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Abstract

We present a parallel cloth simulation engine designed for distributed memory parallel architectures, in particu-
lar clusters built of commodity components. We focus on efficient parallel processing of irregularly structured and
real-world sized problems typically occurring in the simulation of garments. We report on performance measure-
ments showing a high degree of parallel efficiency and scalability indicating the usefulness of our approach.

Categories and Subject Descriptors (according to ACM CCS):

C.1.4 [Processor Architectures]: Parallel Architectures, G.1.3 [Numerical Analysis]: Numerical Linear Algebra,
G.1.7 [Numerical Analysis]: Ordinary Differential Equations, G.4.5 [Mathematical Software]: Parallel and Vector
Implementations, 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, 1.3.7 [Computer

Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Cloth animation has been an area of active research in com-
puter graphics for several years. Recently, major advances
have been achieved in understanding the physical behavior
of cloth, the derivation of mathematical models, and the de-
velopment of fast numerical algorithms and rendering tech-
niques. Although much progress has been made towards vi-
sually pleasing animations, as well as towards physically
correct simulations, computational demands for high reso-
lution textiles are still very high. Especially if we are inte-
rested in high quality animations with comparatively long
simulation times, the necessary computational performance
is not yet reached. Parallel computing is able to significantly
improve the performance of computationally intensive pro-
blems. A major challenge of applying parallel techniques to
cloth animation originates from its inherent very fine granu-
larity. Each step in the simulation depends on the results of
the previous step. This property makes an inter-step paralle-
lization approach not feasible. Consequently, parallelization
has to be carried out at the level of an individual simulation
step. Compared to similar parallel simulation applications
from other domains, typical problem sizes in cloth animation
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(in terms of the number of unknowns to be computed within
each step) are rather small, leading to a poor computation to
communication ratio. Moreover, we are dealing with an un-
structured problem where naive approaches for task decom-
position and mapping (e.g. not taking into account specific
properties of the problem instance) typically lead to unsca-
lable parallel applications.

In this paper, we present our parallel cloth simulator Par-
TuTex which addresses the aforementioned challenges. The
major design goals of our parallel cloth simulator are:

e Efficient parallel processing of irregularly structured pro-
blem instances typically resulting from the simulation of
garments.

e Achieving good parallel scalability on relevant problem
sizes.

e Execution on cost-efficient distributed memory parallel
architectures, in particular clusters built of commodity
components.

We employ a data-parallel approach of parallel program-
ming using static task decomposition and task mapping tech-
niques to realize the above design goals
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2. Related Work
2.1. Cloth Animation

Since the work of Baraftf and Witkin [BW9S8], impli-
cit time stepping, together with the conjugate gradient
(CG) method to solve the systems of linear equati-
ons, has become the standard method to solve the
ordinary differential equations that arise in cloth anima-
tions [VMTO00, VMTO1, CK02, CK03, KSFS03, EKS03].
While many variants and mixed implicit-explicit methods
have been proposed [EEH00, HEO1, MDDBO1, KCCLO1],
[CMTO02, BMF03, AB0O3, HESO3], current algorithms are
still far from computing high resolution textiles (let’s say a
garment with about 18,000 vertices, as stated in [BWKO3]),
in real time. Moreover, if we consider geometrically more
complex garments, we might even want to use even higher
resolutions.

2.2. Parallel Cloth Animation

Due to the aforementioned performance limitations, paralle-
lization of numerical algorithms lying at the core of modern
cloth simulators is an attractive way of substantially accele-
rating computation time, but to our best knowledge only a
few contributions have been made in the past.

Romero et al. [RRZ00] present a parallel cloth simulati-
on method based on implicit integration designed for NU-
MA parallel architectures. Lario et al. [LGPTO1] report on a
rapid parallelization approach of a multilevel cloth simula-
tor using OpenMP. The most recent contribution in this field
has been made by Zara et al. [ZFV02, ZFV04]. This work
deals with parallel cloth simulation on PC clusters employ-
ing both, explicit and implicit integration techniques.

The work of Zara et al. is the most related to the rese-
arch presented in this paper both in terms of the employed
numerical algorithms and in terms of the target parallel ar-
chitecture. The other two approaches are based on shared
address space parallel computers which are certainly more
easy to program but do not scale well and/or have a worse
price/performance ratio compared to clusters built of com-
modity components. The main difference between the pre-
sented work and the work of Zara et al. is the way problem
decomposition and task mapping is carried out. While we
perform a completely static approach based on data partitio-
ning Zara et al. carry out dynamic problem decomposition
based on partitioning dynamically generated task dependen-
cy graphs. This fundamental difference is also reflected by
the underlying parallel programming models. Zara et al. em-
ploy the Athapascan task-parallel language while our work
is based on PETSc (Portable, Extensible Toolkit for Scien-
tific Computation) which provides an extensive set of data
parallel primitives on top of the message passing program-
ming model.

3. Implicit Integration for Cloth Animations

In this section, we briefly explain implicit integration in the
context of cloth animations. Moreover, we describe the cloth
simulation engine TtiTex, which we use in this work.

3.1. Implicit versus explicit integration

In order to obtain a cloth animation, we have to compute
the motion of the vertices of a given polygonal mesh repre-
senting the cloth. The motion depends on internal and ex-
ternal forces acting on the cloth, and its mass. The ordinary
differential equations we have to solve arise from Newton’s
equation of motion

fx(@),v(2)) = Ma(t),

where x represents the 3D positions of the vertices at a time
t, v = X the respective velocities, a = X the accelerations, f
the forces acting on the cloth and M its mass. We can rewrite
this equation as

i) = v(t) )]
(r) = M f(x(n),v(1). )

Note that x, v, a and f are vectors of size 3n, and M is a
quadratic diagonal matrix of dimension 3n, where n is the
number of vertices in the mesh.

Thus, given the forces at a time #, we first have to compu-
te v(¢) and then x(¢) by solving these two equations. While
there exist many explicit and implicit integration schemes
to achieve this, the respective Euler methods are among the
most widely used for cloth animations because of their sim-
plicity and their relative low computational costs.

The explicit Euler integration method iteratively compu-
tes approximate solutions to equations 1 and 2 by

x(t+h) = x(t)+hv(t)
vekh) = v(r) + BT (x(0), (1)),
while the implicit Euler integration method achieves this by
x(t+h) = x(t)+hv(t+h) 3)
v(t+h) = v(t)+hM T f(x(t+Rh),v(E+h), @)

where & denotes the time step. The main difference between
these two methods is the fact that the implicit method takes
forces in the time step ¢ + & into account. This yields mo-
re stable solutions at the cost of having to solve for v(r + h)
rather than just evaluating a formula as in the explicit Euler
method [BW98]. In general, f is a non-linear function which
has to be linearized in order to reduce the problem to a sy-
stem of linear equations. Baraff and Witkin [BW98] give an
example of how to linearize a physically based force model
and show that the arising sparse linear equation systems can
be computed efficiently by using a conjugate gradient me-
thod [She94]. Moreover, they describe how constraints can
be realized by using a filter function within the conjugate
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gradient method, e.g. for pinning particles to specific points
in the scene or for collision response.

3.2. The TiiTex Cloth Simulation Engine

As seen in the last section, the implicit Euler method leads
to a system of linear equations in each time step. Thus, the
simulation loop in the animation is structured as shown in
algorithm 1.

Algorithm 1 Simulation Loop

loop
setup LES
Compute the matrix A and the right hand side vector b.
solve LES
Compute the new velocities by solving Av(r +h) = b
using the CG method
compute positions
Compute the new positions by evaluating x(f + h) =
x(t) +hv(t +h)
if reached frame interval then

generate frame

end if

end loop

Mostly, there will be additional steps for collision detec-
tion and response and for rendering the intermediate results
or writing them to a file.

The specific computation of A and b depends on the phy-
sical model that is used. In most cases, for example in sim-
ple mass spring systems, internal forces are modelled locally
between vertices in the mesh that are connected by an edge.
This means, the internal forces acting on a vertex depend on-
ly on the positions and velocities of its neighbors. Thus, the
resulting matrix A is sparse and has non-zero entries only in
the form of 3x3 blocks beginning at row 3i and column 3,
if there is an edge between vertex i and vertex j. Moreover,
A is obviously symmetric.

In this work we use the TiiTex cloth simulation engine
which uses a physical force model based on a finite element
discretization of the linear Cauchy strain tensor. By con-
structing a local reference frame for each element in each ti-
me step this linear strain formulation can be applied to cloth
animations, which leads to efficient and physically accura-
te results [EKS03]. Moreover, an implicit Euler method is
used to solve the ordinary differential equations, as descri-
bed in the last section. Thus we have to solve a system of
linear equations in each time step. The respective matrix al-
so has non-zero entries exactly for all edges in the mesh. For
a detailed description of how to set up the system of linear
equations we refer to [EKSO03].
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4. The ParTiieTex Cloth Simulator

Our parallel cloth simulator ParTtTex is built on top
of the TiiTex cloth simulation engine employing PETSc
[BGMS97, BBG*02] for enabling parallel execution. PE-
TSc is a suite of parallel data structures and routines for the
scalable parallel solution of scientific applications. It is ba-
sed on the MPI (Message Passing Interface) standard and
supports an SPMD (Single Program Multiple Data) style of
parallel programming which is located at a higher level of
abstraction than the pure SPMD message passing program-
ming model. PETSc has been used for parallelizing appli-
cations from a wide range of domains [BBG*01]. Besides
ready-to-use standard components (e.g. parallel linear equa-
tion solvers), it also provides a rich set of lower-level primi-
tives for dealing with advanced issues like the parallelization
of irregularly structured problems.

4.1. Task Decomposition and Task Mapping

Two important design issues in parallel programming are
task decomposition and task mapping. Both can be accom-
plished statically or dynamically. While dynamic approaches
are more flexible and are also inescapable in some applica-
tion domains, static schemes generally impose less parallel
run-time overhead. Consequently, static approaches should
be preferred whenever possible in order to achieve good sca-
lability. This is especially important when dealing with rela-
tively small problem instances which typically exhibit a poor
computation to communication ratio.

We employ a static task decomposition and mapping sche-
me which is based on data decomposition. The goal of data
decomposition is to partition the data structures on which
computations are performed (which are essentially vectors
and matrices in our case) in order to induce a decomposition
into parallel tasks.

Generally, a partitioning method should optimize the fol-
lowing (commonly conflicting) objectives to attain high par-
allel efficiency:

e balancing of computational load
e minimizing communication overhead

Balancing computational load requires a task mapping
that assigns to all processors the same amount of work. In
our case in each step identical operations are carried out on
individual data elements and all matrices are unstructured.
Thus an even partitioning of the data structures also leads
to a balanced computational load. Moreover, this property
makes it possible to limit the number of generated parts (and
hence the number of induced parallel tasks) to the number of
available processors. This results in a static one-to-one par-
tition to task to processor mapping. For matrices we choose
a 1-dimensional row-oriented parallel layout, vectors are ali-
gned accordingly.

For minimizing inter-task communication it is not suffi-
cient to generate any balanced partition, but we must also
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Figure 1: Examples of ghosted meshes. The left image shows a part of a shirt’s triangulation, the right image is taken from a

square piece of cloth (cf. Section 5)

decide for each individual data element to which partition
it should belong to according to data-dependencies occur-
ring within its computation. Conceptually, this process deli-
vers a new ordering of the data elements, called the parallel
numbering. In the parallel numbering each processor owns a
consecutive range of vertex numbers.

Below we identify all data dependencies within the simu-
lation for a 1-dimensional row-oriented parallel data layout:

e Setup LES

— computation of the matrix and the right hand side re-
quires communication of all non-local mesh neigh-
bors.

e Solve LES (Conjugate Gradient Method)

— dense vector inner product requires one all-reduce col-
lective communication operation. Note, that in general
the communication overhead of parallel dense vector
inner product does not depend on the ordering of the
data elements.

— sparse matrix vector multiplication requires communi-
cation of non-local vector elements that correspond to
non-zero entries of each matrix row.

Since the mesh structure is fixed and translates directly
into the sparsity pattern of all involved matrices (non-zero
entries indicate mesh neighbors), all task interaction patterns
remain the same throughout the whole computation. Moreo-
ver, the Setup LES phase and the Solve LES phase can be
optimized jointly.

In our case, we are dealing with unstructured sparse matri-
ces, making specific partitioning schemes impossible. The-
refore, we employ generic graph partitioning techniques.
The graph partitioning problem deals with determining a
partitioning of a graph with equally sized parts and a mi-
nimum number of edge cuts for a given partitioning size.

Since in our application edge cuts indicate inter-task com-
munication, graph partitioning reduces the overall commu-
nication overhead and at the same time preserves a balanced
workload.

4.2. Parallel Algorithm

Algorithm 2 shows the pseudo code of our SPMD based par-
allel algorithm. Subsequently, we discuss the main steps of
the algorithm and give some explanations how we have im-
plemented the steps employing PETSc constructs.

Algorithm 2 SPMD based parallel algorithm
partition mesh
redistribute positions vector
loop
update ghost values
setup LES
solve LES
compute positions
if reached frame interval then
gather vector x
if NODE-ID = 0 then
generate frame
end if
end if
end loop

For mesh partitioning we use a parallel multilevel k-way
graph partitioning method which is provided by the ParMetis
[KK96] graph partitioning library. PETSc features an inter-
face for accessing ParMetis functionality in a straight for-
ward manner. The result of this step is a so called index set
that represents a mapping between the application specific
vertex numbering and the new parallel numbering induced
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by the partitioning process. Basically, index sets are used for
defining communication patterns of collective operations.

Before entering the parallel simulation loop, the initial po-
sitions vector has to be redistributed according to the deter-
mined parallel numbering. PETSc supports this process by
means of its generic vector-scatter collective communicati-
on primitives.

Vertices that are adjacent of a cut edge (i.e. vertices loca-
ted on the border of a partition) are accessed by both corre-
sponding tasks during matrix setup and sparse matrix-vector
multiplication steps. Such vertices are called ghost-points,
because they physically belong to one, but logically belong
to two processors. Figure 1 shows two examples of ghosted
meshes. As PETSc is based on the message passing model,
ghost-points have to be explicitly communicated by a col-
lective communication operation at the beginning of each
iteration of the simulation loop. Since this communication
operation is highly performance critical, we use overlapping
techniques. The part of the computation of the right hand
side vector not depending on ghost vertices is carried out
while the messages are in transit. In PETSc, overlapping of
computation and communication is accomplished by placing
code between calls of VectorScatterBegin() and VectorScat-
terEnd() primitives.

In order to realize a constraint enabled conjugate gradient
method (cf. Section 3.1) we extended the parallel conjugate
gradient component of PETSc by a filter-hook. This func-
tionality allows us to register a custom hook function that
is called within the CG procedure at appropriate places pro-
viding access to internal variables which can be modified
within the hook function applying a filter procedure.

For generating frames, the computed positions have to
be gathered on one node and at the same time permuted to
the original application specific numbering. This gathering
and permutation process is accomplished by PETSc vector-
scatter collective communication primitives.

5. Performance Measurements

In this section we first describe the test scenarios we used
to evaluate our approach. Then we discuss the results of our
measurements.

5.1. Test Scenarios
We verified our approach with two test scenes.

In the first test we simulated a quadratic piece of cloth
under the influence of gravity (see figure 4). The cloth has a
size of one square meter and consists of 22,500 vertices and
44,402 triangles. In the rest state, the vertices form a uniform
150x150 grid, where the vertical and horizontal edges have a
length of % cm each, while the diagonal edges have a length
of about 1cm (see the right image in figure 1). We think this
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is an appropriate discretization if we want to model small
folds and wrinkles.

The cloth is fixed at three points and slides onto the floor.
To treat the collisions we implemented a very simple collisi-
on detection and response. At the end of each time step the
z coordinate of each vertex is compared to the floor height.
If a collision is detected we correct the vertex position and
velocity. Obviously, this is straightforward to parallelize. A
parallel collision detection and response scheme for arbitra-
ry objects is the subject of future work.

The second test scenario consists in a shirt which is fixed
at two vertices (see figure 5). Here, the triangulation has no
regular pattern, as can be seen in the left image in figure 1.
The shirt consists of 35,024 vertices and 69,648 triangles.

Both simulations were computed at a time step of & =
0.001 and with a relative error tolerance (relative decrease
in the residual norm) of 0.001 in the conjugate gradient me-
thod, leading to an average of 647 iterations per time step
for the square cloth and of 1,115 for the shirt. The first simu-
lation ran for a simulation time of 0.48s and the second for
0.36s. Intermediate results were collected from all processor
nodes and written to files at a rate of 25 frames per second.

These two test scenes are quite demanding for the numeri-
cal solver because in both examples there occur high internal
forces in the textiles (note that there is no post-correction of
the edge lengths undertaken as in [Pro95], instead we use
measured material parameters as described in [EKS03]) and
nearly all the vertices are subject to large relative movements
for the whole simulation.

Of course, the overall computation time depends heavily
on the specific physical configuration of the animated scene
and on the numerical precision that shall be obtained. Chan-
ging the stiffness of the materials, setting up a scene where
stronger or weaker forces in the cloth occur or changing the
time step or the conjugate gradient error tolerance all influ-
ence the number of conjugate gradient iterations that have to
be done, and possibly the visual results.

5.2. Results

For carrying out performance measurements we used a Li-
nux based cluster. All compute nodes are equipped with In-
tel Xeon processors running at 2.667 GHz and with 2 GB of
main memory. The nodes are connected by a Myrinet-2000
high-speed network.

All subsequently presented performance results are based
on the arithmetic mean of the wall-clock times of three in-
dividual program runs for each investigated setting. Figure
2 and Figure 3 show the results of the performance measu-
rements for the cloth and the shirt scene. The time values
given for one processor are based on a sequential version of
our parallel simulator that employs sequential data structu-
res and sequential arithmetic operations (PETSc is capable
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Figure 2: Results of performance measurements of the cloth scene.
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Figure 3: Results of performance measurements of the shirt scene.

to automatically choose sequential primitives at run-time if
only one processor is available by means of its polymorphic
architecture). The results show that we achieve a high level
of parallel efficiency preserving a high level of scalability in
both test scenarios. For the shirt scene super-linear speedups
could be observed. In data parallel applications the main
source of super-linear speedups are memory cache effects.
With an increasing number of processors the data working-
set of each individual processor becomes smaller, often re-
sulting in an increased cache hit rate.

6. Conclusions and Future Work

We presented a parallel cloth simulation engine that is capa-
ble of substantially improving the computational performan-
ce of cloth animations. In particular, we described a parallel
realization of an implicit integration scheme for cloth anima-
tions on distributed memory architectures. The performance
measurements show that the employed methods scale well,
indicating that parallel techniques are a promising approach
to achieve high computational performance for high resolu-
tion cloth models.

In the future, we will add parallel algorithms for collision
detection (using bounding volume hierarchies) and response.
It seems to be an interesting question how to optimize the
mesh partitioning for self-collisions of the cloth.

With the possibility to handle very large numbers of tri-
angles due to parallelization, it will also be interesting to

experimentally evaluate the influence of the discretization le-
vel and simplifications of the physical models and numerical
methods on the realism in cloth simulations.
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Figure 4: The first test scene: a piece of cloth consisting of 22500 vertices is pinned at three points and dragged down by gravity
until it slides onto the floor.

LA s

Figure 5: The second test scene: a shirt consisting of 35024 vertices is pinned at two points and dragged down by gravity.
Figure 6: The piece of cloth partitioned for 4 and 12 processors (colors are assigned randomly).

D

Figure 7: The shirt partitioned for 4 and 12 processors (colors are assigned randomly).
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