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Abstract

The computer graphics industry, and in particular those involved with films, games and virtual reality, continue
to demand more and more realistic computer generated images. The complexity of the scenes being modelled
and the high fidelity required of the images means that rendering is simply not possible in a reasonable time
(let alone real-time) on a single computer[ BrW03]. Interactive ray tracing exists today[ WSB*01], but real-time
global illumination remains a major challenge. Fortunately, “computer graphics cards are developing at Moore’s
law cubed” [David Kirk, Chief Scientist, nVIDIA]. Such performance increases are directly due to the inherent
parallel nature of modern graphics cards. If this trend continues, they will be 100 times faster in a mere 3.5
years time, 1000 times faster in 5 years and they will be massively parallel. Unfortunately, past experiences in
designing systems that can exploit parallel processors in anything beyond embarrassingly trivial ways are not
encouraging. For real-time interaction with high fidelity images, the parallel processing requirements will not
be embarrassingly trivial! Regular and irregular patterns of synchronisation and communication will have to be
managed over networks of fine-grained (for accuracy) model components whose scale, topology and physical
distribution are dynamically evolving. This paper reviews weaknesses in our standard approaches to the design
and implementation of concurrent systems and describes ways forward that are mature and practical — both for the
programmer to program and the hardware to execute. They are built on decades of research into process algebrae
(CSP and the m-calculus), but are able to preserve and exploit traditional skills and capabilities of serial software
engineering and von Neumann architecture (components of which will still form the processor base of parallel
systems for at least the next decade). The changes are, therefore, evolutionary rather than revolutionary — but are
nevertheless essential both in the field of graphics and for the wider Grand Challenges of computer science.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Parallel Processing

1. Introduction tively chunky (on-chip SMP and MIMD). Graphics engines
1.1. Massive parallelism — beyond the von Neumann will folliow one or more of the.se rogtes and grap_h 168 engt-
neers will be amongst the first in having to deal with it.

Modern silicon fabrication has delivered astonishing in-

creases in the density of logic that can be accommodated
on any given chip. Soon, the only credible way of exploit-
ing these riches is to make that logic parallel — we sim-
ply do not know how to design a serial processor complex
enough to use all the real estate. Filling the silicon with repli-
cated processor ‘cores’ is the obvious solution, providing we
lay in sufficient and efficient mechanisms to let them syn-
chronise, communicate and share resources. That still leaves
plenty of arguments regarding the style and granularity of
this parallelism — from the very fine-grained (e.g. FPGAs),

Hiding parallelism in the hardware from those building
applications is not going to be easy. Programming languages
and tools have been highly successful at shielding their users
from the intricacies of serial hardware (such as the number
and type of registers, levels of cache hierarchy, out-of-order
code execution). This reflects the success of the von Neu-
mann paradigm in providing a ‘bridge’ between serial soft-
ware and serial hardware. As Valiant proposed[Val90], we
need to build such a bridge between parallel software and
parallel hardware. Note, however, that this does not imply

through lock-step data-parallel (SIMD, vector) to the rela- finding magical mappings-from serial software on to paral-
delivered by

(© The Eurographics Association 2004. ™ EUROGRAPH'CS
= DIGITAL LIBRARY
www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org

18 P. H. Welch / Through the Concurrency Gateway

lel hardware (and which would mean we would not have to
change our ways). These will probably never be found and
that is a very good thing — parallelism is far too valuable
an idea to be hidden from those trying to solve real world
problems.

This paper outlines a framework for dealing with a vari-
ety of parallel hardware architectures likely to be on offer
over the next few years. The ideas embrace concurrency as a
friend ... as ways to structure both the design and implemen-
tation of systems that are natural, open to analysis, intuitive
and efficient. They preserve all the skills we have developed
for working with serial (von Neumann) software, allowing
them to used independently from parallel aspects of the sys-
tem. They reflect similar alliances in hardware, where the
developments in serial processor design are simply too good
to discard.

1.2. Concurrency is natural

The real world exhibits concurrency at all levels of scale -
from atomic, through human, to astronomic. This concur-
rency is endemic. Central points of control do not remain sta-
ble for long. Our experiences with building and interacting
with complex systems hint at something stronger - namely
that central points of control actively work against the logic
and efficiency of whatever it is that is we are trying to con-
trol/model/understand and that, in the long term, we must
give up on it. The case made here is that it is necessary to
give up on it now, that it is possible to do so and that it will
be profitable to do so. Indeed, our ability to harness next
generation hardware depends on it. But a mindset needs to
be changed and that requires a lot of pushing.

1.3. Current mechanisms are unnatural

In present day computer engineering, concurrency is not
considered a fundamental concept — to be used everyday
with the same fluency as we might use, say, classes or while-
loops. Tt is taught, almost universally, only as an advanced
topic and only to be used when there are no other ways to
obtain specific performance targets. Examples include the
reduction of response times to external interrupts/commands
(whilst long running background computations are continu-
ing), or the speed-up of completion times for large-scale sci-
entific or engineering calculations (through the use of multi-
processors). Both of these, of course, are relevant for inter-
active high-fidelity graphics.

Standard concurrency technologies are based on multiple
threads of execution plus various kinds of locks to control
the sharing of data between them. Get the locking wrong
and systems will mysteriously corrupt themselves or dead-
lock. Received wisdom from decades of practice is that con-
currency is very hard, and we are advised to steer well clear
if at all possible [MWO00].

In addition to these logical problems, there are also per-
formance problems. Standard thread management imposes
significant overheads in the form of additional memory de-
mands (to maintain thread state) and run time (to allocate
and garbage-collect thread state, to switch processor context
between states, to recover from cache misses resulting from
switched contexts, and to execute the protocols necessary for
the correct and safe operation of locks). Even when using
only ‘lightweight’ threads, applications need to limit their
implementations to only a few hundred threads per proces-
sor — beyond which performance catastrophically collapses
(usually as a result of memory thrashing).

1.4. Our ambitions leave us no choice

Modern computing already faces a dilemma: it is driven
by ever-increasing demands for system functionality, perfor-
mance, responsiveness, inter-operability, dynamics, safety,
and security. Yet our standard concurrency models and tools,
which ought to be fundamental in addressing these demands,
throw up serious new problems that act against them. As a
result, concurrency is used on a relatively small scale, where
its analysis is (just) manageable and the performance bene-
fits outweigh the overheads.

But the problems — and our ambitions, even now — are
much bigger than this. For example, the visualisation and
control of air traffic over the UK requires the management
of far greater concurrency than standard practice will di-
rectly and safely and simply allow. Common web services
need to be able to conduct business with tens of thousands of
clients simultaneously. Modelling even the simplest biologi-
cal organisms quickly takes us into consideration of millions
of concurrently active, autonomous, and interacting, agents.
Limited by such constraints, we have to compromise on the
degree of concurrency in our application design and imple-
mentation. Those compromises add significant complexity
that, combined with the semantic instability of the concur-
rency mechanisms we do practice, lead to mistakes and the
poor quality, late delivery and over-budget systems that are
accepted as normal — for now — by our industry and its cus-
tomers.

This submission suggests some ways for leaving these
constraints behind.

2. A thesis and a hypothesis

All computer systems have to model the real world, at some
appropriate level of abstraction, if they are to receive infor-
mation (data, signals, etc.) and feedback useful information
(reports, control, etc.). To make that modelling easier, we
should expect concurrency to play a fundamental role in the
design and implementation of systems, reflecting the reality
of the environment in which they are embedded. This does
not currently seem to be the case.
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Our thesis is that computer science has taken at least one
wrong turn. Concurrency should be a natural way to design
any system above a minimal level of complexity. It should
simplify and hasten the construction, commissioning, and
maintenance of systems, it should not introduce the hazards
that are evident in modern practice; it should be employed
as a matter of routine. Natural mechanisms should map into
simple engineering principles with low cost and high benefit.
Our hypothesis is that this is possible.

2.1. Combining CSP and the n-calculus

We propose a computational framework, based on estab-
lished ideas of process algebra, to test the truth of the above
hypothesis. It will be accessible from current computing en-
vironments (platforms, operating systems, languages) but
will provide a foundation for novel ones in the future. It will
integrate the best ideas from Hoare’s Communicating Se-
quential Processes (CSP)[Hoa78, Hoa85, Ros97] and Mil-
ner’s m-calculus[Mil99], though this will require additional
work on the theory.

CSP has a compositional and denotational semantics,
which means that it allows modular and incremental de-
velopment (refinement) even for concurrent components. In
turn, this means that we get no surprises when we run pro-
cesses in parallel (since their points of interaction have to be
explicitly handled by all parties to these interactions). This
is simply not the case for standard threads-and-locks concur-
rency, which have no formal denotational semantics and by
which we get surprised all the time.

However, we need some extensions to describe certain
new dynamics — and this is where we turn to the n-calculus.
Specifically, we want to allow networks of processes to
evolve, to change their topologies, to cope with growth and
decay without losing semantic or structural integrity. We
want to address the mobility of processes, channels and data
and understand the relationships between these ideas. We
want to retain the ability to reason about such systems, pre-
serving the concept of refinement.

2.2. Testing the hypothesis

The framework has to provide highly efficient practical real-
isations of this extended model. Its success in targeting fu-
ture parallel graphics hardware will be one long term test
of the above hypothesis. Shorter term tests will be the de-
velopment of demonstrators on current platforms with the
following characteristics:

o they will be as complex as needed — and no more (e.g.
through the concurrency in the design being directly de-
livered by the concurrency in the implementation);

o they will be scalable both in performance and function;
[Note: by functional scalability, we mean that the cost
of incremental enhancement depends only on the scale of
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that enhancement — not upon the scale of the system being
enhanced. The latter is the present state-of-the-art and is
a major reason behind system delay and eventual failure. |

o they will be amenable to formal specification and verifi-
cation;

e notwithstanding the above, the concurrency models (and
mechanisms) in their design (and implementation) will be
practical for everyday use by non-specialists — concur-
rency becomes a fundamental element in the toolkit of
every professional computer engineer;

o they will make maximum use of the underlying computa-
tion platform (through significantly reduced overheads for
the management of concurrency — including the response
times to interrupts).

3. Current state of the framework

Over the past ten years, our group[WelO4c] at Kent has
been devoted to laying the foundations for such a frame-
work. We have developed — and released as open source
— concurrency packages for the Java (JCSP), C (CCSP),
C++ (C++CSP) and J# (J#CSP) programming languages
[WelO4a, WAF02, WV02, Wel00, BrW03, Qui04]. Despite
their names, they all provide the mobile dynamics fed in
from the n-calculus (although it is easy to mis-program
them, since their base languages do not have a clue as to
what is happening). We have also advanced the original CSP
programming language, occam, to do the same — but with
some major safety and performance benefits (because the
base language does know what is happening). An overview
of the current state and potential of this language (chris-
tened, for the moment, occam-r) is given below. More de-
tailed overviews of this work (on JCSP and occam-m) can be
found on-line at [WelO4b].

occam-x is a sufficiently small language to allow exper-
imental modification and extension, whilst being built on a
language of proven industrial strength. It integrates the best
features of CSP and the m-calculus, focussing them into a
form whose semantics is intuitive and amenable to every-
day engineering by people who are not specialised mathe-
maticians — the mathematics being built into the language
design, its compiler, run-time system and tools so that users
benefit automatically from that foundation. The new dynam-
ics broadens its area of direct application to a wide field of
industrial, commercial and scientific practice.

occam-n runs on modern computing platforms and has
much of the flexibility of Java and C, whilst at the
same time retaining all the safety guarantees of classi-
cal occam (e.g. against aliasing and parallel usage er-
rors) and the lightness of its concurrency mechanisms. It
supports the dynamic allocation of processes, data and
channels, their movement across channels and their au-
tomatic de-allocation (without the need for garbage col-
lection, which otherwise invalidates real-time guarantees)
[BW04, Bar04, BaW03, BW01, SBWO03, BJV03]. We have
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extended the range of static safety checks so that aliasing
errors and race hazards are not possible in occam-m sys-
tems, despite the new dynamics. This means that subtle side-
effects between component processes cannot exist, which
impacts (positively) on the general scalability and depend-
ability of systems. The mobility and dynamic construction
of processes, channels and data opens up a wealth of new
design options that will let us follow nature more closely —
with network structures evolving at run-time. Apart from the
logical benefits derived from such directness and flexibility,
there will be numerous gains for application efficiency.

Performance overheads for all occam-m concurrency
mechanisms are mostly unit time, with the order of be-
tween 50 and 150 nanoseconds on modestly powered PCs
(1GHz). Memory overheads are also very light: no more
than 8 words per process. This means that dynamic sys-
tems evolving hundreds of thousands of (non-trivial) pro-
cesses are already practical on single processors. Those pro-
cesses can be implementing complex behaviour with time
and space overheads for managing the concurrency mini-
mal (less than 10%). Further, occam-n networks can nat-
urally span many machines — the concurrency model does
not change between internal and external concurrency. Ap-
plication networks up to millions of non-trivial processes
then become viable (e.g. on modest clusters of laptops). The
speedup in Moore’s Law predicted over the next few years
for graphics accelerators means that dynamic evolving net-
works of hundreds of millions of processes will become pos-
sible. This enables novel approaches to model building and
visualisation that promises far greater accuracy and realism
than serial techniques will ever allow.

A formal denotational semantics for occam-n mobile pro-
cesses, based on Hoare and Jifeng’s Unified Theory of Pro-
gramming[HJ99], has been drafted by Jim Woodcock (also
at Kent) and one of his students (Xingbei Tang). However,
these mobiles have not yet been implemented by the oc-
cam-n compiler and kernel, although we believe this will
be straightforward. This contrasts to the status of mobile
channel-ends, which are fully supported by the current sys-
tem but for which a denotational semantics is still being re-
searched.

4. One model application

With colleagues at Royal Holloway and at York, we are in-
terested in questions about dependability and evolution for
novel embedded networks that may become viable during
the next 10-20 years: Nanite Assemblers. These are active
devices that manipulate their world (e.g. a human body)
at the nanoscopic level, but which cause macroscopic ef-
fects (e.g. through cooperating to assemble artefacts ’cell’ by
“cell’). In order to be effective, vast numbers of such nanites
are needed, and these numbers may grow exponentially as
they assemble copies of themselves. We need the capabilities
to design, model, program and control complex and dynamic

networks of these machines, and to give credible assurance
that they behave properly. As with swarm intelligence and
ant colony algorithms, the interesting behaviour of a host of
nanites comes from emergent properties. Interactive visuali-
sation will be crucial to allow flexible experimentation.

Hierarchical networks of communicating processes are
particularly suitable for these problems. But the languages
used to support modelling and simulation must be simple,
formal, and dynamic, and have a high-performance imple-
mentation. The models of such complex systems must be as
simple as possible. The models must be amenable to ma-
nipulation and formal reasoning. The topologies of these
networks will evolve dramatically, as they support growth
and decay that comes from nanites moving, splitting, and
combining. Individual nanites must not only be mobile, they
must also be aware of their own location and the proxim-
ity of their neighbours. Finally, simulations will require very
large numbers of processes, so their implementation had bet-
ter have very low overheads.

Process mobility and neighbourhood awareness (so they
can find each other!) requires some new thinking. We are
exploring the construction of a matrix of processes defin-
ing the topology of the space over which mobile agent pro-
cesses roam. The matrix nodes are (mostly passive) servers,
in touch with neighbouring nodes and on which arriving
agents register. An agent attaches to one matrix node at a
time, through which it can sense the presence of other agents
and, hence, connect and interact as it chooses (using agent-
specific protocols to avoid deadlock). Matrix-agent proto-
cols will be generic. Agents may enrol and resign from local
(or global) barrier synchronisations to maintain a sense of
time — as well as move and reproduce according to their own
rules. Matrix nodes may also have their own agenda, allow-
ing them to be pro-active in reshaping the space they define
(e.g. through the creation of worm-holes) for more exotic
environments.

A good candidate for modelling and programming such
systems is occam-w it is robust and lightweight, and has
sound theoretical support. We know how to construct sys-
tems to the order of millions of processes on modest proces-
sor resources, exhibiting rich behaviours in useful run-times.
This is enough to make a start on our journey.

5. Conclusions

A gateway event [Gel94], described by Stepney et al.
[UKCO03], “produces a profound and fundamental change
to the system: once through the gateway, life is never the
same again”. Software engineers has been toying with con-
currency for more than 35 years, but it has always remained
the preserve of the few — a difficult and risky technology
of last resort. Modern hardware architectures, with graph-
ics engines at the forefront, are forcing concurrency into the
mainstream — for routine consideration by the many. Which
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places us in front of a significant gateway event in computa-
tion: that of doing business with concurrency as a friend and
not as a foe.

Success requires a serious change in mindset, not all the
details of which are yet clear. One that is, though, is to wel-
come the concept of process as a a first-class engineering
abstraction — in the same way as concepts such as loops,
procedures and data-structures have been welcomed as first-
class abstractions. The notion of process must also formalise
ideas of synchronisation, communication and sharing. It
may help if processes default to a deterministic semantics —
i.e. the communication model should be secure, whether by
message-passing or shared-memory. Non-determinism must
be allowed, but its introduction should be explicit and only
to meet specific needs in the application.

Process management must be very fast and dynamic, al-
lowing networks to be constructed, reshaped and taken down
on-the-fly. De-centralisation of control will be essential,
with global behaviour emerging from myriads of local be-
haviours. For full autonomy, processes themselves will need
to become mobile — aware of their neighbourhood and other
processes that may be only temporarily resident — and able
to connect, reproduce, disconnect and relocate based on lo-
cal negotiations and decision making.

We have outlined one approach to a framework for meet-
ing these goals — doubtless there are others. We are still some
way short of a full reconciliation between the necessarily
differing aspects of parallel hardware and software [Wel95].
That will be needed to cope with rapidly changing capabili-
ties in hardware technology that will be inherently parallel.
Applications engineers will need to be:

e exposed to the parallel nature of the application itself,
which must be explicitly preserved throughout design and
implementation;

e shielded from the parallel nature of the hardware to which
the system happens (today) to be targeted.

We are moving towards this ideal. Meanwhile, there is
much to be done as we await the next generation of hard-
ware accelerators that will force our hand. It is time to move
through the concurrency gateway.
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