
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

I/O Strategies for Parallel Rendering of
Large Time-Varying Volume Data

Hongfeng Yu1, Kwan-Liu Ma1, and Joel Welling2

1University of California at Davis
2 Pittsburgh Supercomputing Center

Abstract
This paper presents I/O solutions for the visualization of time-varying volume data in a parallel and distributed
computing environment. Depending on the number of rendering processors used, our I/O strategies help signifi-
cantly lower interframe delay by employing a set of I/O processors coupled with MPI parallel I/O support. The
targeted application is earthquake modeling using a large 3D unstructured mesh consisting of one hundred mil-
lions cells. Our test results on the HP/Compaq AlphaServer operated at the Pittsburgh Supercomputing Center
demonstrate that the I/O strategies effectively remove the I/O bottlenecks commonly present in time-varying data
visualization. This high-performance visualization solution we provide to the scientists allows them to explore their
data in the temporal, spatial, and visualization domains at high resolution. This new high-resolution explorability,
likely not presently available to most computational science groups, will help lead to many new insights.

1. Introduction

In many areas of science and engineering, the capability
to accurately model and understand time-varying physical
phenomena or chemical processes enables new discoveries
and is thus crucial to making continued innovation. The nu-
merical modeling generally requires very high temporal and
spatial resolutions, and, hence, demands the most capabil-
ity from a massively parallel supercomputer. While the field
of high-performance scientific computing intends to address
such requirements, the associated data analysis and visual-
ization tasks present even bigger challenges. A complete run
of a time-varying simulation could output hundreds of giga-
bytes to terabytes of data even though not every time step of
the data is stored. In addition to the overall size of the data
set, what makes large time-varying data visualization hard
is the need to constantly transfer each time step of the data
from disk to memory to carry out the rendering calculations.
This I/O requirement if not appropriately addressed can se-
riously hamper interactive visualization and exploration for
discovery.

We have previously developed a parallel ren-
derer [MSB∗03] for visualizing 3D unstructured volume
data generated from a time-varying earthquake simulation
code [Qua] in the high-performance computing environment

of the Pittsburgh Supercomputing Center (PSC). The
renderer performs satisfactorily for modest data sizes like
tens of millions cells. As the data size grows the primitive
I/O scheme we chose to use does not work well any more.
Even though a parallel file system is used the I/O cost can
become so high that it totally dominates the overall cost.
In this paper, we present I/O strategies that adapt to the
data size and parallel system performance such that I/O
and data preprocessing costs could be effectively hidden.
Interframe delay becomes completely determined by the
rendering cost. Consequently, as long as a sufficient number
of rendering processors are used, the desired framerates can
be obtained. We demonstrate this new parallel I/O solution
for making a volume visualization of the highest resolution
earthquake simulation performed to date.

2. Driving Applications

Our work has been driven by several large-scale scien-
tific applications including earthquake modeling, supernova
modeling, ocean modeling, and turbulence modeling. While
this paper places a focus on earthquake modeling, the vi-
sualization requirements and challenges are common to
all applications. Simulating the earthquake response of a
large basin is accomplished by numerically solving the par-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

tial differential equations (PDEs) of elastic wave propaga-
tion [BBG∗98]. An unstructured mesh finite element method
is used for spatial approximation, and an explicit central dif-
ference scheme is used in time. The mesh size is tailored
to the local wavelength of propagating waves via an octree-
based mesh generator [TOL02]. A massively parallel com-
puter must be employed to solve the resulting dynamic equa-
tions. The specific data set we used in our tests was from the
modeling of the 1994 Northridge mainshock to 1Hz reso-
lution, the highest resolution obtained to date, requiring a
discretization of the greater LA basin to 10 meters finest res-
olution with 100 million unstructured hexahedral finite ele-
ments.

A typical dataset generated by the ground motion simula-
tion may consist of thousands of time steps and the spatial
domain is composed of 10-100 million elements. Each mesh
node outputs six values, three displacement components and
three velocity components. To efficiently browse both the
temporal and spatial domains of the data, the corresponding
visualization challenge is thus concerned with transferring
and rendering large time-varying data possibly with multi-
ple variables.

Several strategies are commonly used to achieve high per-
formance rendering of large time-varying volume datasets in
a parallel computing environment. Good load balancing can
generally be achieved by distributing data and work load in
an interleaving fashion. Rendering-time, per-time-step pre-
processing calculations should be avoided or replaced with
one-time preprocessing. Whenever possible, overlap com-
munication and computation to hide data transfer overhead.
Unless bandwidth is unlimited, buffering of intermediate
rendering results can always effectively amortize commu-
nication overheads. Finally, compression can often signifi-
cantly reduce the data that must be transferred, leading to
lower communication cost. We have designed our parallel
visualization solutions by closely following these guidelines.

3. Previous Work

The research problem we intended to solve has multiple
facets ranging from large time-varying data, parallel I/O,
parallel rendering, and unstructured grids, none of which can
be neglected if our goal is to derive a usable solution. Little
previous research has been done to address all aspects of the
problem in the context of visualization.

3.1. Time-varying data

Visualizing time-varying data presents two challenges. The
first is the need to periodically transfer sequences of time
steps to the processors from disk through a data server. The
second is the need of an exploration mechanism accompa-
nied by an appropriate user interface for tracking and cor-
rect interpretation of the temporal aspects of the data. We
have mainly looked into the I/O issues and aim to hide the

I/O cost to reduce interframe delay. For interactive brows-
ing in both the spatial and temporal domains of the data,
a minimum of 2-5 frames per second is needed. McPherson
and Maltrud [MM98] develop a visualization system capable
of delivering realtime viewing of large time-varying ocean
flow data by exploiting the high performance volume ren-
dering of texture mapping hardware of four InfiniteReality
pipes attached to an SGI Origin 2000 with enough mem-
ory to hold thousands of time steps of the data. The ParVox
system [LWMT97] is designed to achieve interactive visual-
ization of time-varying volume data in a high-performance
computing environment. Highly interactive splatting-based
rendering is achieved by overlapping rendering and com-
positing, and by using compression.

A survey of time-varying data visualization strategies de-
veloped more recently is given in [Ma03]. One very effec-
tive strategy is based on a hardware decoding technique such
that data stay compressed until reaching the video memory
for rendering [LMC02]. Even though encoding methods can
significantly reduce the data size, the preprocessing cost and
additional data storage requirements are not always desir-
able and affordable. In the absence of high-speed network
and parallel I/O support, a particularly promising strategy for
achieving interactive visualization is to perform pipelined
rendering. Ma and Camp [MC00] show that by properly
grouping processors according to the rendering loads, com-
pressing images before delivering, and completely overlap-
ping uploading each time step of the data, rendering, and
delivering the images, interframe delay can be kept to a min-
imum. Garcia and Shen [GS03] develop a dynamic load bal-
ancing strategy based on asynchronous communication for
more efficiently rendering time-varying volume data on a PC
cluster. Improved load balancing is achieved by cleverly and
dynamically distributing the image compositing job.

3.2. Parallel I/O

In the study of parallel rendering algorithms, I/O cost is often
ignored. The most common strategy is to overlap communi-
cation and computation, which, however, does not solve the
problem of disk contention. Our previous system for render-
ing the earthquake simulation data [MSB∗03] experimen-
tally selected and used multiple I/O nodes to maximize band-
width and reduce latency. The MPI I/O interface [GLT99]
would be attractive but surprisingly very little use of MPI I/O
has been found in parallel visualization applications. Paral-
lel I/O support has also been made to those data file formats
widely used by scientific applications such as HDF [HDF]
and netCDF [LLC∗03]. Our earthquake simulation data files
are in neither HDF nor NetCDF so we have to develop new
parallel I/O strategies through MPI I/O.

3.3. Parallel rendering

Our approach to the large data problem is to distribute both
the data and visualization calculations to multiple proces-

c© The Eurographics Association 2004.

32

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

sors of a parallel computer. In this way, we not only can vi-
sualize the dataset at its highest resolution but also achieve
interactive rendering rates. The parallel rendering algorithm
used thus must be highly efficient and scalable to a large
number of processors because of the size of the dataset. Ma
and Crockett [MC99] demonstrate a highly efficient, cell-
projection volume rendering algorithm using up to 512 T3E
processors for rendering 18 millions tetrahedral elements
from an aerodynamic flow simulation. They achieve over
75% parallel efficiency by amortizing the communication
cost as much as possible and using a fine-grain image space
load partitioning strategy. Parker et al. [PPL∗99] use ray
tracing techniques to render images of isosurfaces. Although
ray tracing is a computationally expensive process, it is
highly parallelizable and scalable on shared-memory multi-
processor computers. By incorporating a set of optimization
techniques and advanced lighting, they demonstrate very in-
teractive, high quality isosurface visualization of the Visi-
ble Woman dataset using up to 124 nodes of an SGI Re-
ality Monster with 80%-95% parallel efficiency. Wylie et
al. [WPLM01] show how to achieve scalable rendering of
large isosurfaces (7-469 million triangles) and a rendering
performance of 300 million triangles per second using a 64-
node PC cluster with a commodity graphics card on each
node. The two key optimizations they use are lowering the
size of the image data that must be transferred among nodes
by employing compression, and performing compositing di-
rectly on compressed data. Bethel et al. [BTL∗00] introduce
a very unique remote and distributed visualization architec-
ture as a promising solution to very large scale data visual-
ization.

3.4. Unstructured-grid data

To efficiently visualize unstructured data additional infor-
mation about the structure of the mesh needs to be com-
puted and stored, which incurs considerable memory and
computational overhead. For example, ray tracing render-
ing needs explicit connectivity information for each ray to
march from one element to the next [Ma95]. The rendering
algorithm introduced by Ma and Crockett [MC97] requires
no connectivity information. Since each tetrahedral element
is rendered completely independent of other elements, data
distribution can be done in a more flexible manner facilitat-
ing load balancing. Chen, Fujishiro, and Nakajima [CFN02]
present a hybrid parallel rendering algorithm for large-scale
unstructured data visualization on SMP clusters such as the
Hitachi SR8000. The three-level hybrid parallelization em-
ployed consists of message passing for inter-SMP node com-
munication, loop directives by OpenMP for intra-SMP node
parallelization, and vectorization for each processor. A set of
optimization techniques are used to achieve maximum par-
allel efficiency. In particular, due to their use of an SMP ma-
chine, dynamic load balancing can be done effectively. How-
ever, their work does not address the problem of rendering
time-varying data.

Figure 1: The architecture of the parallel visualization solu-
tion.

4. The Parallel Rendering Method

The basic architecture of our parallel visualization solution
is shown in Figure 1. It is essentially a parallel pipeline and
become the most efficient as soon as all pipeline stages are
filled. The input processors read data files from the stor-
age device which in our design must be a parallel file sys-
tem, prepare the raw data for rendering calculations, and dis-
tribute the resulting data blocks to the rendering processors.
The rendering processors produce volume rendered images
for its local data blocks and deliver the images to the out-
put processors which then send the images to a display or
storage device.

Since the mesh structure never changes throughout the
simulation, a one-time preprocessing step is done to generate
a spatial (octree) encoding of the raw data. The input proces-
sors use this octree along with a workload estimation method
to distribute blocks of hexahedral elements among the ren-
dering processors. Each block of elements is associated with
a subtree of the global octree. This subtree is delivered to the
assigned rendering processor for the corresponding block of
data only once at the beginning since all time steps data use
the same subtree structure. Non-blocking send and receive
are used for the blocks distribution.

In addition to determining the partitioning and distribu-
tion of data blocks, each input processor also performs a
set of calculations to prepare the data for rendering. Typi-
cal calculations include quantization (from 32-bit to 8-bit),
central differencing to derive gradient vectors for lighting,
and one-side differencing to derive rates of change for tem-
poral domain enhancement. Lighting and temporal domain
enhancement are optional. As we will show later, the amount
of preprocessing calculations can influence the setting of an
optimal system configuration for rendering. Note that it is
more convenient and economical to conduct these prepro-
cessing tasks at the input processors rather than the render-
ing processors. First, data replication is avoided because the
input processors have access to all the needed data. Second,
like I/O the calculations become free because of the parallel
pipelining.

c© The Eurographics Association 2004.

33

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

The number of rendering processors used is selected
based on the rendering performance requirements. After
each rendering processor receives a subset of the volume
data through the input processors, our parallel rendering al-
gorithm performs a sequence of tasks: view-dependent pre-
processing, local volume rendering, image compositing, and
image delivering. Before the local rendering step begins,
each rendering processor conducts a view-dependent prepro-
cessing step whose cost is very small and thus negligible. As
described later, this preprocessing is for optimizing the im-
age compositing step. While rendering calculations are car-
ried out, new data blocks for subsequent time steps are con-
tinuously transferred from the input processors in the back-
ground. As expected, overlapping data transport and render-
ing helps lower interframe delay.

4.1. Adaptive rendering

Rendering cost can be cut significantly by moving up the
octree and rendering at coarser level blocks instead. This is
done for maintaining the needed interactivity for exploring
in the visualization parameter space and the data space. A
good approach is to render adaptively by matching the data
resolution to the image resolution while taking into account
the desired rendering rates. For example, when rendering
tens of millions elements to a 512×512 pixels image, unless
a close-up view is selected, rendering at the highest resolu-
tion level would not reveal more details. One of the calcula-
tions that the view-dependent preprocessing step performs is
to choose the appropriate octree level. The saving from such
an adaptive approach can be tremendous and there is virtu-
ally very little impact on the level of information presented
in the resulting images as shown in Figure 2. Presently the
appropriate level to use is computed based on the image
resolution, data resolution, and a user-specified number that
limits the number of elements allowed to be projected into a
pixel.

4.2. Parallel image compositing

The parallel rendering algorithm is sort-last which thus re-
quires a final compositing step involving inter-processor
communication. Several parallel image compositing algo-
rithms are available [MPHK94, LRN96, AP98] but their ef-
ficiency is mostly limited to the use of specific network
topology or number of processors. We have adopted the
SLIC algorithm [SML∗03] which is an optimized version
of the direct send compositing method to offer maximum
flexibility and performance. The direct send method has
each processor send pixels directly to the processor respon-
sible for compositing them. This approach has been used
in [Hsu93, Neu94, MC97] because it is easy to implement
and does not require a special network topology. With direct
send compositing, in the worst case there are n(n−1) mes-
sages to be exchanged among n compositing nodes. For low-

bandwidth networks, care should be taken to avoid many-to-
one or many-to-many communication.

SLIC uses a minimal number of messages to complete the
parallel compositing task. The optimizations are achieved by
using a view-dependent precomputed compositing schedule.
Reducing the number of messages that must be exchanged
among processors should be beneficial since it is gener-
ally true that communication is more expensive than com-
putation. The preprocessing step to compute a compositing
schedule for each new view introduces very low overhead,
generally under 10 milliseconds. With the resulting sched-
ule, the total amount of data that must be sent over the entire
network to accomplish the compositing task is minimized.
According to our test results, SLIC outperforms previous al-
gorithms, especially when rendering high-resolution images,
like 1024×1024 pixels or larger. Since image compositing
contributes to the parallelization overheads, reducing its cost
helps improve parallel efficiency.

5. I/O Strategies

Our objective is to make the rendering performance inde-
pendent of the I/O requirements. This is possible if both a
high speed network and parallel I/O support are available.
The computing environment at PSC has several parallel file
systems connected by high-speed networks. We have studied
how to effectively utilize these high performance computing
resources. Our designs use parallel pipelining. In addition
to employing multiple rendering processors, multiple input
processors are used to maximize data rates with concurrent
reads and writes. The parallel pipelining becomes the most
efficient when the I/O costs are hidden so that the rendering
time dominates the overall turnaround time and interframe
delay.

5.1. 1D input processors (IDIP)

To maximize bandwidth utilization of the parallel file sys-
tem, it is advantageous to use multiple I/O processes with
each processor reading and preprocessing a complete, single
time step of the data. In this way, best performance can be
achieved if Tf +Tp = Ts(m−1) where Tf is the time to fetch
the data, Tp the preprocessing time, Ts the time to send the
data to a rendering processor, and m the number of proces-
sors used. As a result, the number of input processors should
be used is m =

Tf +Tp
Ts

+1. This would eliminate the idle time
of a rendering processor between receiving two consecutive
time steps. When Ts is smaller than the rendering time Tr

which normally is the case, we can let m =
Tf +Tp

Tr
+ 1 in-

stead, which allows us to use fewer input processors but still
keep the rendering processors busy.

5.2. 2D input processors (2DIP)

The strategy 1DIP works well until Ts become larger than Tr.
That is, even though we can increase the rendering rates by

c© The Eurographics Association 2004.

34

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

Figure 2: Left: high-resolution rendering (level 11). Right: Adaptive rendering (level 6). The image on the right provides enough
high level information about the data while it can be generated about 3 times faster than the high resolution one.

using more rendering processors, the 1DIP approach limits
how much we can reduce Ts. We have investigated an alter-
native design which uses a two-dimensional configuration
of input processors. Basically , there are n groups of m input
processors. Each group of processors is responsible for read-
ing, preprocessing, and distributing one complete time step
of the data.

Since each time step of the data is distributed among all
the rendering processors, with m input processors working
on one time step, it takes about Ts

′ = Ts
m time for the m input

processors to deliver the data blocks. Now we can control m
to keep Ts

′ smaller than Tr so it becomes possible to make
the rendering processors busy all the time. Note that in this
way we also spread the preprocessing cost and Tp

′ =
Tp
m .

Given Ts
′
≤ Tr and Ts

′ = Ts
m , we can obtain m ≥

Ts
Tr

. Sim-
ilarly as with 1DIP, we let Tf

′ + Tp
′ = Ts

′(n − 1). Con-

sequently, n =
(Tf

′+Tp
′)

Ts
′ + 1. When Ts

′ = Tr, m = Ts
Tr

and

n =
(Tf

′+Tp
′)

Tr
+ 1. Assume each input processor deals with

exactly 1
m of the data. Then ideally Tp

′ =
Tp
m and Tf

′ =
Tf
m .

Thus, n =
(Tf /m+Tp/m)

Tr
+ 1 =

(Tf +Tp)
Ts

+ 1. In summary, to
render a time-varying dataset, we can therefore use 1DIP
when Tr is greater than Ts; otherwise, 2DIP should be used.
Figure 3 contrasts 1DIP and 2DIP configurations.

5.3. File reading strategies

MPI-IO, the I/O part of the MPI-2 standard [GLT99], is an
interface designed for portable, high-performance I/O. For
example, it provides Data Sieving to enable more efficient
read of many noncontiguous data and Collective I/O to al-
low for merging of the I/O requests from different proces-
sors and servicing the merged request. Our designs use both

Figure 3: The 1DIP and 2DIP configurations.

Data Sieving and Collective I/O for 2DIP. However, we have
also developed an alternative approach which experimen-
tally proves to be more efficient for reading noncontiguous
data. Our design requires a parallel file system with a high
bandwidth.

In the 2DIP case, m input processors fetch, preprocess,
and distribute one time step dataset. Recall that, as a load
balancing strategy, each rendering processor receives mul-
tiple octree blocks which spread the spatial domain of the
data. In order to make data subsets ready for each rendering
processor, each input processor must reconstruct the hexa-
hedral cell data from the node data according to the octree
data. Since the node data is stored as a linear array on the
disk, each processor must make noncontiguous reads to re-
cover the cell data for each octree block. The parallel I/O
support offered by MPI-IO makes this task easier.

c© The Eurographics Association 2004.

35

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

The biggest bottleneck is reading data from the disk stor-
age system to the input processors. While it is clear using
multiple input processors helps increase the bandwidth, we
are interested in determining the minimal number of input
processors that must be used for a preselected renderer size
to achieve the desired frame rates. Parallel reads may be
done in the following two ways.

5.3.1. Single collective and noncontiguous read.

In the first strategy, we rely on MPI-IO support. All input
processors fetch a roughly equal number of hexahedral cells
from the disk. Grouping of the cell data is done according
to the octree data and the load balancing strategy. To avoid
duplicating node data, octree data are merged for each ren-
dering processor. Each of the m input processors uses

• MPI_TYPE_CREATE_INDEXED_BLOCK to derive a
data type (e.g., an array of node data) from the octree data.
The derived data type describes one reading pattern;

• MPI_FILE_SET_VIEW to set the derived data type as the
reading pattern of the current input processor; and

• MPI_FILE_READ_ALL to collectively read the data
along with other input processors.

At the end, each input processor has a subset of the current
time step of the cell data to be distributed among the render-
ing processors.

5.3.2. Independent contiguous read.

In this case, each input processor independently reads the
contiguous 1

m of a time step of the node data. Both the node
data and the octree data are 1D arrays as shown in Fig-
ure 4. The node data of a particular octree block k likely
spread across multiple input processors. Each input proces-
sor therefore scans through the octree data and creates a
mapping between its local node data and the corresponding
octree blocks. Each input processor then forwards both the
node data and the map to the rendering processors according
to a load balancing strategy. Each rendering processor has
to merge the incoming data to form complete local octree
blocks of data. No communication between processors are
needed for the merge operations. This strategy is superior if
the overhead of collective I/O would become too high.

6. Test Results

We present the performance of our parallel I/O strategies
on LeMieux, an HP/Compaq AlphaServer with 3,000 pro-
cessors operated at the Pittsburgh Supercomputing System
for the visualization of time-varying ground motion simu-
lation data consisting of 100 million hexahedral elements.
Each time step of the data to be transferred is about 400
megabytes. Figure 5 displays the time step 100 of the ve-
locity magnitude data.

The first set of tests was performed using 64 rendering

Figure 4: Octree blocks are assigned to rendering proces-
sors according to a load balancing strategy. Using the sec-
ond reading method, the node data belonging to the octree
block k likely spread multiple input processors. There is a
merging process at every rendering processor to gather all
the relevant node data.

Figure 5: Time step 100 of the velocity magnitude data.

processors with the 1DIP strategy. The image size is
512×512. The rendering time is about 2 seconds, and the
total time due to I/O and preprocessing is about 22 seconds
if only a single input processor is used. Preprocessing cost
includes the time to do load balancing and quantization.
Figure 6 shows when using 12 input processors the total
time due to I/O and preprocessing becomes very close to
the rendering time, making possible hiding of the I/O and
preprocessing cost. Recall that m =

Tf +Tp
Tr

+ 1. Using the
actual values for Tf ,Tp, and Tr, we obtain:

(12.32+9.06)
2.0 + 1 = 11.69

c© The Eurographics Association 2004.

36

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

1DIP strategy for rendering 512X512 image

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Input Processors

T
im

e
(s

e
c
o

n
d

s
)

Rendering time

Total time

Figure 6: 64 rendering processors using the 1DIP strategy.
Image resolution is 512times512. When 12 input processors,
the total time due to I/O and preprocessing is reduced to
about 2 seconds, very close to the rendering time.

which matches Figure 6. If the image size is 1024×1024,
since the rendering time would increase, the number of
input processors needed would decrease. Our test results
verify this as shown in Figure 7. Only 7 input processors
are needed to make the total time similar to the rendering
time which is 3.63 seconds. Compute m using our model,
we obtain:

(12.32+9.06)
3.63 + 1 = 6.889

which matches.

The cost of preprocessing can vary significantly depend-
ing on the visualization requirements. In the first set of tests,
we used a rather complex function to quantize the volume
data. When we switched to a simple linear quantization
method, the preprocessing cost was cut from 9.06 to 1.53
seconds. Substituting this new number into our model, we
obtain 7.9, which is consistent with our test results for ren-
dering 512×512 image as shown in Figure 8.

The second set of tests, we studied the 2DIP strategy.
Recall that the purpose of using 1DIP is to employ multi-
ple input processors to fetch a single time step of the data
for further cutting down the sending time, in contrast to
2DIP which concurrently reads multiple time steps. Fig-
ures 9 and 10 present our test results. Note that the total time
can be reduced to under 10 seconds when using 8 or more
input processors to read one time step of the data. (Recall in
the 1DIP case, it takes more than 20 seconds to read and pre-
process a single time step of the data.) More importantly, the
sending time is reduced to under 1 second making possible
displaying rates at multiple frames per second, as revealed in
Figure 11 which only plots the sending time. Our test results

1DIP strategy for rendering 1024X1024 image

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Number of Input Processors

T
im

e
(s

e
c
o

n
d

s
) Rendering time

Total time

Figure 7: 64 rendering processors using the 1DIP strategy.
Image resolution is 1024times1024. Only 7 input processors
are needed to make the time due to I/O and preprocessing
close to the rendering time.

Rendering 512x512 image using simple quantization

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Number of Input Processors

T
im

e
(s

e
c
o
n
d
s
)

Rendering time

Total time

Figure 8: Preprocessing time is significantly reduced be-
cause of using a simple linear quantization method instead.
As a result, the number of input processors required de-
creases.

c© The Eurographics Association 2004.

37

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

2DIP(Collective noncontiguous read)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Number of Input Processor for Fetching One Timestep

T
im

e
(s

e
c
o

n
d

)

Total time

Fetching time

Preprocessing time

Sending time

Figure 9: Using 2DIP strategy with Collective Noncontigu-
ous Read, sending time is reduced to under 1 second which
makes interactive visualization possible.

2DIP Strategy (Independent contiguous read)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Number of Input Processors for Fetching One Timestep

T
im

e
(S

e
c
o

n
d

)

Total time

Fetching time

Preprocessing time

Sending time

Figure 10: Using 2DIP strategy with Independent Contigu-
ous Read, not only the sending time is reduced to under 1
second, but the total time becomes under 10 seconds.

also demonstrate that the Independent Contiguous Read is
superior than the Collective Noncontiguous Read.

Finally, our further tests using 256 rendering processors
show that the 1DIP strategy is less scalable. While the ren-
dering time is reduced to under a second, using more than 14
input processors per group (i.e., m=14) with 2DIP, we can
still completely hide the I/O and preprocessing cost, but not
with IDIP. Adaptive rendering can significantly reduce both
the rendering time and the amount of data that must be trans-
ferred from disk to the rendering processors. The effective-

2DIP Sending Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

Number of Input Processors for Sending One Timestep

T
im

e
(s

ec
o

n
d

)

Sending time

Figure 11: The cost of sending one time step when us-
ing 2DIP decreases steadily as more Input processors are
used. This plots indicates that it is possible to reach multiple
frames per second rendering rates.

ness of the IDIP or 2DIP strategy stays the same regardless
of using adaptive rendering or not.

7. Conclustions

We have experimentally studied new I/O strategies for
the parallel visualization of large-scale earthquake simula-
tions. This parallel visualization solution incorporates adap-
tive rendering, a highly efficiently parallel image composit-
ing algorithm, and the new I/O strategies to make possi-
ble near-interactive visualization of large-scale time-varying
data. Our performance study using up to 276 processors of
LeMieux at the PSC demonstrates convincing results, and
also reveals the interplay between data transport strategy
used and interframe delay.

We have addressed the I/O problem of the massively par-
allel rendering. The next subject of study is load balancing.
We plan to investigate a fine grain load redistribution method
and study how to reduce its overhead as much as possible.
We have demonstrated that using multiple data servers helps
not only remove the I/O bottleneck but also hide preprocess-
ing cost. Using input processing to also handle load balanc-
ing could be a promising solution.

Presently the image compositing cost is about constant.
We believe compression can help lower communication cost
to possibly make the overall compositing scalable to large
machine size. Our preliminary test results show a 50% re-
duction in the overall image compositing time with compres-
sion.

We have not exploited the SMP features of LeMieux,
which we believe could allow us to accelerate the rendering
calculations while reducing communication cost. The result
will be a more scalable renderer offering higher frame rates.

c© The Eurographics Association 2004.

38

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

Adaptive rendering will continue to play a major role in
our subsequent work. As shown previously, the full render-
ing and adaptive rendering can result in visually indistin-
guishable results but the saving in rendering cost can be
tremendous. Our study in this direction will focus on how
adaptive rendering can be done with minimal user interven-
tion and perception of level switching. Further optimization
might be possible with adaptive fetching according to the
selected level.

Even though our performance study was conducted with
batch mode rendering the test results show that interactive
visualization is possible. The subsequent task is to design ap-
propriate user interface and interaction techniques for inter-
active browsing in both the spatial and temporal domains of
the data. Scientists therefore can conduct interactive data ex-
ploration on their desktop. A buffering mechanism is likely
needed for the user to conduct spatial domain exploration
of a selected time step, which would defer the rendering
of incoming time steps. To complicate the problem fur-
ther, it could be desirable to create a single visualization
by making use of multiple variables and/or multiple time
steps [SLM02].

Finally, it is advantageous to run the parallel simulation
and renderer simultaneously on either the same machine or
two different machines connected with high-speed network
interconnect such as the Quadrics network which has a band-
width over 300 megabytes per second, permitting remote in-
teraction with the simulation and visualization.

Acknowledgments

This work has been sponsored in part by the U.S. Na-
tional Science Foundation under contracts ACI 9983641
(PECASE award), ACI 0325934 (ITR), ACI 0222991, and
CMS-9980063; the U.S. Department of Energy under Mem-
orandum Agreements No. DE-FC02-01ER41202 (SciDAC)
and No. B523578 (ASCI VIEWS); the LANL/UC CARE
program; and the National Institute of Health. Pittsburgh Su-
percomputing Center (PSC) provided time on their parallel
computers through AAB grant BCS020001P. The authors
would like to thank Rajeev Thakur for the discussion on MPI
I/O, and Jacobo Bielak, Omar Ghattas, and Eui Joong Kim
for providing the earthquake simulation datasets. Thanks es-
pecially go to Paul Nowoczynski and John Urbanic for their
assistance on setting up the needed system support at PSC.

References

[AP98] AHRENS J., PAINTER J.: Efficient sort-
last rendering using compression-based image
compositing. In Proceedings of the 2nd Eu-
rographics Workshop on Parallel Graphics and
Visualization (1998), pp. 145–151.

[BBG∗98] BAO H., BIELAK J., GHATTAS O., KALLI-
VOKAS L. F., O’HALLARON D. R.,

SHEWCHUK J. R., XU J.: Large-scale
simulation of elastic wave propagation in
heterogeneous media on parallel computers.
Computer Methods in Applied Mechanics and
Engineering 152, 1–2 (Jan. 1998), 85–102.

[BTL∗00] BETHEL W., TIERNEY B., LEE J., GUNTER

D., LAU S.: Using high-speed WANs and
network data caches to enable remote and dis-
tributed visualization. In Proceedings of Super-
computing 2C00 (November 2000).

[CFN02] CHEN L., FUJISHIRO I., NAKAJIMA K.: Par-
allel performance optimization of large-scale
unstructured data visualization for the earth
simulator. In Proceedings of the Fourth Eu-
rographics Workshop on Parallel Graphics and
Visualization (2002), pp. 133–140.

[GLT99] GROPP W., LUSK E., THAKUR R.: Us-
ing MPI-2: Advanced Features of the Message
Passing Interface. The MIT Press, 1999.

[GS03] GARCIA A., SHEN H.-W.: Asynchronous ren-
dering for time-varying volume datasets on PC
clusters. In Proceedings of the IEEE Visual-
ization 2003 Conference (to appear) (October
2003).

[HDF] HDF5 home page, the national cen-
ter for supercomputing applications.
http://hdf.ncsa.uiuc.edu/HDF5.

[Hsu93] HSU W. M.: Segmented ray casting for data
parallel volume rendering. In Proceedings of
1993 Parallel Rendering Symposium (1993),
pp. 7–14.

[LLC∗03] LI J., LIAO W.-K., CHOUDHARY A., ROSS

R., THAKUR R., GROPP W., LATHAM R.,
SIEGEL A., GALLAGHER B., ZINGALE M.:
Parallel netCDF: A high-performance scientific
I/O interface. In Proceedings of Supercomput-
ing 2003 Conference (November 2003).

[LMC02] LUM E., MA K.-L., CLYNE J.: A hardware-
assisted scalable solution for interactive volume
rendering of time-varying data. IEEE Transac-
tions on Visualization and Computer Graphics
8, 3 (2002), 286–301.

[LRN96] LEE T.-Y., RAGHAVENDRA C. S., NICHOLAS

J. B.: Image composition schemes for sort-last
polygon rendering on 2d mesh multicomputers.
IEEE Transactions on Visualization and Com-
puter Graphics 2, 3 (1996), 202–217.

[LWMT97] LI P., WHITMAN S., MENDOZA R., TSIAO J.:
ParVox – a parallel spaltting volume rendering
system for distributed visualization. In Pro-

c© The Eurographics Association 2004.

39

Hongfeng Yu, Kwan-Liu Ma & Joel Welling / I/O Strategies for Parallel Rendering ofLarge Time-Varying Volume Data

ceedings of 1997 Symposium on Parallel Ren-
dering (1997), pp. 7–14.

[Ma95] MA K.-L.: Parallel volume ray-casting for
unstructured-grid data on distributed-memory
architectures. In Proceedings of the Parallel
Rendering ’95 Symposium (1995), pp. 23–30.
Atlanta, Georgia, October 30-31.

[Ma03] MA K.-L.: Visualizing time-varying volume
data. IEEE Computing in Science & Engineer-
ing 5, 2 (2003), 34–42.

[MC97] MA K.-L., CROCKETT T.: A scalable parallel
cell-projection volume rendering algorithm for
three-dimensional unstructured data. In Pro-
ceedings of 1997 Symposium on Parallel Ren-
dering (1997), pp. 95–104.

[MC99] MA K.-L., CROCKETT T.: Parallel visualiza-
tion of large-scale aerodynamics calculations:
A case study on the Cray T3E. In Proceed-
ings of 1999 IEEE Parallel Visualization and
Graphics Symposium (1999), pp. 15–20.

[MC00] MA K.-L., CAMP D.: High performance vi-
sualization of time-varying volume data over a
wide-area network. In Proceedings of Super-
computing 2000 Conference (November 2000).

[MM98] MCPHERSON A., MALTRUD M.: POPTEX:
Interactive ocean model visualization using tex-
ture mapping hardware. In Proceedings of the
Visualization ’98 Conference (October 18-23
1998), pp. 471–474.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C.,
KROGH M.: Parallel Volume Rendering Using
Binary-Swap Compositing. IEEE Computer
Graphics Applications 14, 4 (July 1994), 59–
67.

[MSB∗03] MA K.-L., STOMPEL A., BIELAK J., GHAT-
TAS O., KIM E.: Visualizing large-scale earth-
quake simulations. In Proceedings of the Su-
percomputing 2003 Conference (2003).

[Neu94] NEUMANN U.: Communication costs for par-
allel volume-rendering algorithms. IEEE Com-
puter Graphics and Applications 14, 4 (July
1994), 49–58.

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN

P., HANSEN C.: Interactive Ray Tracing
for Volume Visualization. IEEE Transactions
on Visualization and Computer Graphics 5, 3
(July-September 1999), 1–13.

[Qua] The Quake project, Carnegie Mellon Uni-
versity and San Diego State University.
http://www.cs.cmu.edu/˜quake.

[SLM02] STOMPEL A., LUM E., MA K.-L.: Vi-
sualization of multidimensional, multivariate
volume data using hardware-accelerated non-
photorealistic rendering techniques. In Pro-
ceedings of Pacific Graphics 2002 Conference
(2002), pp. 394–402.

[SML∗03] STOMPEL A., MA K.-L., LUM E., AHRENS

J., PATCHETT J.: SLIC: scheduled linear im-
age compositing for parallel volume rendering.
In Proceedings of IEEE Sympoisum on Paral-
lel and Large-Data Visualization and Graphics
(October 2003), pp. 33–40.

[TOL02] TU T., O’HALLARON D., LOPEZ J.: Etree: A
database-oriented method for generating large
octree meshes. In Proceedings of the Eleventh
International Meshing Roundtable (September
2002), pp. 127–138.

[WPLM01] WYLIE B., PAVLAKOS C., LEWIS V., MORE-
LAND K.: Scalable rendering on PC clusters.
IEEE Computer Graphics and Applications 21,
4 (July/August 2001), 62–70.

c© The Eurographics Association 2004.

40

