
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

Fast Remote Isosurface Visualization With Chessboarding

A. Neeman, P. Sulatycke, and K. Ghose

State University of New York, Binghamton

Abstract
Isosurface rendering is a technique for viewing and understanding many large data sets from both science and
engineering. With the advent of multi-gigabit-per-second network backbones such as Internet2 and fast local net-
working technology, scientists are looking at new ways to share and explore large data sets remotely. Telemedicine,
which encompasses both videoconferencing and remote visualization is likely to be in widespread use with these
advances. Despite the availability of increased bandwidth, two challenges remain. First, the time it takes to locate
cells intersecting an isosurface of interest must be reduced for large data sets; a cell extraction technique that
scales with data size is also critical. The second challenge has to do with the mitigating the effects of network
latency on the overall isosurface visualization time. We present a remote isosurface visualization technique that
addresses these two challenges. Isosurface extraction delays are reduced through the use of a search-optimized,
chessboarded interval tree data structure on the disk. Network transport delays are reduced by sending cells
extracted from the chessboarded data on the server, compressing it by about 87%. In addition, network trans-
port delays are hidden effectively by overlapping data transport with server side functions. On a 100 Mbits/sec.
switched LAN, the remote visualization time - the time between the issue of a query from the client side to the server
and the displaying of a complete image on the client is only a few seconds for most isovalues in the well-known
visible woman data set.

1. Introduction

Isosurface visualization is commonly used for CT (Com-
puter Axial Tomography) and MRI (magnetic resonance
imaging) data in medicine as well as CFD (Computational
Fluid Dynamics) in many engineering disciplines. Isosurface
visualization is one of several techniques to retrieve data of
interest and change it to a graphical form.

This paper deals with remote isosurface visualization:
viewing an isosurface for data stored on a server and sent to
a remote client. Two challenges are encountered in the pro-
cess of remote isosurface visualization. The first challenge
is one encountered by all isosurface visualization processes
that have to deal with large data sets. As the raw data set in-
creases in size and exceeds the available RAM capacity, se-
vere page thrashing can seriously degrade the performance
of cell extraction, the phase that locates cells that intersect
the isosurface of interest. Often, to speed up the cell ex-
traction phase, the raw data set is transformed into search-
optimized structures that are usually higher in size compared
to the raw data set, which exacerbates the thrashing problem.
The second challenge in remote visualization has to do with

the network latency. Despite the increasing network band-
width, challenges remain to making remote visualization fast
and simple. Bottlenecks occur at the fringes of the network,
affecting end to end performance. Distance induced latency
also causes performance problems for data intensive applica-
tions. Finally it should be noted that the network is a shared
medium, and there are no quality of service guarantees at
this time.

We present a technique that addresses the two challenges
for remote isosurface visualization. We use a search opti-
mized interval tree data structure [Ede80] for cell extrac-
tion, as first reported in [CMM∗97]. However, unlike the ap-
proach taken in [CMM∗97], the interval tree data structure
is stored on the disk in a format that reduces disk seeking
time drastically. The resulting cell extraction performance
is very close to what one would obtain if the raw or trans-
formed data set could all fit into the RAM [SG98],[SG99].
This is achieved by successfully hiding the disk latency us-
ing multiple threads and the seek-reduced layout. To address
the network latency, we adapt the chessboarding scheme
of [CMM∗97] to remove redundant information about the

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

cells. The data for the corner of a cell is shared with 7 other
cells. Chessboarding removes this redundancy. However, the
chessboarding technique of [CMM∗97] cannot be used for
the out-of-core interval tree, as one cannot randomly access
cell data on a disk. Consequently, our chessboarding tech-
nique, although functionally similar to that of [CMM∗97], is
virtually a new approach. We reduce the impact of network
delays into ways: by performing cell extraction of chess-
boarded data on the server and sending the compressed data
to the client and by overlapping cell extraction with net-
work transport delays. In effect, chessboarding is a lossless
compression technique that preserves all information in the
data set to be viewed, an important consideration for medical
imaging data such as high-resolution MRI and CT data, as
well as data from 3D Ultrasound scans. Chessboarding re-
duces the amount of extracted cell data that has to be moved
from the server to the remote client by as much as 87%.

2. Background and Related Work

The isosurface visualization process can be configured as
a pipeline, with a pipeline stage implementing each step
of the isosurface visualization process. The first stage ex-
tracts the cells that intersect the isosurface from the raw data
set or a transformed, search-optimized version of the raw
data. The second stage (shown as data calculations in fig-
ure 1) determines how elements of the surface (usually tri-
angles) pass through each extracted cell. The third stage per-
forms rendering computations to account for such things as
lighting, transformations, or texture mapping. The follow-
ing stage prepares the 2-dimensional rendering of the iso-
surface. Finally, the scene is displayed on the screen, and
the user may interact with the data (by issuing commands
for rotating or zooming, for instance). Such commands may
cause the rendering computations and surface computations
to be repeated. With remote visualization, a programmer
will divide the pipeline somewhere, deploying part on the
server and the remainder on the client. An additional pipeline
stage accounting for the data transport has to be introduced
in-between the stages corresponding to the server and the
client. We now discuss some recent work on remote visu-
alization that have taken differing approaches in partitioning
the isosurface rendering functions between the server and the
client. Figure 1 shows the partitioning used in the schemes
discussed.

Figure 1: Partitioning schemes for client and server.

Luke and Hansen implemented the Semotus Visum sys-
tem supporting multiple modes for remote isosurface visual-
ization which minimized the processing and rendering bur-
den on the client [LH02]. In one mode the server created a
triangle mesh based on the color buffer and depth buffer. The
mesh was sent, along with the rendered image, to the client.
The client calculated texture coordinates based on the mesh,
and applied the image as a texture map. In another, the server
simply sent rendered frames. Experiments were run across a
single hop on a LAN over 10, 100, and 1000 Mbps Ether-
net. Engel, Westermann and Ertl proposed two alternative
scenarios. In the first triangle strips are created to compress
the geometry data before transferring it across the network
[EWE99]. In the second, Marching Cubes [LC87] interpola-
tion weights from each cell edge intersecting the isosurface
are sent from the server to the client. Their server sent 26
bytes per cell in the most common case. This experiment
was performed on a 100 Mbps LAN, and an in-memory oc-
tree was used to optimize the search for cells intersecting the
isosurface. Yoon and Neumann proposed the IBRAC (Image
Based Rendering Acceleration and Compression) scheme
[YN00], where MPEG2-like compression of images of a 3D
model are used. The client estimated the motion of pixels,
and the server sent only those pixels that couldn’t be esti-
mated from its in-core, ray-traced 3D model.

Figure 1 also depicts the better of the two schemes we
propose in this paper, the Vox_Server. The main distinction
of our vox_server is that it uses cross-network pipelining to
hide the cost of data computation on the client side, while
sending the entire 3D model. Unlike IBRAC and Semotus
Visum, this gives the user 360 degree interactivity with a
lossless image. Unlike [EWE99], we use an out-of-core in-
terval tree to optimize our search for cells. Further, we re-
duce the size and redundancy in the raw data, rather than
in partially or fully processed data. We only need to send
roughly 17 bytes per cell with out-of-core chessboarding (for
12 bit density values). With these features, we reduce the up-
front cost to receive and display the 3D model.

3. Out-Of-Core Interval Trees

To allow the server to handle large data sets, well beyond the
available RAM capacity, we transformed the raw data into
a search-optimized data structure and stored it on the disk.
Thus, the majority of the algorithm for out-of-core chess-
boarding lies in preprocessing the raw data cells.

The cell extraction technique used in this paper is a mod-
ification of the out-of-core interval tree implementation that
was proposed in [SG98]. It is based on the memory resi-
dent data structure by [Ede80]and more recently used for
fast in-core isosurface rendering [CMM∗97]. The technique
of [SG98] trades off disk storage for speed and permits the
isosurface rendering of large data sets that cannot be held
within the RAM. The detrimental effect of head seeking de-
lays on the disk is reduced drastically by using an interval

c© The Eurographics Association 2004.

76



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

tree layout that stores data in-line within the left and right
lists of the disk-resident interval tree. The disk layout used
permits the cells straddling the isovalue of interest to be ac-
cessed in an uni-directional scan of the disk, with minimal
seeking across the lists of interest [SG98], [SG99]. The num-
ber of I/O requests as well as the delays introduced by head
seeking are both minimized.

The average complexity of extracting an isosurface using
interval trees has been shown to be O (log h + K), where K
is the number of intervals intersecting the isosurface and log
h is the height of the interval tree.

Figure 2: Binary interval tree for isovalues 1-15. Cells con-
sist of 8 sample points forming a cube. Cells in each node
straddle the discriminant value and lie within its range.

The creation of our out-of-core interval tree begins with a
standard binary interval tree in linked list form. We then flat-
ten out the structure into a pointerless array by storing the
length of each node in a separate file, without compromising
its optimal searching capabilities. The interval tree construc-
tion is a one-time pre-processing step. Once constructed, it
can be used for all subsequent visualization of the data. The
data layout of each subtree is unique: the right subtree uses a
preorder layout (root, left tree, right tree) while the left sub-
tree uses a variation of this (root, right tree, left tree). Using
the example in figure 2, the layout of nodes by discrim-
inant value would be 8,4,6,7,5,2,3,1,12,10,9,11,14,13,15.
This disk layout not only allows the out-of-core data to be
accessed in query order but also allows a range of isovalues
(which defines an isovolume) to be accessed in order with
one pass. The data lists (see [Ede80] and [SG98]) within a
node, including all cell information (density, gradient, loca-
tion), are written in the right and left lists associated with
a node (La, Rd) in order. To avoid having to load in all of
a list’s data or use random seeks, cell data is duplicated for

both the La and Rd lists. Using the binary interval tree in
figure 2, let’s look at an example query of six. At the node
labeled 8 (the root), we would scan the La list for cells whose
minimum is less than or equal to 6. Then we would descend
left to node 4 and scan the Rd list for cells whose maxi-
mum is greater than of equal to six. Next, we would descend
right to node 6 and retrieve all the cells in the La list. Thus,
we need to traverse 8,4, and 6, in the aforementioned order.
Those are indeed the first three consecutive nodes in the file.

All list data is written sequentially to disk in binary for-
mat; no padding, pointers, or secondary file structures are
used. The lengths of the intervals La (which equal the length
of the corresponding Rd) for the nodes are stored in a sepa-
rate "length" file. There are some notable advantages to stor-
ing the interval lengths on a separate file from the data lists.
First, all interval lengths can be read into the RAM from
the "length" file: this allows us to compute the number of
disk blocks that have to be skipped during a search in ad-
vance, facilitating prefetching. Second, file access locality
is improved, since the length and data files are streamed in
independently. Unlike the k-ary interval tree of Chiang and
Silva [CS97] we do not require any kind of searching within
a node to determine the address of the next node to visit. We
just add up node lengths and move directly to the node, re-
ducing disk access time and disk storage in the process. De-
tails of the out-of-core implementation are given in [SG99].

4. Out-Of-Core Chessboarding

For structured volume data sets, the storage requirement of
out-of-core interval trees is large compared to the size of
the raw data set. The process of transforming the raw data
set into interval tree destroys the spatial coherence in the
data. As a consequence, the cell’s coordinates and some-
times gradients have to be stored explicitly within the out-
of-core structure. In the modified out-of-core interval tree
implementation used in this paper, we reduce the storage
requirement of the out-of-core interval by adopting chess-
boarding scheme of Cignoni et al[CMM∗97]. Although the
concept of chessboarding used in our scheme is function-
ally not unique, there are several important implementation
differences that arise from the need to support fast extrac-
tion using an out-of-core interval tree. These differences are
summarized below and mainly stem from the fact that ran-
dom accessing of the cell data using pointers is not possible
with the disk-based out-of-core implementation.

o How cell data is stored:
[CMM∗97] stores cell data as the raw rectilinear data set
within the RAM. The interval tree has pointers to cell data
within its left and right lists. Out-of-core cell data is stored
in-line within the left and right lists of the interval tree on
the disk to avoid seeking delays.

o Additional data structures needed besides interval trees:
For [CMM∗97],only the raw data set itself is needed, ver-

c© The Eurographics Association 2004.

77



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

sus hash tables to support chessboard computations in the
order black cells are encountered during extraction.

o Is any white cell data stored? How are gradients com-
puted?
For [CMM∗97] the white cell data is stored as part of the
original raw data set; this allows gradients to be com-
puted on-the-fly. With out-of-core chessboarding, only
data for black cells is stored. Gradients are precomputed
and stored explicitly to avoid excessive disk seeking.

o Order in which the surface going through the white cells
are computed:
In [CMM∗97], the first time a white cell is encountered
(while visiting a neighboring black cell) its surface is
computed. With out-of-core chessboarding, the surface is
computed only after all calculations for black cells are
completed. It cannot be done in any other way if exces-
sive disk seeking is to be avoided.

o How are white cell intersections determined?
[CMM∗97] uses conditional checks of edges, whereas
out-of-core chessboarding uses a lookup table, only in the
interest of speed.

o How is the Marching Cubes index calculated for white
cells?
[CMM∗97] uses conditional checking of all vertices of a
cell, versus using a vertex sign count and a lookup table
(again in the interest of speed).

o Applicability:
[CMM∗97] chessboarding is used in-core only; it cannot
be naturally extended to handle out-of-core data sets. Our
version can be used to compress both in-core and out-of-
core interval trees.

The basic idea behind chessboarding is to recognize that
the edges and vertices of cells are shared with neighboring
cells. This sharing of edges implies that if a cell is intersected
by an isosurface, the adjacent cells that share the cell’s inter-
sected edges must also be intersected by the isosurface. Thus
with the proper organization, information does not need to be
stored explicitly for every cell, resulting in a reduction of the
overall storage requirement. To do this, chessboarding clas-
sifies cells as black or white cells. Each cell consists of eight
data points at the eight corners of a cubic cell (or a rhom-
boid cell, for non-rectilinear data spaces). Information (such
as pointers to the cells for in-core interval trees) only needs
to be stored for black cells. All required information about
white cells can be gathered from the neighboring black cells
in all three dimensions. Chessboarding reduces the overall
storage requirements of the disk-resident interval tree by a
factor of four.

There are two major parts in the out-of-core chessboard-
ing process. First, the raw data has to be written to file in
as an interval tree without any white cells. Secondly, af-
ter traversing the on-disk tree and retrieving black cells, the
white cell data that the isosurface passes through must be
reconstructed.

Figure 3: Chessboarded cells in volume slices.

The implementation of out-of-core chessboarding uses
an array to hold black triangle vertices, and a hash table
to hold information for adjacent white cells. A hash table
is used since white cells get accessed repeatedly. A single
white cell shares edges with multiple black cells, through
which the isosurface might pass. The hash table facilitates
fast access for updating a white cell entry. On the server side,
the black cells are extracted by traversing the interval tree on
the disk in the usual way. Extracted black cells are buffered
on the server side and sent over to the client.

Figure 4: White cell hash table entry.

As each black cell is received by the client, its Marching
Cubes lookup table index is determined, and black cell tri-
angles are formed. Their vertex positions are immediately
stored. The key issue is to then determine which white cells

c© The Eurographics Association 2004.

78



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

would share an edge with the black cell and create or update
its hash table entry. First we should mention that white cells
are hashed based on the coordinates of the origin of their
cell. We created lookup tables based on black cell march-
ing cubes index which indicated exactly which white cells
will share intersecting edges with a given black cell. As
shown in figure 3, there are five white cells touching the
front face of a black cell, eight white cells touching the mid-
dle, and another five white cells touching the back face of
a black cell. We have three lookup tables representing three
virtual slices, front, middle, and back, that surround a black
cell. The key components of a table entry are the number of
edges intersected for each white cell, followed by ordered
pairs (white edge number and black edge number sharing an
intersection). Pseudocode for creating the white cell entries
follows a description of the last two fields of the white cell
hash table entry.

The last two fields in the white cell hash table contain of a
set of masks for greater than (gmask) and less than (lmask).
The former indicates whether white cell vertices have values
greater or less than the desired isovalue, and serve as an
index for the white cell’s Marching Cubes lookup. The
latter (lmask), when OR’d with the gmask, confirms that
all edges had been found (see Figure 4). The remainder of
the entry holds pointers to the corresponding black triangle
vertices to facilitate fast creation of white cell triangles;
iterpolated black triangle vertex positions are re-used for
white triangles.

/* white cells origins, front slice */
static int front_origins[5][3]=
{{0, 7, 8},{3, 1, 8},{0, 4, 8},{6, 1,
8},{0, 1, 8}};

Look up black cell marching cubes
index

for (each cell origin in front_origins)
{

Read in number of intersecting
edge pairs from lookup table
Hash white cell origin,
return hash code

/* set the black triangle vertex
pointers for hash index */
for ( each black-white
intersecting edge pair )
{
Determine black triangle vertex
pointed to.
Point from hashed white cell edge to

black vertex.
Move on to next edge.

}// for each intersecting edge pair
} // for each cell in front_origins

Repeat for middle and back slices

5. Implementation

We implemented two versions of our application in order to
test its feasibility. The first, called the triangle_server, ex-
tracted the cells off the disk, computed the triangles and
sent them across the network to the client. The triangle_
server did not use chessboarding on the disk-resident inter-
val tree and was used only as a baseline. The second, called
the vox_server, sent raw extracted black cells from a chess-
boarded interval tree on the disk and sent them to the client.

5.1. Common Features

Both versions had the following features in common:

o out-of-core interval tree for optimized cell extraction
o Marching Cubes algorithm to create polygons
o OPENGL and GLUT API for rendering and display
o producer-consumer with bounded buffer

Figure 5: Triangle_server remote visualization pipeline

Figure 6: Vox_server remote visualization pipeline

The producer-consumer with bounded buffer algorithm was
used to add concurrency within the remote visualization
pipeline. The consumer(s) were responsible for creating the

c© The Eurographics Association 2004.

79



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

triangles that made up the isosurface. In the case of the tri-
angle_server, both producer and consumers resided on the
server. Computation of triangles was concurrent with file
I/O, and hid the performance cost for seeking and reading.
Moreover, the triangle_server gained additionally concur-
rency with multiple consumer threads. In the second version,
the vox_server acted as the producer, and the client was the
consumer. This meant that data transfer was concurrent with
triangle calculation on the client side. While the client con-
sumer performed Marching Cubes on black cells and cre-
ated white cell triangles, the server continued to put data into
flight on the network. Figure 5 and figure 6 show the remote
visualization pipeline for the triangle_server and vox_server
respectively. Note that the additional stage of data transfer
across the network is depicted explicitly.

5.2. Implementation Details

The client and server used TCP sockets for reliable deliv-
ery. The visualization process started with the client sending
a query to the server. The query included parameters such
as number of threads, number of buffers, number of blocks
per buffer, and number of triangles to be sent in a chunk.
We tried to maximize the latter to reduce the number of
send requests. (It is faster to send a few large packets than
many small packets, and we also wanted to reduce the num-
ber of system calls). Since we ran the server program on a
two processor node, the triangle_server used two consum-
ing threads and three buffers. Both client/server pairs used
blocking sockets. One extra send was needed in advance to
notify the triangle_client of the number of triangles to ex-
pect; the vox_server and client simply agreed on a send size.

The vox_client sent exactly the same type of request as
the triangle_client. There was a small difference, however,
in how the parameter for number of blocks per buffer was
used. Since the vox_server sent raw data, the buffer size be-
came the requested send size. We used a size of 22 Kbytes,
the same buffer size as was used with the triangle_server.
Since the vox_client and vox_server worked in total isola-
tion from each other, normally shared global data structures
were not immediately accesible on the client. File metadata
such as cell size, dimensions of the volume, and bits per den-
sity were sent ahead to enable the client to recreate the global
structures. Additionally, statistics on the number cells per
isovalue were sent to help the consumer determine the size
of the white cell hashtable. Sending these had a one-time
cost of 32 KBytes. (Note that although the size of the statis-
tics set grows with the size of the data set, it is still negligible
next to the amount of actual data to be sent.)

6. Results

We ran both the multithreaded triangle_server and the se-
quential vox_server from a cluster node containing two 2.2
GHz Pentium 4’s sharing 4 gigabytes of RAM and reading

from the disk via a 15,000 RPM SCSI drive. The client was
a Dell Dimension 4500 with 2.0 Ghz Pentium 4, 512 MB
RAM, 64 MB GeForce4 MX graphics card and 100 Mbps
Ethernet card. The tests were conducted with rectilinear CT
scan data. It was comprised of the first 256 slices of the Vis-
ible Woman data set (512x512x256) where each slice was
200 data points in thickness. The Visible Woman used 12
bits per density value (isovalues 0-4096). The size of the raw
data set was 128 MB. When converted to a binary interval
tree, the size was 6.7 GB, and the chessboarded interval tree
size was 1.7 GB.

Figure 7: First 256 slices of the Visible Woman data set.

In order to minimize variance in network traffic con-
ditions, the measurements were taken alternating between
vox_server and triangle_server between 11 a.m. and 8 p.m.
EST. We tested the total time from extraction off the disk to
receipt of triangles for every 100th isovalue.

Initial tests were across several switches on a 100
Mbps switched LAN. The first test was simply to com-
pare the number of bytes sent by the triangle_server ver-
sus the vox_server. For the majority of query isovalues, the
vox_server sent one-eighth the amount of data that the tri-
angle_server needed to send. For query results with below
1000 triangles, the vox_server sent more data since it had to
send black cells from the exterior faces of the volume un-
der all circumstances. The majority of the query isovalues
returned results in the 97,000 Kbyte to 206,000 Kbyte range
as triangles with a peak return of 479,679 Kbytes. Returning
black cells for the same queries gave a midrange of 11,718
Kbytes to 25,585 Kbytes and a peak value of 58,899 Kbytes.

c© The Eurographics Association 2004.

80



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

We next measured the time. For the majority of isovalues,
the vox_server was 68% faster than the triangle_server, and
displayed an isosurface on the screen in under 8 seconds.
Roughly two-thirds of the time was spent on the vox_client
side, processing raw cells into triangles. Remote visualiza-
tions times were extremely fast in this case, as server side
delays and transport delays were effectively overlapped. We
did find, at the peak isovalue, evidence of thrashing on the
client side due to the size of the white cell hash table. We be-
lieve this can easily be resolved at the preprocessing stage by
creating several chessboarded interval tree files. The client
would then request the files one by one, recreating a hash ta-
ble each time. Thus, with a little additional communication,
this technique could achieve even greater scalability.

Figure 8: Time to receive data and display an isosurface via
LAN.

Figure 9 shows a comparison between the two implemen-
tations on a stage-by-stage basis for a typical isovalue (1400
in this case). The triangle_server is clearly faster at compu-
tation of triangle vertices and normals, due to multithreading
on the dual processor. File I/O takes much longer for the tri-
angle_server since it must do four times as much reading,
and four times as much seeking. Seek times have not im-
proved at the same rate as data transfer rates, so a factor of
four increase in seek distance will mean much greater total
file I/O time. Still, with the multiple threads, much of the
triangle_server’s file I/O time can be hidden by concurrency
with computation.

Figure 9: Stage-by-stage comparison between vox_server
and triangle_server for a typical isovalue.

Another interesting result shown in the figure is that ex-
cepting rendering, 66% of the total time for the vox_server
and client is used for computation. Although the low total
time can be partially attributed to sending less data, data
transmission and computation are clearly occurring concur-
rently on the client. Moreover, the vox_server’s pipelining
occurs during the two longest stages, the most advantageous
pair of stages to overlap.

Figure 10: Time to receive data and display an isosurface
via broadband.

The final set of tests were run over commercial cable.
The cable wire provided 2 Mbps bandwidth. A route trace
showed that our data traveled 5 hops over broadband plus
1 hop across the LAN. The time to receive data increased
from on the order of seconds to minutes. In this case, the net-
work delay dominated the other phases of visualization and
network delays could thus not be hidden with any kind of
overlapping of server-side functions and transport functions.
The median vox_server time in this case was close to 2 min-
utes, and the peak time was 7 minutes. At this point com-
putation dropped to 1.7% of total time. Processing of data
could be totally hidden by the latency of the network. Here
the vox_server was 87% faster than the triangle_server, il-
lustrating that computation costs were totally hidden by net-
work latency.

7. Discussion and Conclusions

Our experiments have shown that the ratio of black cell data
sent to triangle data sent is 12.5%. Likewise, we have found
a reduction in time to receive and view an isosurface of
roughly 87%. To understand why this is happening, we need
to re-examine the marching cubes algorithm. Suppose that
a cell and a triangle were about the same size. (In actual-
ity, a Visible Woman cell is 68 bytes, slightly smaller than
our triangle of 72 bytes.) In all but one case, when an iso-
surface passes through a cell, two or more triangles are pro-
duced. By sending cells instead of triangles we necessarily
reduce the amount of data sent by 50%. Further, with chess-
boarding, we carry one-fourth the number of cells we would
normally. 100% *.50 *.25 = 12.5%. For eight bit data, the
results clearly would be even better.

c© The Eurographics Association 2004.

81



A. Neeman, P.Sulatycke, and K.Ghose / EG Fast Remote Isosurface Visualization With Chessboarding

The vox_server design presented in this paper allows iso-
surfaces to be viewed quickly on remote clients. The loss-
less compression achieved using out-of-core chessboarding
helps significantly in this respect. With the advent of the
multi-gigahertz processors and increased bus speeds for the
servers and clients, there is clearly no disadvantage to shift
some processing to the client side; the dominating factor
is now network latency. On fast networks, server side pro-
cessing time and network transport time can be effectively
overlapped to hide the network delay. On relatively slower
networks, the overall visualization delay is determined by
the network performance. Sending chessboarded cells across
the network shows a positive advantage and potential as
a technique for data reduction and faster access to remote
data for visualization for both fast and slow networks. The
vox_server design thus facilitates such things as remote di-
agnosis and collaborations, which are likely to use faster
networks (like the Internet 2) for connecting two widely-
separated sites or the fast local network within an enterprise
(such as a hospital).

References

[CMM∗97] CIGNONI P., MARINO P., MONTANI C.,
PUPPO E., SCOPIGNO R.: Speeding up iso-
surface extraction using interval trees. IEEE
Transactions on Visualization and Computer
Graphics 3, 2 (1997), 158–170.

[CS97] CHIANG Y., SILVA C.: I/o optimal isosurface
extraction. In Proc. of Visualization ‘97 (1997),
pp. 293–300.

[Ede80] EDELSBRUNNER H.: Dynamic data Structures
for Orthogonal Intersection Queries. Techni-
cal Report F59, Inst. Informationsverarb., Tech.
Univ. Graz, Graz, Austria, 1980.

[EWE99] ENGEL K., WESTERMANN R., ERTL T.: Iso-
surface extraction techniques for web-based
volume visualization. In Proceedings of the
10th IEEE Visualization 1999 Conference (VIS
’99) (1999), IEEE Computer Society.

[LC87] LORENSEN W. E., CLINE H. E.: March-
ing cubes: A high resolution 3d surface con-
struction algorithm. In Proceedings of the
14th annual conference on Computer graphics
and interactive techniques (1987), ACM Press,
pp. 163–169.

[LH02] LUKE E. J., HANSEN C. D.: Semotus visum:
a flexible remote visualization framework. In
Proceedings of the conference on Visualization
’02 (2002), IEEE Computer Society, pp. 61–68.

[SG98] SULATYCKE P., GHOSE K.: Out-of-core inter-
val trees for fast isosurface extraction. In Pro-

ceedings of Late Breaking Hot Topics IEEE Vi-
sualization ’98 (1998), pp. 25–28.

[SG99] SULATYCKE P., GHOSE K.: A fast multi-
threaded outofcore visualization technique. In
Proceedings of International Parallel Process-
ing Symposium (1999), pp. 569–575.

[YN00] YOON I., NEUMANN U.: Webbased render-
ing with ibrac (image based rendering acceler-
ation and compression). In Proc. of Eurograph-
ics (2000).

c© The Eurographics Association 2004.

82


