARD M. J.: Cg: a system for programming
graphics hardware in a c-like language. In ACM Trans-
actions on Graphics (Proc. ACM SIGGRAPH) (2003),
vol. 22, pp. 896-907.

[PFO5] PHARR M., FERNANDO R.: GPU Gems 2. Addi-
son Wesley Professional, 2005.

[SKOO] SRAMEK M., KAUFMAN A.: Fast ray-tracing
of rectilinear volume data using distance transforms.
In IEEE Transactions On Visualization And Computer
Graphics (2000), vol. 6, pp. 236-252.

[SS90] SUBRAMANIAN K. R., S.FUSSEL D.: Applying
space subdivision techniques to volume rendering. In
Proc. of Visualization’90 (1990), pp. 150-158.

[UO93] UburAJ., ODHNER D.: Shell rendering. In /EEE
Comp. Graph. and Applications(13) (1993), pp. 58-67.

[ZKV92] ZUIDERVELD K. J., KONING A. H. J,
VIERGEVER M. A.: Acceleration of ray-casting using
3d distance transforms. In Visualization in Biomedical
Computing 11, Proc. SPIE 1808 (1992), pp. 324-335.

