Eurographics Symposium on Parallel Graphics and Visualization (2004)

Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

A Scalable Cluster-based Parallel Simplification Framework
for Height Fields

V. Gourantonl, S. Limetl, S. Madougoul’2 and E. Melin!

I aboratoire d’Informatique Fondamentale d’Orléans, LIFO Orléans, France
2Bureau de Recherches Miniéres et Géologiques, BRGM, France
This work is partially supported by the RNTL project Geobench of the french ministries of research and industry.

Abstract

In this paper, we present a method to interactively render 3D large datasets on a PC Cluster. Classical methods use
simplification to fill up the gap between such models and graphics card capabilities. Unfortunatelly, simplification
algorithms are time and memory consuming and they allow real-time interaction only for a restricted size of
models. This work focuses on parallelizing Rottger’s simplification algorithm for height fields but the main ideas
can be generalized to other scientific areas. The method benefits from the scalable computating power of clusters.
As our results show it, this permits us to achieve a data scaling while maintaining an acceptable frame rate with
real-time interaction. Moreover, the scheme can take avantage of tiled-display environments.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Parallel simplification,
Virtual Reality, Real-time Rendering, Level of Detail Algorithms

1. Introduction

The work presented in this paper was initiated to solve a
technological lock encountered by the French Geological
Survey (BRGM) namely the rendering and the navigation in
geological models displayed on 3D virtual reality environ-
ment driven by a cluster of PC. Our work intends to answer
a more general question: how to use as best as possible the
scalability of a VR Cluster in terms of storage capacity and
graphical computing power for rendering such models ?

Geological models are often described by height fields i.e.
rectangular grids of elevation data H(x,y) with points regu-
larly spaced in x and y axis. Owing to technological strides in
collecting geographical and geological informations, height
fields modeling Earth ground and underground have became
very large. Today, large datasets consisting of hundreds of
thousands to billions of polygons are commonplace. For ex-
ample, geospatial data extracted from satellites easily go be-
yond tens of giga-bytes [gto]. So geological models usually
exceed system memory storage capacity of current comput-
ers. Moreover, for Virtual Reality applications, the graphical
rendering must be performed in real-time to achieve a real-
istic interaction with the virtual world. In this case, even if

(© The Eurographics Association 2004.

the model fits in system memory, it is not sufficient since it
must be manipulated in the graphics board for rendering at
interactive frame rate. Then the memory storage available is
again reduced despite the spectacular progress in computer
graphics area.

In Geosciences, using VR allows a better comprehension
of the composition of the basements and underground phe-
nomena thanks to 3D rendering. The exploration of such a
model has two aspects: one very interactive for searching a
specific location (for example a typical geological configu-
ration), a second more static where it is important to ren-
der a maximum of details of a part of the model to study
the specific point selected during the first phase. Simplifica-
tion or level of detail algorithms (LOD) are good candidates
to obtain a graphical rendering performed in real-time. This
is essential to achieve a realistic interaction with the virtual
world. These algorithms dynamically modify the visualized
data according to their position in the space.

There are various kinds of simplification algo-
rithms (see [HG97] for a survey). One class of them
fits to large height fields: view-dependent algorithms
[DWS*97, Hop98, LE97, LKR*96, CRM02, ESC00] and

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

[EMBO1, Pri00]. These algorithms rely on distance to
view point to perform the simplification or the refinement.
Therefore, two different regions can be at different res-
olutions, what is convenient for large terrains. Although
they are often complex and deal with large datasets, most
of view-dependent algorithms are sequential. They are
consequently limited by computer resources like mem-
ory and CPU-time. Some of them include out-of-core
scheme [LP02, CRM02, ESC00, EMBO1, Hop97, Pri00]
but disk accesses still remain too long to satisfy real time
requirements of Virtual Reality applications.

Our aim is to obtain a scalable solution of rendering large
height fields. For that we take into account that an alterna-
tive solution to high-end dedicated computers usually used
for Virtual Reality has emerged for a few years: VR clus-
ters. They are composed of off-the-shelf PC equipped with
graphics boards and interconnected by an efficient network.
An obvious advantage of clusters is that there is theoretically
no limit to the number of nodes it can contain. Consequently,
using parallel algorithms on this kind of architecture may be
very interesting provided that the algorithm itself is scalable.
Scalability can be obtained by carefully distributing the data
on the cluster and avoiding as far as possible data gathering
to keep off the two main bottlenecks due to communication
network and memory storage.

There are very few parallel simplification algorithms and
as far as we know none of them allows a scalability on a
cluster of PC with interactive frame rate.

El-Sana and Varshney [ESV99] proposed one of the first
works on parallelizing view-dependent LOD algorithms.
They worked on Xia’s merge trees [XESV97] . Merge tree
is a data structure built upon Hoppe’s progressive meshes
[Hop96]. The input polygonal mesh is divided into indepen-
dent subsets that are processed in parallel. The paralleliza-
tion is only used in the merge tree construction not during the
rendering. Furthermore, the implementation is exclusively
intended for shared memory machines which do not fit our
purposes.

In [DLROO], Dehne and al. describe a scheme for paral-
lelizing the progressive meshes (PM). They started by parti-
tioning the original mesh using a greedy graph partitioning.
Each partition is then sent to a processor that converts it to
the PM format. The resulting PM are then merged to pro-
duce the final PM for the original mesh. The PM algorithm
they worked on is not view-dependent which is a drawback
when LOD is used to navigate in the model as we intend to.
Moreover it requires a lot of memory for the complex data
structures used by PM.

PR-Simp presented by Brodsky and Pedersen [BP02] is
a parallel extension to R-Simp [BWO00], a sequential model
simplification algorithm. PR-Simp uses master/slave archi-
tecture. Master starts by computing a bounding box of the
entire model that it sends to slaves. When they receive the
bounding box, they divide it in n clusters, where n is the

number of processors. Each processor then scans all vertices
and stores those that fall in its cluster. R-Simp is used to sim-
plify the clusters on each processor. After that, a divide and
conquer approach that takes /ogn iterations is used to merge
remaining parts on master. This is costly and places a bottle-
neck on the master. PR-Simp allows data scaling but it is not
view-dependent.

This paper is a contribution for the use of parallel ap-
proaches to view-dependent LOD algorithms for height
fields. We choose Rottger’s algorithm as an illustration of
our framework, for convenience and performance reasons
but other LOD algorithms may be parallelized in this way.
The paper shows how one can benefit from storage and com-
puting power of clusters to obtain data scaling by using the
regular structure of height fields and rendering techniques
such as view frustum culling. The remainder of the paper
is structured as follows: in section 2 we give an overview
of Rottger’s algorithm. Parallelization description follows in
section 3. After giving and analyzing benchmarks results in
section 4, we conclude in section 5.

2. Rottger’s algorithm

We have chosen Rottger’s algorithm to illustrate our work
because of three main qualities. It has been designed for
height fields, it is view point dependent which is very im-
portant when navigating in the height field and it does not
require sophisticated memory consuming data structures.

This algorithm [RHS98] is based of the work of Lind-
strom and al. [LKR*96]. In the latter paper, Lindstrom and
al. describe a view-dependent algorithm for height fields of
size (2" 4+ 1) * (2" + 1). The algorithm dynamically modi-
fies a quadtree by using a bottom-up strategy to determine
whether a node needs to be subdivided or merged with adja-
cent nodes. For that a boolean criterion is evaluated. The cri-
terion uses the upper bound of the projected pixel error. One
disadvantage of this algorithm is that the pixel error function
must be evaluated for each point of the height field, what is
costly in computation time.

Rottger’s algorithm, contrary to that of Lindstrom, uses a
top-down approach to create the triangulation and the ver-
tex removal is performed based on distance to view point
and local surface roughness. The top-down strategy allows
to visit just a fraction of the dataset: only one point per
block. This fraction depends on the rendering quality. The
algorithm uses a boolean matrix, so called quadtree matrix,
to capture the state of the quadtree at each step of the tri-
angulation. In this matrix, each node’s center is set, if the
node is further refined. Otherwise, a special value is used.
For example, the quadtree matrix entries that correspond to
points drawn in black in the triangulation in (fig.1) are set
to 1. After the triangulation is finished, Rottger algorithm
draws triangle fans whereas Lindstrom draws triangle strips.
Both structures allow to reduce the amount of data sent to

(© The Eurographics Association 2004.

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

graphics pipeline but fans better capture the roughness of a
surface.

Figure 1: A triangulation of 9 X 9 height field from Rottger’s
algorithm.

The triangulation is created by recursively descending the
quadtree. At each node, a boolean subdivision criterion is
evaluated and its result stored in the quadtree matrix. If it
is evaluated to true and the finest LOD has not yet been
reached, the recursion continues by visiting all four sub-
nodes. The subdivision criterion depends on the distance to
view point as well as local surface roughness. It allows to
reduce the resolution as the distance to view point increases
and to raise it in regions of high surface roughness.

When the finest LOD is reached, the height field is drawn
by recursively traversing the quadtree where the correspond-
ing matrix entries are set. Whenever a quadtree leaf is
reached, a complete or partial fan is drawn. To avoid cracks
between adjacent edges of nodes at different resolutions, the
center vertex at these edges is skipped. This method works
only when the LOD of adjacent sub-nodes differ by no more
than one which is guaranteed by the way the algorithm com-
putes and stores surface roughnesses.

3. Parallelizing the Level Of Detail Algorithm

Rottger’s algorithm has two main drawbacks for our pur-
poses. The first one is common to all in-core sequential sim-
plification algorithms: the entire dataset needs to fit in the
system memory and this is often not the case for geological
models. The second one is that this algorithm has not been
designed for tiled-display environments. Our aim is to ob-
tain a scalable parallelization framework to benefit from the
extensibility of cluster architecture with regard to memory
storage capacity and computing power. To achieve this goal,
the cluster nodes are partitioned into two classes: visualiza-
tion nodes and computation nodes.

Basically, the algorithm is composed of three stages:

o Initialization: it takes place only once. The height field is
distributed to the computation nodes. This allows to ben-
efit from system memory of each computation node

(© The Eurographics Association 2004.

o Communication: visualization nodes broadcast their cur-
rent point of view and frustra to computation nodes and
computation nodes send to each rendering node the part
of scene they have to render.

o Computation: computation nodes run Rottger’s algo-
rithm on the part of the height field they are in charge
while visualization nodes display the part of the scene
they have received.

The algorithm can be summarized in the following
pseudo-code:

computation node:
get local data
while true
get view point and frusta
perform LOD
for each visualization node nv
do culling against frustrum of nv
send data to nv
end for
end while

visualization node:
while true
broadcast view point and frustum
to computation nodes
get rendering data
draw the subscene
end while

One can remark that computation nodes perform a spe-
cial data culling for each visualization node which allows to
optimize data transfer and lighten graphical boards by dis-
carding non-visible part of the scene. Here are some more
details about the parallelization framework: the data parti-
tioning follows in section 3.1 and how to minimize the com-
munication costs is described is section 3.2.

3.1. Data partitioning

Data partitioning takes place at the initialization stage. Data
are read from a file available on all computation nodes. Ac-
cording to its rank, each node knows exactly which portion
of the data it has to store. The grid size is constrained to be
of the form (2" +1) % (2" 4 1). In most cases, height fields
do not have this structure therefore data distribution has to
take into account this constraint. Given a height field of size
SzX * SzY, we first search the smallest number m such that :

_ 2
2" 11 < max(SzX, Sz) * oy S+l

where CN is the number of computation nodes. Each com-
putation node gets a portion of size 2™ + 1, allowing overlap
if necessary. We avoid sending overlapped regions several
times. The first sender sends all its visible data, including
overlapped. The second all overlapped that are not sent by

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

the first sender, and so on. This introduces load unbalance
on communications. Unfortunately, this is not still adressed.

3.2. Minimizing communication costs

As usual in parallel computing, communications are the key
point to obtain efficient algorithms, especially when dealing
with large datasets. In our case, sending all data each frame
should clearly be discarded. One way to bypass this issue is
to reduce the amount of data that transit by the network. We
use the structure of height fields and culling to do this. In the
following sections, we explain how these ideas are used to
reduce the communication time.

3.2.1. Sending only indices and heights

One advantage of working on height fields is that one can
rely on their regular structure to do certain optimizations.
Height fields often are regularly sized in the horizontal plane.
So, we just need the indices (i, j) of a vertex, the extent of the
grid , the spacings along the x and y-directions and the cor-
ners to deduce the x and y coordinates. Given SzX and SzV
(fig.2) the x and y sizes of the height field, (I/x,Ily) its lower
left corner, let Dim = 2" + 1 the extent of each portion and
SpaceX and SpaceY the increments in x and y directions, we
can compute x and y coordinates of any vertex v for which
we know the holder(processor py) and indices in local grid
(ixs ji)- Indeed

xv = llx+ (i + (k— 1) x Dim) x SpaceX (1)

Thus, given a vertex v = (x,y,h) that needs to be drawn,
just (f(i,), h) is sent to visualization nodes, where f(i, j) =
j*Dim+i. In the initialization stage, the values of /lx, Ily,
SzX, Sz¥, SpaceX, SpaceY and Dim are sent to visualiza-
tion nodes. During the rendering, when they receive v, the
indices are extracted from f(i,j) and above equations are
used to determine x and y coordinates. Although we give
only the x coordinate, the equations above are valid for y.
This scheme allows to reduce communication costs by 33%
because 2 floats instead of 3 are sent for each point to be
drawn.

3.2.2. Cull data before communication phase

After using the structure of grid to reduce the network load,
the communication time still remains too high for real-time
rendering. To avoid this, the subscenes are culled before
sending them to visualization nodes. At the beginning of
each local simplification stage, computation nodes receive
the view point and a frustum from each visualization node.
The view point is used to carry out Rottger’s simplication
algorithm while the frusta are used to cull the output of the
simplification step. We do not test each vertex against frusta
because it is too costly. As we need to send each fan that
intersects the frustum even partially, we have to test against
the fan’s bounding sphere. With this processing, only a rela-
tively small part of computation nodes’ portion needs to be

P3

1

1

i
034 ;

i P4

1

1

SzY

013 : 01234 024

Dim

012

r-—-"~"~~~--°-°r

(1Ix, Tly)
SpaceX
-—=

SzX

Figure 2: Repering a vertex’s x et y coordinates using in-
dices. Py, is the squared area allocated to processor py. There
are regions where these areas overlap, what we note O jj)-

. View frustum —_—

Dim

SpaceY

(1Ix, Tly)
SpaceX
-

Figure 3: Data sent per node in case of 4 computation
nodes. Overlap regions are sent once. For the processor py,
only the intersection of Sy, and the viewing frustum is sent.

sent (fig.3). When the viewer is close, the LOD is high but
the area in the view frustum is small (fig.4). When he is far
enough to see the entire scene (fig.5), the LOD drops so that
the amount of data to be sent is always of the same order.
This allows to maintain an interactive frame rate.

Our parallelization scheme for LOD algorithm is data
scaling since the height field is distributed among compu-
tation nodes only once, at the begining, and they never com-
municate to each other afterwards. It also strongly limits the
communication overhead from LOD nodes to visualization
nodes thanks to fustrum culling. It should be noticed that no
process in our framework has a special task such as master-

(© The Eurographics Association 2004.

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

Figure 5: LOD at farther regions to the view point.

ing the others for gathering data, which increases its scal-
abity capabilities.

4. Results

We perform our implementation on a cluster of 8 PC dual
xeon equipped with NVIDIA Geforce FX 5900 128 Mo
graphics boards. The interconnecting network is a gigabit
ethernet using TCP/IP. We use Net Juggler [AGL*02] as
cluster middleware. This facilitates inter-frame synchroniza-
tion and communications as it allows direct calling of MPI
[mpi] routines. As Net Juggler is built upon VR Juggler
[Bie00], we easily call OpenGL Performer [per] commands
through this software. We found Performer very convenient
for its higher abstraction of graphics objects. It also eas-
ily makes available to the programmer informations about
graphics context such as frustum and viewpoint. The data we
use is provided by the French Geological Survey (BRGM)
and represents a height field of 1000 x 760 points. This rep-
resents about 1,520,000 triangles. We use this as one layer
and then create other layers for test purposes. Thus, these
layers have the same amount of data and same characteris-
tics as the original height field. They only are there to enable
us to test more important data. The resolution we use is of
1280 x 1024 per visualization node. So the resolution for
four visualization nodes, for example, is 2560 x 2048. All

(© The Eurographics Association 2004.

tests are performed in the same conditions such as model
initial position and level of detail parameters. The interac-
tion is automated.

Terrain portions processed by different computation
nodes are assembled on visualization nodes. To avoid cracks
at bounderies, these portions are kept at the same level. As
Rottger’s algorithm takes care about this in each portion, the
whole terrain remains almost consistant. But artefacts are
still visible at thin overlapped regions that persist after the
processing described in section 3.1.

‘We have tried to render only one layer without any sim-
plification. The frame rate of about 10 is approximatively di-
vided by two when adding a second layer. This illustrates the
need of a LOD algorithm for obtaining a framework usable
in Virtual Reality. In figures below, n — m stands for parallel
LOD using n computation nodes and m visualization nodes.

4.1. Comparison between our sequential and parallel
implementations

First, we compare the sequential algorithm with our parallel
version according to the execution time of the pure LOD al-
gorithm. The parallel LOD uses 4 computation nodes and 1
visualization node. To clearly show the contribution of par-
allelization, we evaluated the ratio between sequential LOD
algorithm time and parallel LOD algorithm time for differ-
ent amounts of data, i.e. for different numbers of layers.
This ratio is constant (about 2.75), thus independent from
the amount of data. The optimum is not reached because of
overlapped regions.

Next we compare the sequential algorithm with our par-
allel version according to the frame rate (fig.6). The parallel
version uses one or four computation nodes and only one
visualization node in both case. Note that the sequential ver-
sion uses the same node for both computation and visualiza-
tion.

Results are summarized in figure 6. One can oberve that
until the fourth layer (more than 4 millions of triangles at the
finest level), the frame rate remains above 10. This is still us-
able for interactive applications. This figure also highlights
that the parallel algorithm with one computation node and
one visualization node provides a better frame rate than the
sequential one. This illustrates the interest of distributing the
LOD and the pure rendering work on different nodes. Fig-
ure 6 shows that there is a frame rate gain of about 80 %
from pure sequential version to the parallel version using 1
visualization node and 1 LOD node. This is due to the imple-
mented optimizations, namely the view frustum culling that
seriously alleviates communications and graphics pipeline
load. However, this frame rate gain drops to about 25% be-
tween parallel versions (1 and 4 nodes). There are three rea-
sons to that. First, as the number of computation nodes in-
creases a bottleneck appears on the visualization node. Sec-
ond, in spite of optimizations, the communication time in-

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

creases with the amount of data . Third, we do not perform
triangle budget [DWS*97, LE97], so despite the view frus-
tum culling, data merely saturate the graphics board. How-
ever, communications time and rendering time directly de-
termine the frame rate.

Note that the memory of single computation node is un-
able to manage a model composed of 6 layers. This illus-
trates another interest of the parallel algorithm which allows
the use of the memory of the entire cluster.

100

.
Sequential LOD frame rate —x—

1 Node Parallel LOD ------

80 - —

TSequential to 1-1 Parallel LOD Frame Rate Gain (%)

60 - —

a0 |
R 1110 441 Parallel LOD Frame Rate Gain (%),

AN

20 | \\\\ I i

Frame Rate (frame rate gain percentage for pointed curves)

Number of layers

Figure 6: Average frame rates and frame rate gains between
sequential and parallel algorithms.

4.2. Application to tiled-display environments

As described in section 3, our framework allows each com-
putation node to send different graphics data to each visual-
ization node according to its current view frustum. This par-
tially avoids the bottleneck occuring when using one single
visualization node. This is straightforward in a tiled-display
environments driven by a VR Cluster. The figure 7 shows the
average frame rate for different amounts of data (numbers of
layers) in 2 setups: both with 4 computation nodes but one
with only 1 visualization node and the second with 4 visu-
alization nodes. As one can see, the second setup is better
for all sizes. The curve pointed by an arrow shows the frame
rate gain between the 2 setups. For interactive applications,
the speed up is limited by uncontrolled load repartition be-
tween graphics boards. Indeed, the scene is ideally divided
in 4 equal parts (i.e. each part contains the same number of
triangles) but in fact, it is seldom true because the part of
model displayed by each node depends on the user interac-
tion. Despite this, we obtain an interesting speed up. There
are two main causes for that. First our technique lightens
the graphics board load. Second, the amount of data that are
exchanged is almost the same when using one or four vi-
sualization nodes, but in the case of one visualization node
bottleneck is unavoidable whereas in the case of four visu-
alization nodes, two different computation nodes can send
their data to different visualization nodes in parallel thanks
to ethernet switch abilities.

100 1 visualization Node —*— B 4

1-1 10 4-4 Frame Rate Gain (%)

Frame Rate (frame rate gain percentage for pointed curves)

Number of layers

Figure 7: Average frame rates and frame rate gain for 1 and
4 visualization nodes using 4 computation nodes.

4.3. Towards processing very large datasets

We show that it is possible to create a parallel version of
LOD algorithm to manage more data than a sequential ver-
sion. Moreover this code is scalable and can achieve better
frame rates as we use more computation nodes. We also take
into advantage multi-display environment to prevent the cre-
ation of bottlenecks on visualization nodes.

Nevertheless if the datasets become too large for a given
VR cluster, we have to implement a triangle budget tech-
nique to achieve a constant frame rate. Classically this ap-
proach has a noticeable over-cost since the LOD has to it-
erate until it reaches the desired number of triangles. Our
approach is totally compatible with triangle budget imple-
mentation. Using our framework, the triangle budget algo-
rithm is parallelized and its over-cost minimized. However,
we do not activate it for benchmarks as we aim to determine
real data scalability capacities of our method at a constant
visual quality.

5. Conclusion

We have presented a parallelization framework for LOD al-
gorithms to navigate in large height fields. We have shown
that it has been designed to take advantage of the scalability
of VR cluster architectures by distributing data on the cluster
nodes and avoiding useless communication and data gather-
ing. Our benchmarks exhibit encouraging results.

Some improvement may be done to reduce communica-
tion traffic on the network by observing that 80% to 90%
of the scene does not change between two LOD computa-
tions. Therefore it should be possible to only send the differ-
ences between the two scenes. Such techniques usually have
a memory overhead which should be limited to be used for
our purposes.

It would be also interesting to apply our techniques for

(© The Eurographics Association 2004.

V. Gouranton, S. Limet, S. Madougou & E. Melin /A Scalable Cluster-based Parallel Simplification Framework for Height Fields

visualizing and manipulating other kinds of datasets. For
example, scientific simulations are able to produce large
amount of time-varying data , in contrast to height fields.
Some LOD techniques should be adapted to this kind of data
and our framework should help to parallelize them.

Acknowledgements

We would like to acknowledge the BRGM (French Geolog-
ical survey) for providing height fields data for our experi-
ments. We also would like to thank the anonymous referees
for their valuable remarks.

References

[AGL*02]

[Bie00]

[BPO2]

[BW00]

[CRMO02]

[DLROO]

[DWS*97]

[EMBO1]

[ESCO00]

[ESV99]

ALLARD J., GOURANTON V., LECOINTRE L.,
MELIN E., RAFFIN B.: Net juggler: Running vr
juggler with multiple displays on a commodity
component cluster. /EEE VR’02 (2002).

BIERBAUM A.: Vr juggler: A virtual plat-
form for virtual reality applications develop-
ment. Master’s thesis (2000).

BRODSKY D., PEDERSEN J. B.: Parallel model
simplification of very large polygonal meshes.
PDPTA’02 (2002), 1207-1215.

BRODSKY D., WATSON B.: Model simplifica-
tion through refinement. Graphics Interface’00
(2000).

CiGoNl P., RoccHINI C., MONTANI
C. ScoprigNO R.: External memory man-
agement and simplification of huge meshes.
IEEE Transaction on Visualization and Com-
puter Graphics (2002).

DEHNE F., LANGIS C., ROTH G.: Mesh sim-
plification in parallel. ICA3PP’00 (2000), 281—
290.

DUCHAINEAU M., WOLINSKY M., SIGETI
D., MILLE M., ALDRICH C., MINEEV-
WEINSTEIN M. B.: Roaming terrain: Real-time
optimally adapting meshes. IEEFE Visualization
(1997), 81-88.

ERIKSON C., MANOCHA D., BAXTER W. V.:
Hlods for faster display of large static and dy-
namic environments. ACM Symposium on In-
teractive 3D Graphics (March 2001), 111-120.

EL-SANA J., CHIANG Y.-J.: External mem-
ory view-dependent simplification. Computer
Graphics Forum 3, 19 (August 2000), 139-150.

EL-SANA J., VARSHNEY A.: Parallel process-
ing for view-dependent polygonal virtual envi-
ronments. Proceedings SIGGRAPH’99 (1999).

(© The Eurographics Association 2004.

[gto]
[HG97]

[Hop96]

[Hop97]

[Hop98]

[LE97]

[LKR*96]

[LPO2]

[mpi]
[per]
[Pri00]

[RHS98]

[XESVI97]

http://edcdaac.usgs.gov/gtopo30/gtopo30.htm.

HECKBERT P. S., GARLAND M.: Survey
of polygonal surface simplification alogrithms.
Multiresolution surface modeling course notes,
ACM SIGGRAPH’97 (1997).

HOPPE H.: Progressive meshes. In proceedings
SIGGRAPH 96 (1996), 99-108.

HoPPE H.: Smooth view-dependent level-of-
detail control and its application to terrain ren-
dering. IEEE Visualization '98 31 (1997), 189—
198.

HoPPE H.: View-dependent refinement of pro-
gressive meshes. Computer Graphics (In pro-
ceedings SIGGRAPH’97) 31 (October 1998),
35-42.

LUEBKE D., ERIKSON C.: View-dependent
simplification of arbitrary polygonal environ-
ments. Computer Graphics (Proc. siggraph’97)
31,3 (1997), 199-208.

LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G.: Real-
time, continuous level of detail rendering of
height fields. Computer Graphics, Proceedings
SIGGRAPH’96 (1996), 109-118.

LINDSTROM P., PAscucct V.: Terrain sim-
plification simplified: a general framework for
view-dependent out-of-core visualization. /[EEE
Transaction on Visualization and Computer
Graphics 8, 3 (2002), 239-254.

http://www-unix.mcs.anl.gov/mpi.
http://www.sgi.com/software/performer.

PRINCE C.: Progressive Meshes for Large Mod-
els of Arbitrary Topology. Master ’s thesis, Uni-
versity of Washington, 2000.

ROTTGER S., HEIDRICH W., SLUSSALLEK P.:
Real-time generation of continuous levels of de-
tail for height fields. Proceedings in 6th Inter-
national Conference in Central Europe on Com-
puter Graphics and Visualization (1998), 315—
322.

XIA J., EL-SANA J., VARSHNEY A.: Adap-
tive real-time level-of-detail-based rendering for
polygonal models. IEEE Transactions on Visu-
alization and Computer Graphics (1997), 171—
183.

