
Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)
D. Bartz, X. Pueyo, E. Reinhard (Editors)

The Parallelization of the Perspective Shear-Warp Volume
Rendering Algorithm

Jürgen P. Schulze† and Ulrich Lang†

High Performance Computing Center Stuttgart (HLRS), Germany

Abstract
The shear-warp algorithm for volume rendering is among the fastest volume rendering algorithms. It is an object-
order algorithm, based on the idea of the factorization of the view matrix into a 3D shear and a 2D warp compo-
nent. Thus, the compositing can be done in sheared object space, which allows the algorithm to take advantage of
data locality. Although the idea of a perspective projection shear-warp algorithm is not new, it is not widely used.
That may be because it is slower than the parallel projection algorithm and often slower than hardware supported
approaches.
In this paper, we present a new parallelized version of the perspective shear-warp algorithm. The parallelized
algorithm was designed for distributed memory machines using MPI. The new algorithm takes advantage of the
idea that the warp can be done in most computers’ graphics hardware very fast, so that the remote parallel com-
puter only needs to do the compositing. Our algorithm uses this idea to do the compositing on the remote machine,
which transfers the resulting 2D intermediate image to the actual display machine. Even though the display ma-
chine could be a moderately equipped PC or laptop computer, it can be used to display complex volumetric data,
provided there is a network connection to a high performance parallel computer. Furthermore, remote rendering
could be used to drive virtual environments, which typically require perspective projection and high frame rates
for stereo projection and multiple screens.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architec-
ture/Parallel Processing; I.3.12 [Computer Graphics]: Graphics Systems/Distributed and Network Graphics; I.4.10
[Image Processing and Computer Vision]: Image Representation/Volumetric.

1. Introduction

Although interactive volume rendering today is mostly done
with specialized computer graphics hardware, which is usu-
ally high end graphics equipment with fast 3D texturing
and large texture memory, this technique has its limitations.
In today’s graphics workstations, a maximum size of 128
MB is available for texture data. Larger volumes have to
be swapped in and out of texture memory, which prevents
interactivity. But for software based volume rendering ap-
proaches, single workstations are not fast enough to display
large volume datasets interactively.

Another bottleneck of the texture based approach is the

† Allmandring 30, 70550 Stuttgart, Germany
Email: {schulze|lang}@hlrs.de

pixel fill rate. It currently does not suffice to reach interactive
frame rates on a10002 pixels screen. Display screens of this
resolution are quite common in virtual environments, which
are the motivation for the developments presented in this
paper. In many installations, a large visualization machine
drives multiple display screens with stereoscopic images to
create the effect of immersion. The two most widely used ap-
proaches to drive virtual reality environments are high-end
multi-pipe graphics machines or networked PCs. Networked
PCs suffer from the same limitations for volume rendering as
single graphics workstations, and the current high-end hard-
ware does not provide that much additional functionality to
justify its cost, at least in the field of volume rendering.

In the recent past, clusters of off-the-shelf personal com-
puters have gained importance in the field of parallel com-
puting. These clusters are usually linked with Fast Ethernet

c© The Eurographics Association 2002.

61

http://www.eg.org
http://diglib.eg.org

Schulze and Lang / Perspective Shear-Warp Parallelization

or Myrinet, both of which provide high bandwidth and low
latency. Many clusters are competitive to massively parallel
machines. Due to their relatively low price, they are some-
times installed in non-central places, for instance directly
in departments at a university, which had to share a much
more expensive machine with many other departments be-
fore. This de-centralization of parallel computing power in-
creases the chances of getting interactive compute time on a
parallel architecture for volume rendering.

The better availability of interactive nodes on parallel
computers makes it worthwhile to think about using them
for volume rendering in connection with a visualization ma-
chine which provides the functionality of driving multiple
displays in stereo. The shear-warp algorithm is a very fast al-
gorithm, which does not rely on special graphics hardware,
and it was shown that it scales well on parallel computers for
the case of parallel projection5.

The shear-warp algorithm processes volume data arranged
on regular grids. Its idea is to factorize the viewing ma-
trix into a 3D shear and scale, and a 2D warp component.
It was proved that the projection can be done before the
warp11. After applying the shear and scale matrices, the vol-
ume slices are projected and composited to a 2D sheared im-
age. The shear step enables the algorithm to operate in object
space with high memory locality, which optimizes the usage
of RAM caching mechanisms and other hardware accelera-
tions. Since the warp can be performed in 2-space, the com-
putational complexity is decreased considerably, compared
to a 3-space operation.

2. Previous Work

The fastest implementation of the parallel projection shear-
warp volume rendering algorithm was done by Lacroute6.
He also derived the perspective projection algorithm, but
never presented an implementation. This was done later in11.
Algorithms based on the shear-warp factorization have often
been compared to hardware accelerated volume rendering
techniques, such as general purpose graphics boards with
texturing acceleration1, or specialized volume rendering
hardware4, 8, 7. In 7 the idea of a texture hardware supported
warp is applied to the parallel projection shear-warp algo-
rithm.

Although on single processor machines the shear-warp al-
gorithm is usually slower than hardware supported solutions,
the good scalability of the shear-warp algorithm allows it to
be competitive on multiprocessor machines. The first paral-
lelization of the parallel projection algorithm was presented
in 5.

Standard PC graphics hardware can be used for volume
rendering directly. Even for the case that only 2D texturing
hardware is available, Rezk-Salama et al.10 describe an ap-
proach to generate high quality volume images. Westermann
and Ertl12 describe improvements for texture based volume

rendering. Compared to the shear-warp approach described
in this paper, these approaches require specific OpenGL ex-
tensions which are not part of the OpenGL standard, or
they are limited by the size of the texture memory. Fur-
thermore, all of them lack the flexibility of a software-only
approach, like an arbitrary number of light sources. Using
them with active stereo multi-display virtual environments
requires graphics drivers that support genlocking.

One of the most recent developments in the field of us-
ing clusters for visualization is the WireGL2 library, which
acts as an OpenGL driver to an application but distributes
the data which is to be displayed among a cluster of PCs.
Due to the large amount of data that has to be transferred
for each frame before it can be displayed, the Chromium li-
brary 3 was developed. For volume rendering, it allows the
distribution of the volume dataset among all cluster nodes,
each node rendering only its assigned partition. The draw-
back of this approach is that it requires a cluster of PCs with
graphics cards, while for the volume rendering approach pre-
sented in this paper a PC cluster without graphics hardware,
or a massively parallel high performance computer can be
used. These systems are typically acquired for simulations
in science and engineering.

3. The Rendering System

The development of the parallelized perspective projection
shear-warp algorithm is based on our work in11. We used
the object oriented Virvo volume renderer which was well
suited as a framework for the required parallel processing
extensions. Especially useful was the plug-in mechanism,
which allowed us to add a remote renderer to the existing
local rendering algorithms.

The extensions had to be done in two areas: first, the per-
spective projection algorithm had to be parallelized, and sec-
ond, a new remote renderer had to be written, which runs on
a parallel machine and communicates with the local display
machine via a network connection (see Figure 1). The net-
work connection is established directly between the renderer
plugin and the root node of the parallel computer.

3.1. The Parallelized Shear-Warp Algorithm

In 5, Lacroute parallelizes both the compositing and the
warp. The compositing is parallelized by partitioning the
object space into sections of intermediate image scanlines,
which are distributed among the available processors. Addi-
tionally, dynamic task stealing is supported for better load
balancing. The warp is parallelized using static interleaved
partitions without dynamic approaches.

So far, our algorithm only parallelizes the compositing,
but not the warp. The warp was not parallelized because, as
shown in11, it can be done very efficiently in graphics hard-
ware, even if only 2D texturing is supported. If 2D texturing

c© The Eurographics Association 2002.

62

Schulze and Lang / Perspective Shear-Warp Parallelization

Figure 1: Remote rendering system components.

acceleration is not supported by the display computer, the
warp can still be done fast for small output images, but the
overall performance degrades considerably for large output
images. In this case the warp could be done on the parallel
computer and the final image could be sent to the display
machine.

The compositing was parallelized by partitioning the
intermediate image into sections of scanlines, similar to
Lacroute’s approach, but task stealing was not implemented
yet. The idea is illustrated in Figure 2. Each process is as-
signed an equally sized section of the intermediate image. If
the scanlines cannot be distributed evenly, the root node is
the first to be assigned less lines than the other nodes, be-
cause it has to do the additional work of collecting all ren-
dered sections and sending the result to the display machine.

For perspective projection, the compositing is more ex-
pensive than for parallel projection, because every interme-
diate image scanline does not only require data from two
voxel lines, like in the case of parallel projection. It needs to
look at multiple voxel lines, depending on the degree of the
perspective. In extreme cases, a single intermediate image
pixel might even have to process an entire voxel slice from
the back of the volume to be computed correctly. In gen-
eral, the further away the slice that is currently processed,
the more voxels have to be accumulated for an intermedi-
ate image pixel. This does not necessarily affect rendering
speed, because less pixels have to be drawn per slice.

This feature of the perspective projection, and the fact
that shear-warp rendering expects three datasets in memory,
sorted by the coordinate axes, prevents the distribution of
the volume data on distributed memory machines. Each node
must have a copy of the entire volume dataset. If a large num-
ber of nodes are available, but memory is short, the only rea-
sonable memory distribution would be to split the available
nodes into three parts, one for each principal axis. Although
the maximum usable volume size would be three times as
high, this also means that only one third of the nodes can be
used for rendering at a time.

Figure 2: Intermediate image task distribution with sections
of the same size.

3.2. The Plug-In

Since the intermediate image generation is decoupled from
the actual drawing of the final image, the rendering plug-in
for the existing volume rendering software is fairly simple.
All it has to do is to pass the current view matrix to the re-
mote renderer, wait for the intermediate image, and warp the
image to the screen. Of course, all changes of image genera-
tion parameters also have to be passed to the remote renderer.
For instance, these can be transfer functions, interpolation
mode, or image quality.

The rendering plug-in does not have to know anything
about the compositing, but it requires the respective warp
matrix for every intermediate image it receives.

3.3. The Remote Renderer

At startup, the remote renderer must first receive the volume
data. Depending on the volume size and the network con-
nection, this can take a few seconds. Then the three RLE
encoded versions of the volume data (one for each princi-
pal axis) are generated and stored on each node. After that,
the remote renderer is ready to receive commands from the
renderer plug-in.

The following pseudo-code shows the flow of control for
the root node and the other nodes in the parallel algorithm.
The root node both distributes the commands and collects
the resulting intermediate image sections. The reception is
done by an MPI_Recv() command with the correct memory
address for the destination of the sections, so no additional
copying is necessary. When all sections have arrived at the
root node, the intermediate image is RLE encoded and then
transferred to the renderer plug-in, along with the respective
warp matrix.

procedure rootNodeRenderingLoop()

c© The Eurographics Association 2002.

63

Schulze and Lang / Perspective Shear-Warp Parallelization

{
Receive the view matrix from the plug-in().
Compute the appropriate section partitioning().
Pass the section partition parameters to the other nodes.
Render own section.
Receive the rendered sections from the other nodes.
Encode the intermediate image.
Transfer the intermediate image to the plug-in.

}

procedureotherNodesRenderingLoop()
{

Receive section parameters from the root node.
Render the section.
Transfer the rendered section to the root node.

}

The remote renderer is a batch mode program with no
direct user interaction after startup. This was an important
requirement, because the renderer should run on as many
different platforms as possible, even if there was no X Win-
dow support. In addition to the number of processes which is
passed to the MPI startup tool, the remote renderer expects
two command line parameters: the port number and the dis-
play host address for the socket connection. Everything else
is transferred from the display host.

3.4. Data Transfer

All data communication between the renderer plug-in and
the remote renderer is done with one bidirectional TCP
socket connection. It is established at startup and lasts un-
til the application is closed. The TCP connection turned out
to be fast enough for our purposes, because the bottleneck is
the compositing on the remote machine.

When the parallel projection shear-warp algorithm is
used, the intermediate image pixels are usually mapped to
voxels 1:1. This can be done because the slices are only
sheared and not scaled. In the case of perspective projection,
the additional scaling makes the slices smaller the further
back they are. Thus, we use more than one pixel per voxel
for the front volume slice. This ensures that the smaller slices
map to enough pixels on the image, so that enough detail can
be retained.

For this reason, the intermediate images for perspec-
tive projection are larger than for parallel projection. Fur-
thermore we constrain the intermediate image size to edge
lengths of powers of two, so the warp can be done with-
out resizing the image - this is a 2D texturing hardware
requirement. Typical10242 pixel RGBA images require 4
megabytes (MB) of memory. An interactive frame rate of 10
frames per second would require a data transfer rate of 40
MB per second, which is far beyond the bandwidth of Fast
Ethernet (100 Mbit/s).

Figure 3: Encoding of actually used intermediate image
window.

Fortunately, the intermediate image usually contains large
transparent regions, which can efficiently be run length en-
coded (RLE). We implemented two RLE algorithms: the first
algorithm encodes the entire intermediate image, the second
encodes only the rectangular window which was actually
touched in the compositing step, see Figure 3. It turned out
that for large window sizes the first algorithm is faster, but in
most cases the second algorithm is faster. You will find some
performance numbers in section 4.3.

An important issue with the compression algorithm was to
make sure that no memory is unnecessarily copied, allocated
or deallocated in the process of encoding and decoding. This
goal was reached by not reallocating memory space when
the intermediate image size remains the same or becomes
smaller. Only for images larger than the allocated space a re-
allocation is done. Furthermore, the intermediate image data
is stored only once, so just a pointer to it is passed among
the functions that work with it.

3.5. Overall Algorithm

The overall message flow for the rendering of one frame is
shown in Figure 4. It is important to note that the display
computer does not have to keep the volume data in memory.
When the volume is transferred to the remote renderer upon
startup, this could be done directly from disk.

3.6. Rendering Front-End

Figure 5 shows a picture of the desktop front-end. Various
parameters can be set in the application. The most important
are image quality (i.e., intermediate image size), interpola-
tion mode (bilinear or nearest neighbor), and the color and
opacity transfer functions.

The front-end is a hybrid C++ and Java application using

c© The Eurographics Association 2002.

64

Schulze and Lang / Perspective Shear-Warp Parallelization

Figure 4: The remote rendering message flow.

Figure 5: The rendering front-end with the engine dataset.

the Java native interface (JNI). The user interface was en-
tirely programmed in Java, using the Swing widget library.
Everything else like rendering, network communication, and
file handling was written in C++. The rendering window is a
Java canvas of which the C++ part knows the OpenGL han-
dle so it can draw on it. The input device handling is done
by Java routines that call the appropriate C++ routines if the
action happened in the OpenGL canvas.

4. Results

The parallelized perspective projection rendering algorithm
was tested on the following three systems: The first system is
an SGI Onyx2 with 16 195 MHz R10000 processors and 16
GB RAM. The second system is a SUN Fire 6800 node with
24 UltraSparc III 750 MHz processors and 96 GB RAM. Up
to 8 processors on the SUN system are available for interac-
tive use. These two systems have shared memory architec-
tures. The third system is a cluster of 32 Linux PCs with 64
Pentium4 2.4 GHz processors and Myrinet links. Obviously,

for the shared memory machines the algorithm could have
been written in OpenMP or with threads. But since it had to
run on both architectures, we chose MPI.

The display machine is an SGI Onyx2 with 4 250 MHz
R10000 processors, 4 GB RAM and Infinite Reality 2 graph-
ics. It is linked to the above Onyx2 by a 1 Gbit/s Ethernet
connection and to the PC cluster by a 100 Mbit/s Ether-
net. Both Onyxes and the PC cluster are located in the same
building at HLRS. The SUN is located about 100 km away
in the city of Ulm, and it is connected to the display machine
by a 100 Mbit/s Ethernet connection.

The dataset which was used to test the performance of
the parallelized algorithm is the General Electric CT en-
gine (see dataset in Figure 5). It was used in two different
sizes: "large" is a 256x256x110 voxels version, "small" is a
128x128x55 voxels version which was created by downsam-
pling the large engine. The opacity transfer function was set
to a linear ramp from zero to full opacity. The image gener-
ation was performed in a 24 bit RGB color space. Whenever
the large engine was used, the intermediate image size was
10242, for the small engine it was5122 pixels. The interme-
diate image was transferred using RLE encoding only for the
actually used window.

For all tests the volume was rotated 180 degrees about its
vertical axis. The rotation was done in 90 steps of 2 degrees,
the rendering times were accumulated over all 90 steps.

4.1. Overall Rendering Performance

In the following three subsections, the rendering perfor-
mance of our multi-processing test platforms is displayed.
For each graph the remote renderer was executed with in-
creasing numbers of processes. The initialization of the MPI
environment ensured that each process could run exclusively
on its own processor. The length of the bars reflects the en-
tire rendering time needed for the above described 90 steps
rotation test. The sections of the bars display how the to-
tal rendering time was distributed to specific tasks. The idle
time of the renderers is for the most part the time the display
machine needed to decode the intermediate image, transfer it
to texture memory, and display it on the screen. During this
time the renderer waits for the next view matrix. In all three
performance tests, image decoding took about 2.6 seconds
and drawing took 1.4 seconds. Idle times that occur due to
processes waiting during compositing are included in the to-
tal compositing time. In each of the three performance tests
the large engine dataset was used.

4.1.1. SUN Fire

Figure 6 shows the rendering performance of the SUN Fire.
The compositing step takes most of the total time, while im-
age encoding and image transfer both account only for very
little time: encoding takes 0.91 seconds and the transfer takes
0.89 seconds.

c© The Eurographics Association 2002.

65

Schulze and Lang / Perspective Shear-Warp Parallelization

Figure 6: SUN Fire rendering performance.

4.1.2. Onyx2

Figure 7 shows the rendering performance of the SGI Onyx2
system. Due to the fast network connection to the display
machine, the image transfer takes less than 0.2 seconds in all
the tests and is hardly visible in the diagram. Image encoding
takes about 2.67 seconds.

Figure 7: SGI Onyx2 rendering performance.

4.1.3. PC Cluster

The rendering performance of the PC cluster is displayed
in Figure 8. It differs significantly from the previous two
machines. The PC cluster’s computing power makes it the
fastest tested machine with a minimum rendering time of
10.7 seconds for 90 frames. Furthermore, the algorithm
seems not to have reached its maximum performance with
the tested 16 processes, although it might be very close to
that point. Image encoding took about 0.27 seconds.

4.2. Compositing

Section 4.1 showed that the compositing is the most time
consuming rendering step. This is why it was parallelized. Its

Figure 8: PC cluster rendering performance.

performance can be judged by comparing the times of the to-
tal compositing, i.e. the time it takes before all processes are
done with compositing, with the average compositing time
of the processes. With perfect load balancing these values
would be equal. Table 1, which reflects the performance of
the Onyx2, shows that the numbers are not equal. The first
column contains the number of processes used for the com-
positing. The second column shows the total compositing
time, and the third column shows the average time it ac-
tually took the processes to composite their sub-tasks. The
rightmost number is the result of a division of the latter two
numbers, which equals the factor by which the compositing
speed would improve if perfect load balancing was reached.
Figure 9 is a graphical representation of the compositing
times. The figure shows that with perfect load balancing,
the algorithm could reach its highest performance with 16 or
more processes, while the current implementation is fastest
with 14 processes.

processes Total comp. Section comp. Factor

2 124 108 1.15
4 74.6 54.2 1.38
6 50.8 36.4 1.40
8 40.3 28.2 1.43
10 33.6 23.5 1.43
12 27.6 19.0 1.45
14 24.9 16.8 1.48
16 34.3 16.5 2.08

Table 1: Accumulated compositing times [seconds].

4.3. Transferring the Intermediate Image

The comparison of the (non-parallelized) RLE-encoding,
transfer, and decoding times for the three implemented en-
coding types (see Figure 10) shows the great advantage of
window encoding, where only the part of the image that was

c© The Eurographics Association 2002.

66

Schulze and Lang / Perspective Shear-Warp Parallelization

Figure 9: Total compositing vs. average section composit-
ing.

actually composited is RLE encoded. In the test, the encod-
ing was done on the SUN Fire, then the image was trans-
ferred to the SGI Onyx2, where it was decoded. The encod-
ing and transfer times of window encoding occurred already
in Figure 6. For this test, the large engine dataset was used
and the intermediate image size was10242 pixels.

Figure 10: RLE intermediate image encoding graph.

4.4. Shear-Warp vs. 3D Texture Hardware

11 showed that the rendering speed of the shear-warp algo-
rithm is almost independent of the output image size, when
the warp is done in texture hardware.

However, the 3D texturing hardware volume rendering
approach is highly dependent on the output image size due
to its pixel fill rate limitation. In Figure 11, the rendering
times for output image sizes from3002 to 9002 pixels are
shown for both algorithms, using the small engine dataset.
The texture hardware algorithm was used on the Onyx, the
perspective shear-warp algorithm was used for the composit-
ing on the SUN Fire using 4 processors and the Onyx did the
warp. The graph shows that for an image size of9002 pixels,
both algorithms are about equally fast.

Figure 11: Texture hardware vs. shear-warp algorithm.

4.5. Discussion

In this section, the performance numbers from the previous
section are discussed, and ideas on how to further improve
the performance are given.

4.5.1. Performance Comparison

The fastest rendering rates achieved by each system are
listed in Table 2. The PC cluster is fastest with 8.4 images
per second. The image transfer rates are similar for the two
machines which are linked to the display computer by 100
Mbit/s connections with firewalls in-between. The direct gi-
gabit connection between the two Onyxes pays off, it allows
the shortest transfer time in the test. The PC cluster’s Pen-
tium4 processors are so much faster than the other two ar-
chitectures that the compositing is not the dominant factor
in the rendering process anymore. Now image transfer and
idle time, although roughly the same for the SUN Fire, are
the most time consuming parts.

Machine # processes images per second

SUN Fire 6 3.5
SGI Onyx2 14 2.7
PC cluster 16 8.4

Table 2: Maximum rendering speed of the tested machines.

4.5.2. Idle Time

A comparison of the performance numbers of the three
tested systems shows that for the SUN and the SGI, the com-
positing time dominates, while the PC cluster spends a large
fraction of the time transferring the intermediate image to
the display machine and waiting for the display machine to
send a new view matrix.

c© The Eurographics Association 2002.

67

Schulze and Lang / Perspective Shear-Warp Parallelization

While the image transfer time could be reduced by a faster
network connection, the idle time could almost entirely van-
ish with the following idea: as soon as, or even before, the
display computer receives the intermediate image, it sends
the view matrix for the next image to the rendering sys-
tem. This would allow the processors to keep busy, since
they could start working on the next image right away. This
pipelining approach, coupled with asynchronous communi-
cation, would allow a better usage of the available compute
power.

4.5.3. Image Decoding Time

A significant part of the rendering processes’ idle time
comes from the display machine decoding the intermediate
image. The decoding is not parallelized, since it is not sup-
posed to run on a parallel computer. Our Onyx decodes with
a 250 MHz R10000 processor, which should easily be out-
performed by current PCs. So we used a Windows PC with
a Pentium4 at 1.4 GHz, equipped with a 3Dlabs Wildcat II
5110 as the display computer.

With the Windows PC, the intermediate image decoding
time went down from 2.5 seconds on the Onyx to now 0.61
seconds. Looking at the overall performance, it was unex-
pected that the idle time grew, as it can be seen in Figure 12.
Obviously the compositing and image encoding times did
not change compared to the previous test in section 4.1.1.

Figure 12: Windows PC as display machine, PC cluster ren-
ders.

Looking at the performance numbers, it can be seen that
the time it takes to draw the intermediate image with texture
hardware, which was 1.5 seconds on the Onyx, rose to 7.3
seconds on the PC. This is due to the lower speed of the
image transfer to texture memory on the Wildcat.

4.5.4. RLE Encoding

Section 4.3 showed that RLE encoding only the actually
used part of the intermediate image before transfer results
in the best overall image transfer performance. Interestingly

RLE encoding- and decoding the entire image takes about as
long as transferring the image unencoded.

The adaptive window approach is generally so much
faster than the other two that it can be used for all interme-
diate image transfers. Only in cases of extreme perspectives,
the overhead introduced by skipping parts of the scanlines
can become high enough that the other encoding schemes
could be faster. However, perspectives like these do not oc-
cur in real-life applications.

5. Conclusion and Future Work

We developed an implementation of the perspective projec-
tion shear-warp algorithm for parallel computers using MPI.
Any architecture which supports MPI can be used as a plat-
form for the remote renderer. The remote rendering process
scales well for up to 16 processors, depending on the hard-
ware used. The remotely rendered volume images can be
displayed on any graphics capable computer. If 2D graphics
hardware is available on the display machine, the warp will
be very fast. The transfer speed of the remotely computed
intermediate image was optimized.

Lacroute’s work6 showed that dynamic load balancing
improves the performance significantly for larger numbers of
processors for the case of parallel projection, so this will be
done for perspective projection in the future. Furthermore,
although not critical for rendering but potentially well paral-
lelizable, some other rendering steps like intermediate image
compression and decompression could be addressed for par-
allelization. Also, parallel image transfer with more than one
socket connection could improve the overall performance.

Another goal is to integrate the remote rendering algo-
rithm into our virtual reality environment. The challenge is
to efficiently place the socket communication in the render-
ing pipeline. Our virtual reality renderer COVER9 is based
on SGI Performer. Since we are using a four pipe Onyx2 for
rendering, there are four draw processes. A first test showed
that we can open four sockets to remote rendering processes,
each of which can consist of multiple MPI processes. This
promises that we can achieve high scalability, for instance by
routing the communication across multiple Gigabit Ethernet
connections in parallel.

6. Acknowledgments

This work has been funded by the collaborative research cen-
ter (SFB) 382 of the German Research Council (DFG).

References

1. K. Akeley. RealityEngine Graphics. ACM SIGGRAPH
93 Proceedings, pp. 109–116, 1993.

2. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ev-
erett, and P. Hanrahan.WireGL: A Scalable Graphics

c© The Eurographics Association 2002.

68

Schulze and Lang / Perspective Shear-Warp Parallelization

System for Clusters. ACM SIGGRAPH 2001 Proceed-
ings, 2001.

3. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-
ern, P.D. Kirchner, and J.T. Klosowski.Chromium: A
Stream-Processing Framework for Interactive Render-
ing on Clusters. ACM SIGGRAPH 2002 Proceedings,
2002.

4. G. Knittel and W. Strasser.Vizard - Visualization Ac-
celerator for Real-Time Display. Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, ACM Press, pp. 139–147, 1997.

5. P. Lacroute. Real-Time Volume Rendering on Shared
Memory Multiprocessors Using the Shear-Warp Fac-
torization. IEEE Parallel Rendering Symposium ’95
Proceedings, pp. 15–22, 1995.

6. P. Lacroute and M. Levoy.Fast Volume Rendering Us-
ing a Shear-Warp Factorization of the Viewing Trans-
formation. ACM SIGGRAPH 94 Proceedings, pp.
451–457, 1994.

7. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and
L. Seiler. The VolumePro Real-Time Ray-Casting Sys-
tem. ACM SIGGRAPH 99 Proceedings, pp. 251–260,
1999.

8. H. Pfister and A. Kaufman.Cube-4 - A Scalable Archi-
tecture for Real-Time Volume Rendering. ACM/IEEE
Symposium on Volume Visualization ’96, pp. 47–54,
1996.

9. D. Rantzau, K. Frank, U. Lang, D. Rainer, and
U. Woessner.COVISE in the CUBE: An Environment
for Analyzing Large and Complex Simulation Data.
Proc. 2nd Workshop on Immersive Projection Technol-
ogy (IPTW ’98), Ames, Iowa, 1998.

10. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and
T. Ertl. Interactive Volume Rendering on Standard PC
Graphics Hardware Using Multi-Textures and Multi-
Stage Rasterization. Proc. Eurographics/SIGGRAPH
Workshop on Graphics Hardware 2000 (HWWS00),
2000.

11. J.P. Schulze, R. Niemeier, and U. Lang.The Perspective
Shear-Warp Algorithm in a Virtual Environment. IEEE
Visualization ’01 Proceedings, pp. 207–213, 2001.

12. R. Westermann and T. Ertl.Efficiently Using Graph-
ics Hardware in Volume Rendering Applications. ACM
SIGGRAPH 98 Proceedings, pp. 169–179, 1998.

c© The Eurographics Association 2002.

69

70

