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Abstract

In this paper, we present a sort-last parallel volume rendering system based on single-pass volume raycasting

performed in the fragment shader unit. The architecture is aimed for displaying data sets that utilize the total

distributed texture memory at interactive framerates. We use uniform texture bricks that are distributed by means

of a kd-tree to employ object space partitioning. They are further used for implementing empty-space-skipping

and a load balancing mechanism, which also makes use of the kd-tree, to increase the overall performance of the

rendering system. Performance numbers are given for a mid-range GPU-cluster system consisting of eight render

nodes with an Infiniband interconnection.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics I.3.3 [Computer Graphics]: Viewing algorithms C.2.4 [Distributed Systems]: Distributed applications

1. Introduction

The ongoing advances in volumetric data acquisition, e. g.
medial imaging or oil and gas exploration, as well as in nu-
merical simulation generate constantly larger data sets that
pose a steady challenge to volume visualization. Cluster
computers have become a common way to address this high
demand for rendering power as they can be scaled accord-
ing to the requirements. Likewise, graphics hardware makes
more and more use of parallelism, particularly regarding the
fragment shader units, and offers more and more flexibility.
We try to combine both types of parallelism by distributing a
fragment-shader-based volume raycaster on a GPU-cluster.

In detail, our contributions are: First, we extend fragment-
program-based raycasting for seamless bricking without the
need for additional render passes. This makes the overhead
of bricking relatively small compared to other raycasting or
slice-based approaches and therefore allows for further re-
ducing the size of the bricks. Second, we employ empty-
space-skipping on a per brick basis taking advantage of the
pre-integration table used for rendering. Third, a load bal-
ancing approach built upon a kd-tree-based data structure in
object space is applied to cope with imbalances caused by
the characteristics of the rendered data set in connection with
empty-space-skipping or caused by inhomogeneous clus-

ter environments. This seems even more important to us,
since the rendering performance of GPU-based raycasting
is solely dependent on the graphics hardware fragment pro-
cessing power, which is under rapid development, increasing
the likelihood of inconsistent cluster setups. Finally, we dis-
cuss our system’s performance on a mid-range GPU-based
cluster system using homogeneous as well as inhomoge-
neous setups in order to evaluate the presented load balanc-
ing technique.

2. Related Work

The field of distributed volume rendering is an active field of
research and a great variety of publications can be found in
literature dealing with different aspects of this issue. Molnar
et al. [MCEF94] provide a taxomony that allows for divid-
ing parallel architectures into the three categories sort-first,
sort-middle, and sort-last depending on the location of dis-
tribution in the rendering pipeline.

Early techniques for parallel volume rendering
were mostly built upon CPU-based raycasting. Ma et
al. [MPHK93] presented a data distributed rendering system
introducing the Binary-Swap compositing scheme. At the
same time Neuman [Neu93] published a parallel volume
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raycasting architecture that used Direct-Send for image
compositing. Based on off-the-shelf commodity PC-clusters
equipped with graphics hardware Magallón et al. [MHE01]
and Bajaj et al. [BPT02] both presented parallel volume
rendering systems. These methods were later on extended
by the use of wavelet compression [SMW∗04] and load bal-
ancing based on a hierarchical space-filling curve [WGS04].
More recently, Allard and Raffin [AR05] presented the
shader-based framework FlowVR for parallel rendering
using GPU-Clusters. They present a sort-first distribution
scheme for raycasting as application of the framework in
order to drive a multi-tile projection wall.

In order to utilize the graphics hardware performance for
volume raycasting, Krüger et al. [KW03] proposed a multi-
pass rendering algorithm. In each pass, the integration along
the rays is advanced by a single sampling interval and the ac-
tual position is stored for the following pass in textures in a
ping-pong fashion. With the advent of dynamic flow control
for fragment shaders it is possible to evaluate the complete
integration along a ray in a single pass [Sch05, SSKE05].
Hadwiger et al. [HSS∗05] extended these methods by using
adaptive texture maps to include empty-space-skipping and
save texture memory, but their technique is not easily appli-
cable to bricks spread across various cluster nodes.

3. GPU-based Raycasting

In order to approximately evaluate the volume rendering in-

tegral on a GPU for each pixel, discrete positions along the
ray get sampled and their associated color and opacity values
derived from classification are accumulated. A commonly
used technique is to render tri-linear interpolated textured
slices to account for the data sampling at a given depth for
all pixels in parallel and set the blending functionality to
match the needed accumulation term [CCF94]. The integra-
tion along the rays is driven by generating new fragments
for each sampling position. With the availability of dynamic
flow control in the fragment processor of recent GPUs an
alternative approach becomes possible that performs the in-
tegration along a ray completely inside the shader program
[Sch05, SSKE05]. One obvious advantage of such an ap-
proach is that less fragments need to be generated, since one
fragment per ray is sufficient compared to one fragment per
sample point in slice-based approaches.

For an application to object space partitioned parallel vol-
ume rendering and even more in connection with additional
acceleration structures based on further bricking (see sec-
tion 3.2) the most important feature of GPU-based raycast-
ing is the very low overhead introduced for rendering the
splitted data set. This overhead directly affects the scalability
of the distributed architecture as well as the benefit of includ-
ing brick-based empty-space-skipping. In a bricked data set
the total number of vertices needed for rendering the proxy
geometry of a slice-based approach highly increases on a
per slice basis, while for raycasting the required amount of

vertices solely depends on the number of bricks used, since
only their front faces need to be rendered to set up the rays.
This keeps the load on the vertex processor very low and
prevents transforming vertices to become the limiting factor
when using very small brick sizes. In addition, less CPU time
is necessary, since the position of these vertices can be easily
derived from a brick’s location inside the volume. Compared
to slice-based approaches, that need to calculate intersection
between each slice and the brick bounding geometry, this
can be implemented more efficiently and keeps the overhead
for the CPU very low.

3.1. Basic Concept

Having the possibility of loops and conditionals inside a
fragment shader allows for completely traversing a ray
through a volume sampling the data set at equidistant inter-
vals and evaluating the volume rendering integral in a single
render pass.

As described in [SSKE05], the actual raycasting is per-
formed in texture space in order to avoid costly transforma-
tions of texture coordinates during the ray traversal. There-
fore, a mapping from object space to texture space is nec-
essary for setting up the rays correctly. The geometric size
ec of a volume is determined by the number of slices Sc

in each dimension c ∈ {x,y,z} and the corresponding slice
thickness Dc. Since in texture space the volume is addressed
completely independently of the values Sc and Dc using a
fixed interval of [0,1], a scaling is necessary to transform a
geometric point inside a volume to its corresponding posi-
tion in texture space. For non-uniform volumes it is signifi-
cant to also map vectors from one space to the other to assure
constant sampling distances independent of the direction of
the ray. In order to allow for the same transformation to be
applied to points as well as to vectors, we define the geo-
metric position of the volume to lie in between (0,0,0)T and
(

Ex,Ey,Ez

)T with

Ec =
ec

max{ex,ey,ez}

being the normalized volume size in each dimension. The
mapping is then easily defined as multiplication with a factor
of Fc = 1/Ec for both positions and vectors.

For the ray setup only the front faces of the bounding ge-
ometry of a volume are rendered with the texture coordinates
set to the corresponding position of the normalized volume
as described above. The interpolated texture coordinates af-
ter transformation serve as first sample position on each ray
and the direction is derived from additionally mapping the
position of the camera to texture space. The fragment shader
then traverses the ray as long as the sample position is still
inside the volume, which is equivalent to check if the posi-
tion in texture space is still located in the interval of [0,1].
For each sample point the associated color and opacity val-
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ues are obtained from classification and accumulated with
front-to-back blending.

3.2. Bricking

The idea of subdividing a volume data set into a set of
smaller data blocks is widely used for rendering very large
data sets that cannot be processed as a whole by a single
machine. The object space subdivision of the volume al-
lows the distribution of the visualization task to multiple
render nodes. Additionally, it permits the implementation of
empty-space-skipping on each node, which can significantly
increase the performance of the system (see Sec. 5.1).

In order to employ the concept of bricking, the volume
data are split into uniform texture bricks and each of these
bricks is processed like a separate volume following the ba-
sic concept, i. e. the front faces of the proxy geometry of
each brick are drawn in depth sorted order. The final image
is computed by alpha blending the resulting fragments.

As in prior slice-based distributed volume renderers this
procedure causes problems at the boundaries of the bricks
due to the tri-linear interpolation of the texels. A continuous
interpolation of the volume data can be achieved by repli-
cating the boundary voxels in adjacent bricks [SMW∗04].
Additionally, a correct transition between the bricks requires
the clamping of outbound rays. For the basic concept us-
ing only one brick the error introduced by ending the ray
traversal at the last regular sampling point within the vol-
ume is neglectible and corresponds to the error also made
by slice-based approaches. However, if the volume is split
into multiple bricks, these borders are located somewhere in
the middle of the data set and it will therefore cause signif-
icant artifacts like holes in isosurfaces, if the last sampling
points do not lie on the back face of the proxy geometry.
The computation of these last sampling points can be done

MOV scale, 0.0;

# Test for positions outside the extents

SUBC temp.x, volExtentMax, pos;

MOV scale.x (LT), temp.x;

SUBC temp.x, pos, volExtentMin;

MOV scale.x (LT), temp.x;

# Determine correction vector

DIV temp.x, scale.x, offset.x;

ABS temp.x, temp.x;

# Move back to max/min x-axis extent

MAD pos, -temp.x, offset, pos;

Figure 1: Fragment program code for clamping the last ray

sample position to the volume or brick extents. Only code for

the x-axis is shown.

in a way that is similar to the Sutherland-Hodgman polygon
clipping: Each ray is clipped against the boundaries of the
volume. Fig. 1 illustrates how the clipping against the x-axis
is done in the fragment program. The resulting position of
this operation must then be clipped against the y- and z-axis
in the same way, which finally yields the intersection of the
ray and the back face. An alternative way of acquiring the
intersection between the rays and the back faces is an addi-
tional rendering pass: Krüger et al. [KW03] render the back
faces to create a texture holding the exit points of the rays.
Such a texture could be used to lookup the intersection point
for each ray. However, we did not choose this way as ad-
ditional render passes introduce higher overhead for small
brick sizes.

Unfortunately, having one voxel overlap between the
bricks and using the correct last sampling point on the back
face is not sufficient for creating an artifact-free image when
using pre-integration, since different sampling distances oc-
cur in this case. We use the technique for incremental pre-
intregation tables presented by Weiler et al. [WKME03] to
overcome this problem.

4. Parallel System Architecture

4.1. Viewer

Our system is a typical remote rendering system split in ren-
der nodes, that are responsible for generating the images,
and a viewer application. The viewer shows the final image
and handles user input events. Based on the user input, it
creates render requests, which are sent to the cluster in order
to refresh the image. Messages between the viewer and the
cluster are sent over a TCP/IP network at the moment.

The current implementation of the viewer uses the GLUT
and runs either on Windows or Linux PCs. However, the
only graphics capability required for the viewer is drawing
pixels into the framebuffer. Hence, the viewer could quite
easily be ported to devices with limited graphics hardware
like PDAs or systems without hardware accelerated graph-
ics using only GDI or X functionality.

4.2. Render Nodes

The render nodes implement the GPU raycaster. Each node
is responsible for raycasting a disjunct part of the data set
consisting of one or more bricks that form a continuous and
convex subvolume. The number of slices Sc(~b) that brick~b =
(bx,by,bz)

T consists of is computed from the total number
of slices Sc and the user-defined number of bricks Bc in each
dimension c:

Sc(~b) =







⌈

Sc

Bc

⌉

if bc < Bc −1

Sc − (Bc −1) ·
⌈

Sc

Bc

⌉

otherwise

This creates mostly uniform bricks, but if the number of
slices cannot be divided by the number of bricks, the bricks
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Figure 2: Schematic view of the generation of a single frame.

at the front, right and top border of the volume data set are
smaller than the rest.

The object space subdivision of the data set is constructed
by assigning bricks to a render node using a kd-tree, which
guarantees that the partition on every node is convex regard-
less of the number of cluster nodes used. The kd-tree has
two other advantages: When a layer of bricks is moved from
one render node to another along the subdivision planes of
the tree, the new partitions will also be convex, and the kd-
tree can be used to determine the correct order when blend-
ing the images of the render nodes to create the final re-
sult [MPHK93].

The render nodes basically implement a server loop that
waits for render requests from the viewer and processes them
(see Fig. 2). The viewer sends the render request containing
the necessary information to set up the volume for the next
frame to the first node, which acts as some kind of “mas-
ter node”. The master node then broadcasts — we use MPI
as communication middleware — the request message to all
other nodes, which has the advantage that the viewer and the
slow network connection between the viewer and the cluster
are relieved. Each render node then raycasts its subvolume
independently. The final image is constructed by composit-
ing the images of all nodes and sent back to the viewer for
display. Compositing is done in software using the Direct-

Send communication scheme [Neu93]. To prevent blending
empty pixels and to limit the bad performance impact of
glReadPixels, we implement an sl-sparse system based
on the projection of bounding boxes.

As we expect only a narrow-band connection for the trans-
port of the final image from the cluster to the viewer, it is
possible to compress the image using the LZO real time
compression library before sending it over this “last mile”.
The computation time for compressing the image is ex-
tremely low and the size of the compressed image is nor-
mally about 10 % of the original data.

Beside the possibility to compress the image, we have im-
plemented two different ways of sending the image from the
cluster to the viewer. The first is collecting the whole image
on one of the cluster nodes and sending it from this node to
the viewer. The advantage of this method is that the fast in-
terconnect between the cluster nodes can be used to combine
the results of the compositing on each node and the trans-
fer of one large package over the possibly slower network
should be more efficient than sending partial images from n

nodes.

Sending the partial images from the node that did the com-
positing directly to the viewer is the second method. In that
case, the viewer receives n smaller packages from n nodes
one after the other. The advantage of this method is, that the
cluster nodes are not synchronized after compositing and be-
come therefore less idle.

4.2.1. Distributed Volume Raycasting

The distributed data set is basically rendered by processing
each brick in a depth sorted order like a separate volume
following the basic concept. However, some small changes
in the framework and the fragment shaders have to be done.

First of all, all extents have to be computed on a per brick
basis. With eb

c = dSc/Bce ·Dc being the extent of a full size
brick and ec(~b) = Sc(~b) ·Dc the extent of a brick~b, the nor-
malized volume size of~b in each dimension c is

Ec(~b) =
ec(~b)

max{eb
x ,e

b
y ,e

b
z}

.

As stated above, a correct tri-linear interpolation at the
border of the bricks can only be achieved by having overlap-
ping voxels. We realize this overlap by replicating in each
brick one slice of the brick that is right, before or above the
current one and shift the whole texture by half the width of
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a texel. A brick therefore consists of

S̃c(~b) =

{

Sc(~b)+1 if bc < Bc −1
Sc(~b) otherwise

slices with valid data, but only (S̃c(~b)−1) of these slices are
visible. The fragment program must be aware of the repli-
cated data, which can be achieved by changing the factor that
does the transformation from geometric to texture space. If
the volume texture of~b has an actual dimension of Tc(~b), the
new factor

Fc(~b) =
S̃c(~b)−1

Tc(~b) ·Ec(~b)

incorporates the transformation already described for the ba-
sic concept as well as the removal of the overlapping slice
from the range of visible slices.

As the actual raycasting happens in texture space, i. e.
within [0,1] for each brick, the number of sampling points
per brick is solely dependent on the user-defined sampling
distance. Hence, the overall number of sampling points in-
creases with the number of bricks used. To overcome this
undesireable effect, the user-defined distance must be scaled
depending on the number of bricks.

Texture coordinates and the geometric position of a vertex
do not match in case of using multiple bricks. The texture co-
ordinates must be computed by interpolation — especially,
if a brick must be clipped against the near clipping plane.
As the load on the vertex unit is not very high, we move
this computation from the CPU to the vertex shader. We also
move the computation of the ray direction from the fragment
to the vertex program, which saves some instructions in the
pixel shader. The result is passed as an additional set of tex-
ture coordinates and hence correctly interpolated between
the vertices. The fragment program can directly access the
direction vector and has no need for knowing the geometric
position of the ray entry point any more.

5. Optimization

5.1. Empty-Space-Skipping

The concept of empty-space-skipping is widely used to
accelerate the raycasting process in CPU-based renderers
[Lev90]. While employing this technique directly in the
fragment programs of GPU-based systems is quite costly
as it requires an additional hierarchy of textures, that allow
looking up whether a certain part of the volume will make
any contribution to the final image, discarding empty bricks
comes nearly for free. If the framework knows the minimum
and maximum scalar value of each brick, it can determine
whether a brick will create visible fragments for isosurface
and direct volume rendering shaders in advance and possibly
skip the whole brick.

The implementation of the skipping mechanism is

Figure 3: The aneurism data set before (left) and after

(right) load balancing. The color coding denotes the assign-

ment to the different cluster computers. See also fig. III.

straightforward for isosurface shaders: A brick can be dis-
carded, if the current iso value is not between the minimum
smin and maximum smax of this brick. For direct volume ren-
dering shaders that allow interactively changing the trans-
fer functions, a similar decision can be made using the pre-
integration table. The pre-integration table returns for two
scalar values s f and sb an approximation

αi ≈ 1− exp

(

−
∫ 1

0
τ((1−ω)s f +ωsb)ddω

)

(1)

for the opacity of the i-th of uniform ray segments with a
length of d [EKE01]. A brick can be skipped, if this opacity
will surely be zero for all of its sampling points. That is the
case, if αi is zero for s f = smin and sb = smax, because as
negative opacities are not allowed, equation 1 can only yield
zero, if all scalar values between s f and sb result in transpar-
ent fragments.

5.2. Load Balancing

For a maximum overall system performance, the work load
should be well-balanced between the render nodes. How-
ever, asymmetrical data sets can cause a load imbalance —
especially in conjunction with empty-space-skipping, which
can lead in the worst case to nodes that need to raycast no
brick at all, while other nodes have all the relevant parts of
the data set. An inhomogenous cluster environment can also
be the reason for a poorly balanced system, if some comput-
ers just do not have the capability to finish their task in the
same time as the fastest can do. Finally, our kd-tree-based
construction of the partitions has the inherent problem of as-
signing very different numbers of bricks to the nodes, if the
number of cluster computers is not a power of two.

The system therefore tries to rebalance the work load be-
tween the nodes dynamically. Based on the assumption that
the render time will not change very quickly, the render
time of the current frame is used as a reference and bricks
are moved from nodes with heavy load to nodes that fin-
ished the frame earlier. However, the possibilites for moving
bricks from one node to another are limited by several con-
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straints. First of all, the load balancing must ensure that the
partitions on all nodes always form a continuous and con-
vex subvolume, which can be guaranteed by moving a whole
slice of bricks only along the subdivision planes in the kd-
tree. Secondly, the load balancing must be fast as it must be
done in the same thread as the raycasting due to the lack
of thread-aware MPI implementations for most interconnec-
tions. Finally, the system should only move bricks over the
network, if the exchange will surely improve the situation, as
the transfer of bricks and the upload into the graphics mem-
ory of the target machine takes a significant amount of time.
Most importantly, the system must avoid moving bricks from
one side to the other in one frame and the other way around
in the next.

The base for all load balancing operations is a local copy
of the kd-tree that defines the volume partitions. The leave
nodes of this tree represent a cluster computer and the bricks
that are resident on this computer. After the times for ren-
dering the current frame have been communicated between
the nodes, the difference between the render times of the two
halfspaces defined by any inner node of the kd-tree can be
computed independently on each node.

When determining the need for load balancing, it must be
taken into account that a node that is near the root of the kd-
tree represents much more bricks than nodes deeper in the
tree. Let s be the number of bricks that are direct neighbors
of a subdivision plane on one side, i. e. the number of bricks
that must be moved when bricks should be exchanged along
this plane. Additionally, let tl be the total render time for the
left subtree and bl the number of bricks in this subtree, tr and
br accordingly for the right subtree. The average render time
for a brick in the tree represented by the current subdivision
tree node then is t = (tl + tr)/(bl + br). Assuming tl > tr,
moving bricks along this subdivision plane makes sense, if

|(tl − st)− (tr + st)| < tl − tr. (2)

When rewriting inequation 2 as |tl − tr −2st| < tl − tr and
using the prior assumption that tl −tr ≥ 0 and the fact that the
render time st must also be positive, the lower limit for 2st

is 0 and the upper limit 2(tl − tr). Therefore, moving bricks
along a subdivision plane improves the balance, if

st < |tl − tr| (3)

holds true. However, this condition does not take into ac-
count that moving bricks from one node to the other is very
time consuming, which results in a performance decrease as
bricks are moved too often. Let therefore c be the average
time it takes to move a brick from one node to another. The
system can measure c while it is running. Applying c directly
on the left side of inequation 3 is not very useful as c is prob-
ably a quite high value and will consequently prevent most
load balancing operations. Therefore, c is weighted with an
additional factor f . For computing this weighting factor as

f =

{

fl if tl > tr
fr otherwise

each node in the kd-tree stores two values fl and fr, which
model the observation that it is an undesired behavior if
bricks are moved back from the right to the left subtree, if
they have been moved from the left to the right in the last
frame. If the system is e. g. moving bricks from left to right,
the factor fr for moving bricks into the opposite direction
is increased by a user-defined amount fo and the factor fl

for moving bricks into the same direction is decreased by
fs. By modifying these two values the user can control how
aggressively the load balancing is moving bricks. Including
the average cost c for moving a brick and the factor f , the
condition for moving a slice of bricks finally is

st + s f c < |tl − tr| . (4)

In order to address the problem of the very limited com-
putation time that can be used for load balancing, the system
does not try to balance the whole tree, but incrementally pro-
cesses only one node a frame. For that, inequation 4 is eval-
uated for the root node of the kd-tree. If it holds true, i. e.
the imbalance between the two subtrees is so large that mov-
ing a slice of bricks is very likely to improve the situation,
one slice of bricks is transferred along the subdivision plane
represented by the root node. The load balancing is then fin-
ished for the current frame and starts again at the root node
after the next image has been rendered. If the imbalance is
not that large, the other nodes of the kd-tree are tested in a
preorder traversal, and after the first slice of bricks has been
moved, the load balancing is suspended until the next frame.
Fig. 3 illustrates the rearrangement of bricks made by the
load balancing mechanism.

Despite all our efforts to prevent the system from alter-
nately moving bricks along one subdivision plane, it is not
possible to completely stop this behavior, mainly for two
reasons: First, choosing fo and fs and an appropriate ini-
tial value for fl and fr is quite difficult as it depends on the
data set itself, the number of bricks that are created and the
hardware that is used. Second, if the values are too high, the
system might not reach the best possible state of balancing
because the transfer costs have increased so much that the
last iterations of the load balancing seem to be useless. The
system might then even get stuck in a configuration that is
worse than the initial partitioning. We have therefore added a
brick caching mechanism that makes it faster to move bricks
back to the original node. If a node is moving a brick to a
neighboring node, it keeps a copy of this brick in its main
memory. We currently use a simple least recently used ap-
proach as replacement strategy. If the system then decides to
move a cached brick back to the initial node, it is not trans-
ferred over the network but the local copy is reactivated. The
caching mechanism requires additional messages to be sent,
because the two nodes must negotiate which bricks must ac-
tually be sent and which are still cached. However, such a
message is much smaller than a whole brick. Hence, the sys-
tem performs better with caching and it is possible allow
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Figure 4: Framerates for the aneurism data set.

a more aggressive load balancing that can finally achieve a
better balance between the nodes.

6. Results and Discussion

We conducted performance tests on our cluster of eight dual
2.1 GHz Opteron PCs with 4 GB RAM. The nodes have a
GeForce 6800 Ultra with 256 MB of graphics memory and
are connected with an Infiniband network. If not stated dif-
ferently, the tests have been performed using a 512 × 512
viewport and a sampling distance assuring that each voxel
is sampled at least once. We used a 5123 aneurism and the
5122 ×999 Christmas tree data set for testing.

The framerates were measured by the viewer applica-
tion while the volume was rotated around the y-axis. Unless
denoted differently, each render node sent its own part of
the image directly to the viewer after compression. Sending
compressed strips directly proved to be fastest in most cases,
so all further tests use this transfer method.

Fig. 4 shows the results of the aneurism data set for an iso-
surface and a DVR shader. Without empty-space-skipping
— no bricks can be skipped with only 23 bricks —, the data
set does not fit into the graphics memory when using less
than four nodes. It also becomes obvious, that node num-
bers that are powers of two generally perform better, be-
cause the partitioning made using the kd-tree is much more
balanced. Isosurface shaders are normally faster, because
they can stop sampling after the first isosurface was found,
and more bricks can be discarded when using empty-space-
skipping. E. g. 808 bricks can be discarded for the isosurface
display, but only 596 for the DVR shader. The Christmas tree
data set shows a very similar scaling behavior. Using four to
seven nodes the framerate is around 7 fps, on eight nodes
11.6 fps are achieved.

We tested our load balancing mechanism using the
aneurism data set with 103 bricks (see Fig. 5). Load balanc-
ing can, to a certain degree, resolve the problem of a bad
initial partitioning caused by the kd-tree, provided that the
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isosurface w/o load balancing
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Figure 5: Load balancing result with the aneurism data set.

transfer cost parameters are set appropriately. Finding these
parameter values proved to be very difficult. In fact, we have
several cases in which the performance was worse after load
balancing than before, because the transfer costs grew too
fast. With an increasing number of cluster nodes, the load
balancing seems to work better, probably because the slices
of bricks that have to be moved from one node to the other
become smaller. To simulate an heterogenous cluster, we re-
duced the GPU clock speed on one of our nodes to 100 MHz.
The framerate of the isosurface shader dropped to 6.2 fps,
but increased again to 11.3 fps after load balancing. When
using the DVR shader with the same load balancing param-
eters, the load balancing had nearly no effect.

In order to use the total texture memory of 2 GB, we used
the 512× 512× 1877 Visible Male data set, which requires
including pre-computed gradients about 1,83 GB of texture
memory. Using 6× 6× 12 bricks, we reach 19.9 fps for the
isosurface and 20.5 fps for the DVR shader. Empty-space-
skipping works quite well with the isosurface shader: Only
40 % of the bricks must be rendered which results in a fram-
erate of 48.5 fps. With 15×15×50 bricks, only 16 % must
be rendered, but the remaining 1837 cause a lot of overhead,
so that the framerate only increases from 3.1 fps to 12.6 fps.
A good compromise regarding the number of bricks there-
fore seems to be very important. Fig. I on the color plate
shows an image, which has been rendered using a combined

Empty-Space- fps
Skipping

12603 no 2.8
12603 yes 4.4
12603, half sampling rate yes 8.1
10753 yes 4.9
10753, 1024×768 viewport yes 3.2

Table 1: Framerates of the large aneurism data sets.
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isosurface/DVR shader on a 768 × 1024 viewport. When
sampling twice per voxel, 0.5 fps are reached.

As DVR shaders do not need gradients, we additionally
tested two resampled versions of the aneurism data set with
10753 and 12603 slices. We used 103 bricks, which of 692
must be rendered when empty-space-skipping is enabled.
Tab. 1 shows the results on eight cluster nodes.

7. Conclusion and Future Work

We presented a distributed GPU-based raycasting architec-
ture for rendering uniformly bricked data sets. This brick
structure is the basis for two optimization methods. First,
an empty-space-skipping is applied to single-pass volume
raycasting without the need for additional render passes and
without introducing visible artifacts. Second, we addressed
the problem of imbalanced work load across the cluster
nodes caused by data set characteristics or inhomogenous
cluster layouts with an object space balancing technique
built upon a kd-tree. With the presented system it is pos-
sible to visualize data sets that make use of the complete
distributed texture memory at 2.8 frames per second.

For future work we plan to further utilize the brick struc-
ture for adaptive sampling on the rays based on the standard
deviation of the scalar values within a brick. To improve the
load blancing we intend to extend the brick structure for non-
uniform bricks. Using smaller brick sizes at the likely loca-
tions of data exchange during load balancing would decrease
the transfer costs as well as allow for more accurate adaption
of the work load.
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Figure I: The Visible Male data set rendered using

a combined isosurface/DVR shader.

Figure II: Combined isosurface/DVR image of the upper 5123

part of the Visible Male.

Figure III: The aneurism data set before (left) and after (right)

load balancing. The color coding denotes the assignment to the

different cluster computers.
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