
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

Hierarchical Visualization and Compression of Large Volume
Datasets Using GPU Clusters

Magnus Strengert1, Marcelo Magallón1, Daniel Weiskopf1, Stefan Guthe2, and Thomas Ertl1

1Institute of Visualization and Interactive Systems, University of Stuttgart, Germany
2WSI/GRIS, University of Tübingen, Germany

Abstract
We describe a system for the texture-based direct volume visualization of large data sets on a PC cluster equipped
with GPUs. The data is partitioned into volume bricks in object space, and the intermediate images are combined
to a final picture in a sort-last approach. Hierarchical wavelet compression is applied to increase the effective size
of volumes that can be handled. An adaptive rendering mechanism takes into account the viewing parameters and
the properties of the data set to adjust the texture resolution and number of slices. We discuss the specific issues of
this adaptive and hierarchical approach in the context of a distributed memory architecture and present solutions
for these problems. Furthermore, our compositing scheme takes into account the footprints of volume bricks to
minimize the costs for reading from framebuffer, network communication, and blending. A detailed performance
analysis is provided and scaling characteristics of the parallel system are discussed. For example, our tests on a
16-node PC cluster show a rendering speed of 5 frames per second for a 2048×1024×1878 data set on a 10242

viewport.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems]: Distributed/network graph-
ics I.3.3 [Picture/Image Generation]: Viewing algorithms

1. Introduction

Volume rendering is often to be applied to large data sets.
For example, the increasing resolution of medical CT scan-
ners leads to increasing sizes of scalar data sets, which can
be in the range of gigabytes. Even more challenging is the vi-
sualization of time-dependent CFD simulation data that can
comprise several gigabytes for a single time step and sev-
eral hundred or thousand time steps. Parallel visualization
can be used to address the issues of large data processing in
two ways: Both the available memory and the visualization
performance are scaled by the number of nodes in a cluster
computer.

In this paper, we follow an approach that combines the
“traditional” benefits of parallel computing with the high
performance that is offered by GPU-based techniques. Our
contributions are: First, hierarchical wavelet compression is
adapted to the distributed-memory architecture of a cluster
computer to increase the effective size of volumes that can
be handled. Second, we present an adaptive, texture-based
volume rendering approach for a PC cluster. Third, we de-

scribe an advanced compositing scheme that takes into ac-
count the footprints of volume bricks to minimize the costs
for reading from framebuffer, network communication, and
blending. Fourth, we document performance numbers for
different combinations of parameters to clarify the perfor-
mance and scaling characteristics. Results are discussed for
both a mid-price system with 16 GPU/dual-CPU nodes and
Myrinet, and a low-cost system with standard PCs connected
by Gigabit Ethernet. We think that our findings are useful
for working groups that have to visualize large-scale volume
data.

2. Previous Work

This work builds up on that of Guthe et al. [GWGS02], who
represent a volumetric data set as an octree of cubic blocks
to which a wavelet filter has been applied. By recursively
applying this filter, a hierarchical multi-resolution structure
is generated. Rendering is accomplished by computing a
quality factor to select for which block the higher or lower
resolution representations should be used. The decompres-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

sion of the texture data is performed by the CPU. Binotto et
al [BCF03] have recently presented a system that also uses a
hierarchical representation, but is oriented towards the com-
pression of time-dependent, highly sparse and temporally
coherent data sets. Their algorithm uses fragment programs
to perform the decompression of the data sets, with a re-
ported performance of over 4 fps for an image size of 5122

pixels and a texture data set of 1283 voxels.

Rosa et al. [RLMO03] presented a system specifically de-
veloped for the visualization of time-varying volume data
from thermal flow simulations for vehicle cabin and venti-
lation design. The system is based on the work of Lum et
al. [LMC02], which quantizes and lossily compresses the
texture data by means of a discrete cosine transformation and
stores the result as indexed textures. Textures represented in
this way can be decoded in graphics hardware by just chang-
ing the texture palette. The disadvantage of this method is
that support for paletted textures is being phased out by hard-
ware vendors. This could be replaced by dependent texture
look-ups, but these have a different behavior with respect to
interpolation of the fetched data. In comparison to the other
methods mention before, this approach achieves much lower
compression ratios.

Stompel et al. [SML∗03] have recently presented a new
compositing algorithm which takes advantage of the fact that
in a configuration of n processing elements, there are on av-
erage n

1
3 partial images which are relevant for any given

pixel of the final image. They report promising results us-
ing a 100 Mbps Ethernet network as the underlying com-
munications fabric. The efficiency of the algorithm is highly
dependent on the viewing direction, but it compares favor-
ably to the direct send and binary swap algorithms, which
are commonly used for this task.

3. Distributed Visualization

We use a sort-last [MCEF94] strategy to distribute the visu-
alization process in a cluster environment. With increasing
size of the input data set, this sorting scheme is favorable,
since the input data becomes larger than the compositing
data and hence a static partitioning in object space avoids
communication regarding the scalar field during runtime.
The basic structure of our implementation follows the ap-
proach by Magallon et al. [MHE01].

During a preprocessing step object-based partitioning is
performed to split the input data set into multiple, identi-
cally sized sub-volumes, depending on the number of nodes
in the cluster configuration. To overcome possible memory
limitations in connection with large data sets, this step is ex-
ecuted using the same set of nodes as the following render
process. Once all sub-volumes are created and transferred to
their corresponding nodes, the render loop is entered, which
can be split into two consecutive tasks. The first task is to
render each brick separately on its corresponding node. An

intermediate image is generated by texture-based direct vol-
ume visualization. We employ screen-aligned slices through
a 3D texture with back-to-front ordering [CCF94, CN93].
By adapting the model-view matrix for each node, it is as-
sured that each sub-volume is rendered at its correct position
in image space. Since the partitioning is performed in object
space, the rendering process of different nodes can produce
output that overlaps each other in image space. The second
task blends the intermediate images and takes into account
that multiple nodes can contribute to a single pixel in the fi-
nal image. The distributed images are depth sorted and pro-
cessed through a compositing step based on alpha blending.
To this end, each node reads back its framebuffer, includ-
ing the alpha channel, and sends it to other nodes. To take
advantage of all nodes for the computational expensive al-
pha blending, direct send is used as communication scheme
[Neu93]. Each intermediate result is horizontally cut into a
number of stripes matching the total number of nodes. All
these regions are sorted and transferred between the nodes
in a way that each node receives all stripes of a specific area
in the image space. Then each node computes an identically
sized part of the final image.

The alpha blending of the intermediate images is
completely performed on the CPU. Although the GPU is
highly specialized for this task, the additional costs for
loading all stripes into texture memory and reading back
the information after blending would lead to a lower overall
performance. Instead, an optimized MMX [PW96] code is
used to determine the result of the blend function for all
four channels of one pixel in parallel. In order to implement
blending of color a onto color b using MMX operations it is
necessary to express the equation

r = a +
(1−aalpha)∗b

255

in terms of bit-shifts operations. This can be done by
substitution of the division by

x
255

=
x + 128 + x+128

256
256

,

where x corresponds to the numerator of the upper equa-
tion. This expression is correct for the range 0..2552 when
compared with the floating point version rounded up and
truncated to integer results. The actual implementation us-
ing MMX operations is given in Appendix A.

Without major changes this approach can also handle
time-dependent scalar fields. During the bricking process
a static partitioning scheme is used for all time steps, i.e.,
each sub-volume contains the complete temporal sequence
for the corresponding part of the input volume. To synchro-
nize all nodes the information regarding the current time step
is broadcast to the render nodes.

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

4. Accelerated Compositing Scheme

Concerning distributed rendering the overall performance is
limited by three factors: The process of reading back the re-
sults from the framebuffer, the data transfer between nodes,
and the compositing step. In the following we address these
issues by minimizing the amount of image data to be pro-
cessed. The key observation is that the image footprint of a
sub-volume usually covers only a fraction of the intermedi-
ate image. For the scaling behavior, it is important that the
relative size of the footprint shrinks with increasing number
of nodes. For simplicity, we determine an upper bound for
the footprint by computing the axis-aligned bounding box
of the projected sub-volume in image space. Since the time
needed to read back a rectangular region from the frame-
buffer is nearly linearly dependent on the amount of data,
reducing the area to be retrieved leads to a performance in-
crease of this part of the rendering process. Similarly, the
communication speed also benefits from the reduction of im-
age data.

The compositing step is accelerated by avoiding unneces-
sary alpha blending operations for image regions outside the
footprints. Similarly to SLIC [SML∗03], a line-based com-
positing scheme is employed. For each line the span con-
taining already blended data is tracked. Since the images
are blended in the depth-sorted order of their corresponding
volume blocks and all blocks together represent the convex
shape of the unpartitioned volume, the tracked region always
forms one segment instead of multiple separated spans. If
a projected volume face is parallel to the image plane, the
depth sort results in an ambiguous ordering that may break
this property. In this case the topology is used to ensure the
connectivity of the marked span. With this information the
new image data of the next compositing step can be sepa-
rated into a maximum number of three segments. Two seg-
ments contain pixels that map into the region outside the
marked span. These pixels need no further processing and
can be copied into the resulting image. The remaining seg-
ment maps into an area where already other color informa-
tion resides and alpha blending has to be performed. An ex-
ample of this procedure is given in Figure 1. After one itera-
tion the size of the span containing data needs to be updated
and the next image stripe can be processed. In doing so only
a minimal amount of blending operations for a given volume
partitioning must be carried out.

5. Hierarchical Compression and Adaptive Rendering

Even with distributed rendering techniques the size of a data
set can exceed the combined system memory of a cluster
configuration and the already bricked data set is larger than
one single node can handle. Another challenge is to further
improve the rendering speed. We address the memory issue
by using a hierarchical compression technique, and the per-
formance issue by adaptive rendering.

Figure 1: Depth-sorted blending of footprints of four vol-
ume blocks. For each compositing step the regions with and
without the need for blending are marked.

5.1. Single-GPU Wavelet Compression

We adopt a single-GPU visualization approach that utilizes
compression for large data sets [GWGS02]. The idea is to
transform the input data set into a compressed hierarchi-
cal representation in a preprocessing step. With the help of
wavelet transformations an octree structure is created. The
input data set is split into cubes of size 153 voxels, which
serve as starting point for the recursive preprocessing. Eight
cubes sharing one corner are transformed at a time using lin-
early interpolating spline wavelets. The resulting low-pass
filtered portion is a combined representation of the eight in-
put cubes with half the resolution of the original data. The
size of this portion is again 153 voxels. The wavelet coeffi-
cients representing the high frequencies replace the original
data of the eight input blocks. After all cubes of the original
data set are transformed, the next iteration starts using the
newly created low-pass filtered cubes as input. The recursion
stops as soon as the whole volume is represented through
one single cube. This cube forms the root node of the hi-
erarchical data structure and is the representation with the
lowest quality. Except for the root node, all other nodes hold
only high-pass filtered data, which is compressed through an
arithmetic encoder [GS01]. While it is possible to increase
the compression ratio by thresholding, we focus on lossless
compression for best visualization results.

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

Figure 2: Texture interpolation at a sub-volume border for a 1D case. Texels on one side of the border (white cells) are filled
with previously transferred information of the neigboring node. Errors arise if the the quality level of the neighboring node
is unknown and hence a wrong level is chosen. For the incorrect case border information of level 0 are used for interpolation
although the rendering of the neighboring node is performed on level 1.

During rendering we use an adaptive decompression
scheme that depends on the viewing position and the data
set itself. Starting at the root node of the hierarchical data
structure, a priority queue determines which parts of the vol-
ume are decompressed next. Depending on the ratio between
the resolution of a volume block and the actual display res-
olution, regions closer to the viewer are more likely decom-
pressed than others. Additionally an error criterion describ-
ing the difference between two representations of varying
quality is used to identify regions that can be rendered in low
quality without noticeable artifacts. After the quality classifi-
cation is finished, all decompressed blocks are transferred to
the graphics board’s texture memory for rendering. Depend-
ing on the reconstructed quality level of a block, the number
of slices used for rendering is determined. With increasing
reconstruction quality the number of slices increases as well,
delivering higher quality for areas closer to the viewer. Ad-
ditionally a cache strategy is used to avoid the expensive de-
compression step for recently processed blocks. By tracking
the already loaded textures unnecessary texture transfers are
avoided.

5.2. Extension to Parallel Rendering

In a distributed visualization system, this approach leads to
a problem concerning correct texture interpolation between
sub-volumes rendered on different nodes. A typical solution
is to create the sub-volumes with an overlap of one voxel.
With multi-resolution rendering techniques it is necessary to
know not only the border voxels of the original data set but
also the data value at the border of all other used quality lev-
els [WWH∗00]. This information can be determined in the
preprocessing step. After creating the sub-volumes and con-
structing the hierarchical data structure, each node transfers
the border information of all quality levels to its appropri-
ate neighbors. But even with this information available on
each node a correct texture interpolation cannot be gener-
ated easily. The remaining problem is to determine the qual-
ity level used for rendering of a neighboring node. This is
necessary for choosing the correct border information of the

previously transferred data. An example showing this prob-
lem is given in Figure 2. Since communication between the
nodes is costly due to network latency, requesting this infor-
mation from the neighboring node is not suitable. Another
approach is to compute the quality classification on each
node for an expanded area. Unfortunately this is also im-
practical, because the quality classification is dependent on
the volume data.

Instead, we propose an approximate solution that pre-
sumes that there are no changes in quality classification at
the border of the sub-volumes. With this approach errors
only occur if different qualities are used on each side of a
sub-volume border (example visualization in Figure 3). Due
to the similar position of adjacent parts of the sub-volumes
it is however likely that both regions are classified with the
same quality. Experimental data showing the proportion of
the error remaining under this presumption is given in Ta-
ble 1 for both the unweighted number of transitions and for
the area-weighted ratio. The measurement was performed
while rendering the Visible Human data set using 16 ren-
dering nodes (Figure 5). In this configuration a total number
of 185212 cube transitions are present in the whole dataset.
Considering only those transitions that lead to an interpola-

Table 1: Quantification of changes in quality classification at
block faces.

unweighted area-weighted

total volume
same quality 89.8% 81.7%
different quality 10.2% 18.3%

sub-volume borders only
same quality 91.2% 83.0%
different quality 8.8% 17.0%

borders compared to total volume
same quality 99.6% 99.1%
different quality 0.4% 0.9%

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

Figure 3: In the left part of the image the volume was rendered using different quality levels for each of the two sub-volume
blocks. Assuming identical classification for interpolation leads to visible artifacts as seen in the left magnified area. For com-
parison the right image was rendered with identical classification for the sub-volume blocks.

tion error results in 723 cube borders, which is less than one
percent of the total amount of transitions.

For a correct solution of the interpolation problem, we
propose another approach that separates the computation of
the quality classification and the rendering process. In each
frame an adaptive classification is determined, but the asso-
ciated rendering is delayed by one frame. In doing so the
information regarding the used quality levels can be trans-
ferred to the neighboring nodes at the time of distributing
the intermediate results during the compositing step. Since
at this time communication between all nodes must be per-
formed anyway, the additional data can be appended to the
image data. Having the transferred data available the render-
ing process can produce a properly interpolated visualization
during the next frame. The downside is that the latency be-
tween user interactions and the systems reaction is increased
by one frame. To avoid this a hybrid technique that exploits
both described approaches is possible. While the viewing pa-
rameters are changed, the approximate solution is used to
generate an image without increased latency times during
user interaction. As soon as the camera parameters are kept
constant, a correct image is rendered based on the quality
classification that is transferred from the previous rendering
step. Thus a fast user interaction is combined with a correct
sub-volume interpolation for the static case.

6. Implementation and Results

Our implementation is based on C++ and OpenGL. Vol-
ume rendering adopts post-shading realized either through
NVIDIAs register combiners or alternatively through an
ARB fragment program depending on the available hard-
ware support. MPI is used for all communication between
nodes.

Two different cluster environments were used for devel-
oping and evaluation. The first one is a 16-node PC cluster.
Each of these nodes runs a dual-CPU configuration with two
AMD 1.6 GHz Athlon CPUs, 2 GB of system memory, and
NVIDIA GeForce 4 Ti 4600 (128MB) graphics boards. The

interconnecting network is a Myrinet 1.28GBit/s switched
LAN providing low latency times. Linux is used as operat-
ing system, the SCore MPI implementation drives the com-
munication [PC ].

The second environment is built up by standard PCs us-
ing a Gigabit Ethernet interconnection with a maximum
number of eight nodes. Each node has an Intel Pentium4
2.8GHz CPU and 4GB system memory. The installed graph-
ics boards are a mixture of NVIDIA GeForce 4 Ti 4200 and
GeForce 4 Ti 4600 both providing 128MB of video memory.
Running Linux, the MPI implementation LAM/MPI is used
for node management and communication [LAM].

We use three different large-scale data sets to evaluate the
performance of the implemented visualization system. If not
stated otherwise all measurements were performed on the
cluster interconnected through Myrinet. The first data set is
an artificial scalar field showing a radial distance volume that
is additionally combined with Perlin noise (Figure 4). For
our testing purposes a 10243 sized volume is used. The sec-

Figure 4: Radial distance volume combined with noise using
a high frequency transferfunction.

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

Figure 5: Rendering result of upper 4 nodes showing
anatomic cryosections through the Visible Human Project
male data set. The whole body is rendered with a total of 16
nodes.

ond data set is derived from the anatomical RGB cryosec-
tions of the Visible Human male data set [The]. The slices
are reduced to 8 bit per voxel and cropped to exclude ex-
ternal data like grey scale cards and fidual markers. The ob-
tained data set has a resolution of 2048×1024×1878 vox-
els (Figure 5). The third data set is a time-dependent CFD
simulation of a flow field with increasing turbulence. The
sequence contains a total of 89 time bins each sized 2563

(Figure 6).

The Visible Human male data set can be visualized on a
10242 viewport using 16 nodes with 5 frames per second.
The quality classification was set to use the original resolu-
tion for most regions. Due to the uniform characteristic of
the surroundings, these areas were displayed in a lower res-
olution without any noticeable disadvantages. With a view-
port of half size in each dimension and the same settings the
obtained framerate increases to 8 frames per second.

To show the scaling behavior of the visualization system
configurations of 2 up to 16 render nodes are measured. The
used data set for all these tests is the gigacube containing
the distorted radial distance volume. The results are shown
in Figure 7. For a 16 node configuration the data set can be
rendered in 174 ms, which corresponds to a refresh rate of
5.7 Hz.

For the time-dependent data set Figure 8 shows the results

Figure 6: Visualization of the time-dependent CFD simmu-
lation. From top to botton timesteps 0, 45, 89 are shown.

for rendering each timestep in a row. The test was performed
using three different quality levels. In case of the original
quality the required time clearly increases towards the end
of the sequence. The reason for this behavior is found in the
characteristic of the data set, which gets more and more tur-
bulent over time leading to a higher amount of blocks that
have to be decompressed. Furthermore with a progress in
time the cache becomes invalid and all blocks have to be de-
compressed starting at the root node. Therefore the perfor-
mance is rather slow for time-dependent data sets compared
to the static ones. Using the second cluster environment with
its 8 nodes only 2 frames per second are achieved for render-
ing the distance volume. Due to the similar configuration of
each node this gap is solely caused by the Gigabit Ethernet
in comparison to Myrinet. The determining factor for this
type of application is the latency rather than the bandwidth
limitation of the used network. While delivering comparable
bandwidth, the Myrinet clearly outperforms a conventional
Gigabit Ethernet regarding latency times.

7. Conclusion and Future Work

We have presented a distributed rendering system for
texture-based direct volume visualization. By adapting a hi-
erarchical wavelet compression technique to a cluster envi-
ronment the effective size of volume data that can be han-
dled is further improved. The adaptive decompression and
rendering scheme results in a reduction of rendering costs
depending on the viewing positing and the characteristics of
the data set without leading to noticeable artifacts in the fi-
nal image. The problem of texture interpolation at brick bor-
ders in connection with multi-resolution rendering has been
addressed and different solutions have been provided. Parts
of the rendering process crucial to the systems performance

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

150

200

250

300

350

2 4 6 8 10 12 14 16

tim
e 

in
 m

s

Number of nodes

Figure 7: Scalability of the visualization system with the
number of rendering nodes.

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

tim
e 

in
 m

s

timestep

full resolution
1/2 resolution
1/4 resolution

Figure 8: Performance rendering time-dependent data set.

benefit from the applied reduction of the processed region in
image space, especially with increasing numbers of render-
ing nodes.

The achieved performance is often restricted by the capa-
bilities of the interconnection between the rendering nodes
and the computation of blending operations during the com-
positing step. With viewports sized 10242 this upper bound
is approximately 11 frames per second for our cluster con-
figuration. To increase this upper limit an exact calculation
of the footprints instead of using a bounding box could be
helpful. Doing so avoids the remaining unnecessary blend-
ing operations and further reduces communication costs. In
case of time-dependent data sets the performance is addi-
tionally bound by the decompression step because the per-
formed caching of decompressed blocks cannot be used in
this context.

As part of our future work we would like to implement
and test the SLIC algorithm from Stompel et al on Myrinet
and 4x InfiniBand networks.

Appendix A: Blending using MMX operations

The following code performs the operation r = a + ((1 −

aalpha) ∗ b)/255 using MMX instructions. It uses the GNU
Compiler Collection’s (GCC) “extended assembly” nota-
tion, which means the operands are in AT&T syntax (source
operand on the left side and destination operand on the
right). %0, %1 and %2 are r, a and b respectively.

pxor %mm2, %mm2

// copy 128 to all words in mm4
mov $128, %eax
movd %eax, %mm4
pshufw $0, %mm4, %mm4

// copy a to mm0
movd (%1), %mm0

// copy b to mm3
movd (%2), %mm3
// 16−bit expand b
punpcklbw %mm2, %mm3

// fill mm1 with 1’s
pcmpeqb %mm1, %mm1
// 1 − aalpha
pxor %mm0, %mm1
// 16−bit expand 1−aa
punpcklbw %mm2, %mm1
// copy 1−aa to all words
pshufw $0, %mm1, %mm1

// x = (1−aalpha)∗b
pmullw %mm1, %mm3
// x += 128
paddusw %mm4, %mm3
// y = x
movq %mm3, %mm1
// y /= 256
psrlw $8, %mm1
// y = y + x
paddusw %mm3, %mm1
// y /= 256
psrlw $8, %mm1

// pack result
packuswb %mm1, %mm1

// add a and (1−aalpha)b
paddusb %mm1, %mm0
// copy result to memory
movd %mm0, (%0)

c© The Eurographics Association 2004.



M. Strengert, M. Magallón, D. Weiskopf, Stefan Guthe & T. Ertl / Hierarchical Volume Visualization on GPU Clusters

References

[BCF03] BINOTTO A. P. D., COMBA J. L. D., FRE-
ITAS C. M. D.: Real-time volume rendering
of time-varying data using a fragment-shader
compression approach. In IEEE Symposium
on Parallel and Large-Data Visualization and
Graphics (2003), p. 10. 2

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated
volume rendering and tomographic reconstruc-
tion using texture mapping hardware. In Pro-
ceedings of the 1994 Symposium on Volume Vi-
sualization (1994), pp. 91–98. 2

[CN93] CULLIP T., NEUMANN U.: Accelerating vol-
ume reconstruction with 3D texture mapping
hardware. Tech. Rep. TR93-027, Department
of Computer Science at the University of North
Carolina, Chapel Hill, 1993. 2

[GS01] GUTHE S., STRASSER W.: Real-time decom-
pression and visualization of animated volume
data. In Proceedings of the Conference on Vi-
sualization ’01 (2001), pp. 349–356. 3

[GWGS02] GUTHE S., WAND M., GONSER J.,
STRASSER W.: Interactive rendering of
large volume data sets. In Proceedings of
the Conference on Visualization ’02 (2002),
pp. 53–60. 1, 3

[LAM] LAM/MPI PARALLEL COMPUTING: Web
page: http://www.lam-mpi.org/. 5

[LMC02] LUM E. B., MA K.-L., CLYNE J.: A
hardware-assisted scalable solution for inter-
active volume rendering of time-varying data.
IEEE Transactions on Visualization and Com-
puter Graphics 8, 3 (2002), 286–301. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A sorting classification of paral-
lel rendering. IEEE Computer Graphics and
Applications 14, 4 (1994), 23–32. 2

[MHE01] MAGALLÓN M., HOPF M., ERTL T.: Parallel
volume rendering using PC graphics hardware.
In Pacific Graphics (2001), pp. 384–389. 2

[Neu93] NEUMANN U.: Parallel volume-rendering al-
gorithm performance on mesh-connected mul-
ticomputers. In IEEE/SIGGRAPH Parallel
Rendering Symposium (1993), pp. 97–104. 2

[PC ] PC CLUSTER CONSORTIUM: Web page:
http://www.pccluster.org/. 5

[PW96] PELEG A., WEISER U.: MMX technology ex-
tension to the Intel architecture. IEEE Micro
16, 4 (1996), 42–50. 2

[RLMO03] ROSA G. G., LUM E. B., MA K.-L., ONO K.:

An interactive volume visualization system for
transient flow analysis. In Proceedings of the
2003 Eurographics/IEEE TVCG Workshop on
Volume graphics (2003), pp. 137–144. 2

[SML∗03] STOMPEL A., MA K.-L., LUM E. B.,
AHRENS J. P., PATCHETT J.: SLIC: sched-
uled linear image compositing for parallel vol-
ume rendering. In IEEE Symposium on Paral-
lel and Large-Data Visualization and Graphics
(2003), pp. 33–40. 2, 3

[The] THE NATIONAL LIBRARY OF MEDICINE’S

VISIBLE HUMAN PROJECT: Web page:
www.nlm.nih.gov/research/visible/. 6

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C.,
ZIMMERMAN K., ERTL T.: Level-of-detail
volume rendering via 3D textures. In Volume
Visualization and Graphics Symposium 2000
(2000), pp. 7–13. 4

c© The Eurographics Association 2004.


