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Abstract

The analysis of genomic data and integration of diverse biological data sources has become increasingly difficult
for researches in the life sciences. This problem is exacerbated by the speed with which new data is gathered
through automated technology like DNA microarrays. We developed a virtual reality application for visualizing
hierarchical relationships within a gene family and for visualizing networks of gene expression data. Integration
of other information from multiple databases with these visualizations can aid pharmaceutical researchers in
selecting target genes or proteins for new drugs. We found the application of virtual reality to the field of genomics

to be successfull.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Multimedia Information Systems]: Artificial,
Augmented and Virtual Realitues J.3 [Life and Medical Sciences]: Biology and Genetics

1. Introduction

The human genomic code — the genetic blueprint which is
contained in every cell — consists at a low conceptual level
of over 3 hillion elements (nucleotides). These nucleotides
are labelled either G A T or C. Genes are sequences of nu-
cleotides that typically span from 100 to 10000 nucleotides.
Currently approximately 45000 genes have been identified
(either predicted or lab verified) for the human genome. A
large number of these genes serve as the templates for the
basic building blocks of life known as proteins. Proteins are
translated from active subsequences of a gene preceded by
a step called transcription. During transcription the genetic
code (DNA) in the cell-nucleus is transcribed into messenger
RNA (mRNA) outside of the cell-nucleus.

The proteins themselves consist of strings of amino-acids.
This flat sequence is also named the primary structure of
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a protein. There are 20 different aminoacids which are en-
coded in the genes by a sequence of 3 nucleotides (a codon).
Therefore an active gene sequence — from start codon to stop
codon — with a length of 3000 nucleotides encodes a protein
sequence of length 1000. As there are 64 possible combi-
nations of the 4 nucleotides, some of combinations are re-
dundant and code for the same aminoacid. Proteins form the
structural elements of cells and give rise to the concept of
phenotypes (eg. the color of one’s eyes).

These proteins are the targets for pharmaceutic interven-
tion. More importantly protein-protein interactions form a
complex network that make up the signaling and biochemi-
cal pathways. These biochemical pathways are the low-level
chemical processes that make an organism function. From
these pathways biologists can infer which processes are in-
volved when certain abnormal states of the human body (i.e.
diseases) are encountered.

Taxonomists categorize the relationship between different
species, likewise bioinformaticians organize proteins into
gene families based on their sequence and motif (a common
pattern within a sequence) similarity. One of the publicly
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available genomic databases, Ensembl3, contains the the se-
quence, the genomic location, the function and the gene fam-
ily association of several thousand lab verified and in sil-
ico predicted proteins. Ensembl and other databases, includ-
ing proprietary databases contains the expression informa-
tion (profiles) of these proteins in multiple tissues which has
both normal and abnormal pathology. Integrating, visualis-
ing and mining the information in these databases represents
a significant challenge.

In this paper we describe two approaches to mine genomic
data, one based of the hierarchical relations of proteins in a
gene family and the other based on the many to many rela-
tions of gene expression profiles.

2. Why using Virtual Reality for mining?

The human visual system is able to process enormous
amounts of information in real time, which is why since the
early nineties research has been undertaken to visualize ab-
stract data (a.k.a. information) in order to provide insights
into the data that would otherwise be impossible to gain.

The main challenge for visualising genomics data was in
our case to visualize relations between entities (see next sec-
tions). A natural way to visualize relations is by drawing
graphs. Drawing graphs in an estethically pleasing manner
in 2D is a difficult problem, on which extensive research
has already been done. It is frequently used with the pur-
pose of information visualization. Graph drawing in three
dimensions has not been subject to similarly extensive re-
search. Note that graph drawing in 2D is not a special case
of 3D graph drawing, as notions of "edge-crossings’ (which
are minimalized in 2D drawing) have little meaning in the
3D case.

However, drawing graphs in three dimensions have the ad-
vantages that are stated by Herman# et al:

e The extra dimension would give, literally, more "space",
and this would easy the problem of displaying large struc-
tures.

e The user can navigate to find a view without occlusions.

For an effective visualization of these 3D graphs, we re-
quire the use of virtual reality (VR) technology. This VR
technology includes stereo vision (different images for left
and right eye to enable depth cues). It also includes mo-
tion tracking where hand and head movements are measured.
Colin Ware and Glenn Franck have made a quantative anal-
ysis of the performance of stereo and motion cues® with re-
markable results. Test subjects were given the task to inter-
pret 3D nets. The tests showed that the use of stereo vision
improved performance by 60% and the use of head track-
ing improved the performance by 120%. Using both stereo
vision and motion cues resulted in a 200% improvement.

The no-occlusion view is especially easy to obtain in the
main virtual reality facility in use at SARA: the CAVE ™3,
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Navigation in a CAVE ™environment can be achieved by

simple physical movements of the user. For instance, the
mere act of crouching in the CAVE ™can provides a view
from below on a virtual object.

3. Hierarchical relationships in gene families

The visualisation challenge is to display a large number of
hierarchical relations between proteins. The relations are de-
fined by a so called gene family tree as they are based on
sequence similarity. The gene family tree is computed with
a neighbor joining algorithm using the software package
Clustal W8. This is a bottom up procedure which groups to-
gether similar proteins in subbranches of the constructed bi-
nary tree. At the lowest level the algorithm needs a measure-
ment of similarity between two proteins, which is defined on
the basis of the amount of difference between two amino-
acid sequences. It then groups together sequences which are
most similar or groups together formed clusters on the basis
of similarity with the average cluster member (some artifi-
cial average sequence). The result is a tree in which the leaf
nodes represent proteins and the intermediate nodes higher
in the tree represent protein clusters. The higher an interme-
diate node the bigger the cluster it represents, with the root
node representing the total group of proteins.

Our work consists for one part of the visualisation of
two important groups of proteins, namely the gene protein
coupled receptors (GPCRs) and the nuclear receptors. The
GPCRs are an important group in that they allow signals
from outside the cell to enter the cell. This can be done be-
cause a G Protein is coupled to a receptor that is lengthy
enough to pass several times through the cell membrane.
When a ligand such as a hormone binds to the receptor’s
ligand binding domain (which is located outside of the cell),
the coupled G protein is activated by the receptor’s protein
activation domain (inside the cell). This in turn initiates a
sequence of steps within the cell that ultimately causes the
transcription of the target genes. The nuclear hormone re-
ceptors are also signal enablers, active in the nucleus of the
cel. Nuclear repeceptors bind to the promotor regions of the
genes and switch on cascades of downstream genes. Analy-
sis of such groups of genes on DNA microarrays! is of bio-
pharmaceutical interest to understand the effects of certain
drugs.

For the construction of the spatial layout of the tree, we
chose for a simple algorithm that recursively subdivides the
3D space using spherical coordinates. Sphere partitions are
assigned to branches of the tree based on the sizes of these
branches relative to their sybling branches.

By considering an intermediary or cluster node of a tree,
one can display all the sequences which can be reached from
this node properly aligned below each other. In this display
gaps are introduced in the sequences to have the columns
match as closely as possible and to maximize the align-
ment score. The alignment is computed again using Clustal
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W which takes the computed phylogenetic tree as the ba-
sis for the multiple sequence alignment. By color coding the
amino-acids one can start to characterize clusters by com-
mon amino-acid patterns. Alternatively one can first come
up with an amino-acid pattern obtained from a functional
domain and highlight these patterns on all sequences.

91’:&11-@@1‘1qgoﬂnr-mu

Figure 1: Tree visualization of nuclear receptors.

Because proteins are the basic active units and genes their
corresponding blueprints we can relate more available in-
formation to the proteins in the phylogenetic tree. Impor-
tant information is gene position on the chromosome. There
are 24 different human chromosomes and each chromosome
is divided into banding regions. The chromosome number
and banding pattern that is the origin of a protein can help a
geneticist to derive the function of this protein by knowing
the function of closely located proteins. We therefore imple-
mented a chromosome map and a two-way selection mecha-
nism that allows the user to either select proteins in the tree,
the position of which is then shown on the map or regions on
the chromosome map, after which the proteins correspond-
ing to genes in that region are shown.

As mentioned earlier even more protein interaction data
can be brought into view if one takes into account the pro-
tein’s function, the pathways in which the proteins are in-
volved in or the tissues in which the transcribed gene mate-
rial is most expressed. Some of this functionality has already
been implemented, while other possibilities will be consid-
ered later in the project.

4. Many to many relations derived from expression
profiles

Our challenge in this case is visualizing a set of
genes/proteins with their interrelations as a cyclic graph. A
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possible measure for a relation between two entities is the
so called ’Fischer Exact sampling’t which calculates the ex-
pression as a so called p-value. When considering a set of
N genes/proteins, we can define a maximum of N*(N-1)/2
relations.

The data that we have been working with is not complete,
and only a subset of the relations is known. But even this
set is so large that we choose to reduce it by keeping only
the highest similarity values of our set of known similarities.
Also, as the p-values range from 1049 to 10230 we had to
apply logarithmic scaling, and map them to spatial distances
ranging from 0.0 to 90.0

Figure 2: Many to many relations visualized.

So we construct graph-layouts in three dimensions, based
on the set of similarity values. When constructing the graph,
we have to determine a 3D position for each gene in our
dataset. We want to choose these positions in such a way,
that the distances between connected genes are proportional
to the similarity value defined between the genes. Ofcourse,
some datasets will have more than one solution, but most
datasets will not have a solution at all, so we have to find
an optimum. Even a very simply case of a cyclic graph with
nodes A,B,C with dist(A,B) = dist(B,C) = 1.0, dist(A,C) =
10.0 has no solution. We found that limiting the number of
relations per node will result in beter convergence to a so-
lution with a smaller error. We can either discard the lowest
similarity values (highest distances) of nodes with more than
a specific number of relations or alternatively, we can have
the weights rapidly approach zero as the relation ordinal in-
creases.

One way to obtain the configuration of positions of
genes in 3D is by using a technique called Multi Dimen-
sional Scaling (MDS). The computation of the configura-
tion is done by optimizing the weighted STRESS? function:
TS wij (dij — Dij)2, where djj represents the computed
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euclidean distance between points i and j in the configura-
tion and Djj reflects the original similarity value between i
and j.

In this function the difference in similarities between
points in the computed configuration and in the original
dataset is minimized. Finding the global optimal solution is
a combinatorial optimization problem and is considered NP-
Complete. Therefore a number of methods have been pro-
posed to compute near optimal solutions. Simulated Anneal-
ing (SA) has been identified as a very good approximation
algorithm in this respect®. As opposed to gradient descent
algorithms which frequently get stuck in local minima, SA
can escape local minima in search for better solutions. This
means that as opposed to downhill-moves only, the SA algo-
rithm can occasionally allow uphill moves in its search for a
better solution.

If the cost in state n is lower than that of m the move is
always accepted, otherwise the move is only accepted with
the given probability.

In the context of SA the STRESS function becomes the
cost function that is used to check whether moves are ac-
cepted. The weighting scheme adopted can have a great im-
pact on the solutions SA generates. For example with a large
set of constraints (relations) we could not achieve low en-
ergy states. We therefore came up with the following weight-
ing scheme. For this per gene all relations in which a gene
participated were sorted by similarity value. Then we ap-
plied the foI{owing additional weighting for each relation:

Wij = Zoanroanzz

Where ord(i) represents the position on the sorted list for
gene i where the relation from i to j can be found. This entails
an exponential decrease of the effect that relations with low
similarity values have on the cost function, making it possi-
ble to achieve low enough energy states to be meaningfully
discerned in 3D visualizations of the found configurations.
See figure 3 for the effect of different alphas on weight.
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Figure 3: The effect of alpha on the average ordinal position
and weight.
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The parameter a is used to control the influence of less
important relations. The following plot illustrates the results
obtained when we vary alpha between 0 and 4. (plot shows
average over 10 runs per alpha, on a dataset with 548 points
and 12000 relations), see figure 4.
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Figure 4: The effect of alpha on the stress or energy.

Choosing a too high causes few relations to not be of any
effect, but with little stress. Choosing o too low causes many
relations to be of influence causing high stress values. The
answer lies somewhere in the middle.

5. Implementation

When developing VR applications, SARA uses a modular
approach named ’sarasim’. With sarasim, the Python1? in-
terpreter is used and all application components are in the
form of Python modules. Application specific components
are typically implemented in C++, and automatically con-
verted for use in Python by the SWIG?? tool. The use of
Python gives us the following advantages:

e Rapid prototyping without re-compilations.

e Convenient coupling of different technologies, as the
Python scripting language can be used as the syntactic
glue for integrating a heterogenous set of objects.

e Access to a wealth of domain specific functionality. For
instance, BioPython10 gave us instant access to biological
databases, simply by importing just another Python mod-
ule.

e Convenient configuration. Placing the run-time configu-
ration in a Python script is preferable over a plethora of
command line options. It is easy to maintain, readable,
and allows for more complex expressions in your config-
uration.

The 3D graphics functionality is provided by a Python mod-
ule created from SGI’s OpenGL|Performer? library, which
offers scene graph and real-time rendering functionality on
top of OpenGL. The VR functionality is provided by a
Python module based on VRCO’s CAVELib™ 14 |iprary.
The CAVEL.ib allows applications to be run on a variety of
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VR-systems, ranging from a simple workstation to multiple
screen solutions such as RealityCenters"™and CAVEs™.
The sarasim system is available on both MIPS-Irix and Intel-
GNU/Linux operating systems.

6. Conclusions

We have successfully applied virtual reality to problems in
the genomic research field. Using saragene —in the early
stages of the project— bioinformaticians have already iden-
tified new relations between genes which may have eluded
them when using conventional approaches only. This raises
high expectations for future efforts.

The sarasim programming environment proved to be flex-
ible and allowed us to quickly develop bio-informatics
datamining applications, while originally being aimed at
CAD-review and simulation.
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Figure 6: Many to many relations visualized.

(© The Eurographics Association 2002.

146



