
Abstractions in Multimedia Authoring:
The MAVA Approach

Jürgen Hauser, Jing Tian

Institute of Parallel and Distributed High-Performance Systems (IPVR)

University of Stuttgart, Breitwiesenstr. 20-22, D - 70565 Stuttgart, Germany

{juergen.hauser, jing.tian}@informatik.uni-stuttgart.de

Abstract. The support of abstractions in authoring systems increases the effi-
ciency of the specification of multimedia documents. Authoring based on a very
low abstraction, for example script programming, is very complex and t ime con-
suming. In addition, authoring systems supporting a high abstraction are so far
restricted to one specific application area. This paper presents an extensible
approach that supports abstractions in different application areas (such as com-
puter-based training or a travel guide).
In this approach a meta document model and the corresponding presentation and
authoring system are developed. During conception of the authoring system, dif-
ferent concepts (e.g. templates or application specific views) have been realized
to introduce further abstractions.

1. Introduction
Although different multimedia document standards [1, 5], research approaches [3, 2, 6]
and commercial products [14] have been proposed, the specification of multimedia
documents and multimedia authoring are still very complex tasks. An investigation of
existing approaches shows that so far multimedia authoring concentrates mainly on the
support of the temporal and spatial layout of multimedia documents. Starting with in-
teraction, things tend to become difficult and sometimes the use of scripting languages
cannot be avoided [4].

Multimedia documents in different application areas differ in the way users interact
with them and how documents react to this interaction. For example, a question in a
computer-based training system can be answered either right or wrong. Depending on
the answer a different reaction is expected. In case of a right answer, the user gets a
compliment, while in case of a wrong answer he or she gets an explanation of the
correct answer.

A tourist guide as another example is a multimedia presentation that provides infor-
mation about particular places of interest. In a tourist guide, the current physical posi-
tion of the tourist (e.g. in a city or on an island) determines what has to be presented. A
change of position is an interaction with a multimedia presentation, so if the user
moves into the proximity of a place of interest, the presentation of the corresponding
part will be started.

To simplify authoring, an authoring tool has to provide abstractions for particular
application areas. These abstractions simplify authoring and thus save time. A second
requirement is that it should be possible to use the same authoring tool independently
of the application area. And last but not least, it should be possible to add support for

http://www.eg.org
http://diglib.eg.org

new application areas. The last two requirements cannot be satisfied by providing a
particular authoring system for each application area (such as Macromedia
Authorware).

In this paper an approach that supports authoring in different application areas is
presented. Therefore the approach introduces a meta document language that has con-
crete instances for each application area. The meta language is based on an operator ap-
proach where relations between media items are expressed through operators.
Application specific operators are a first step in providing a higher abstraction level for
multimedia authoring.

A major aspect of an authoring tool is the design of a user interface that is used for
authoring documents. It is very important that only a few interaction steps are required
during authoring. A specification language on a high abstraction level keeps the author-
ing process simple in contrast to approaches with a low abstraction level (e.g. script
programming). Abstractions and concepts of the authoring tool, for example a template
mechanism, further simplify the authoring process.

The MAVA approach relies on the availability of abstractions (in terms of a lan-
guage or a model) for an application area. If an abstraction is not available, it has to be
realized by a MAVA expert, who has programming skills and knowledge about the
MAVA presentation system. In practice, however, this is not a big disadvantage of the
approach, because reuse of previously developed extensions is expected. Hence, the
more extensions have been developed, the less development of new ones is required.

This paper gives an overview of the implementation of the MAVA presentation sys-
tem and MAVA authoring tool. The realization of the MAVA system is based on Java
and the Java Media Framework (JMF).

The results presented in this paper are achieved through the research project MAVA
(Multimedia Document Versatile Architecture), which is supported by a research initia-
tive of the German Research Foundation (DFG) called “Distributed Processing and Ex-
change of Digital Documents (V3D2)” [13].

The paper is organized as follows. Related work is discussed in section 2. Section 3
introduces the meta document model used in the MAVA approach. In section 4 an au-
thoring tool based on the meta model is presented. Section 5 discusses abstractions
based on the model that were integrated into the authoring tool to support authors
during specification. In section 6 the architectures of the presentation system and the
authoring tool are presented together with details of the implementation. Section 7
summarizes this paper.

2. Related Work
There are two major alternatives for the specification of multimedia documents. The
first is to provide a generic language which increases the effort for specification. An-
other alternative is to provide a specific presentation system for each application area.

A generic system provides a programming or scripting language for the specifica-
tion of application specific functionality. In such a scripting language there is no sup-
port or model for any application area. Examples for presentation systems that provide
a scripting language are MHGE5+MEHG6 [5] or Macromedia Director and its
scripting language Lingo [14]. An application specific model provides a higher
abstraction and therefore reduces the effort needed to specify a presentation. The
realization of the semantics is encapsulated in components. Components are reused by

the specification language model. Hence, the realization of the semantics and the
descriptive specification are separated. Additional concepts, such as a library for
scripts, simplify script programming, but they do not provide an application specific
model which supports authors during specification.

In contrast, the MAVA approach hides how semantics are realized from authors.
Authors just want to specify what the document should look like and not how its
semantics are realized, as it is the case if script programming is used.

Another approach is the development of individual presentation systems for each
application area. This approach leads to a big overhead for users and content providers
because they have to know these systems in detail for content creation and support of
users of these systems. Additionally, there is a big effort if each presentation and au-
thoring system has to be developed from scratch. Examples for such an approach are
Macromedia Authorware or Question Mark Designer. Also all approaches which pro-
vide a fixed language belong to this category (e.g. SMIL 2.0 [1], TIEMPO [3] or Ma-
deus [2]). Their use is limited to the application area defined by their language
concepts. For example it is impossible to specify a multiple choice question in SMIL
2.0 that gives the user a certain amount of time so that the user can alter his or her
answer within that time. The reason is that the SMIL 2.0 language does not cover such
an application area.

In [6] an approach is presented which allows the mapping different temporal con-
cepts on a generic internal representation for temporal concepts. This is a first step to-
wards enlarging the applicability of a system. But not all concepts are time dependent
and therefore different models are reasonable. For example, the current position of a
user determined by GPS (Global Positioning System) as another way to interact with a
presentation leads to a model which depends on the spatial position of the user but not
on time. Such a concept can be used in multimedia travel guides as described in the in-
troduction.

3. A Meta Document Model Supporting Abstractions
Instead of using a generic language like a script language, the MAVA approach uses an
operator-based language on a high abstraction level. In an operator-based approach, op-
erators are used to specify relations between media items. A document consists of a set
of media items and relations between them. A presentation system ensures that
relations specified by authors are maintained during presentation. In that sense
authoring is the selection of media items and the specification of relations between
them.

Apart from the two basic document elements, media items and operators, there is an
additional element, a so-called container element. A container is an element that con-
tains operators and media items. Hence, a container is a further abstraction in the spec-
ification process. Logical parts of the document specification are grouped together and
replaced by a container element. For example, the specification of a question in a com-
puter-based training application can be placed into a container. The next example
makes use of a container, namely a question container.

For an application area the meta document model has to be instantiated. This means
that there are concrete media items, operators and containers for an application area.
Fig. 1 shows two sample specifications for the examples mentioned in the introduction
section where each example uses a different language.

In Fig. 1 operators are represented by rectangles containing the operator name. Con-
tainers are represented by a rectangle that has a shadow. Fig. 1a represents the comput-
er-based training application. In this example a question is related with two scene
containers. One represents the congratulation scene and the other one is the explanation
scene. The specification has two relations which are represented by a correct operator
and a false operator. The correct operator is used to specify which scene has to be pre-
sented when the answers is right, the false operator specifies which scene has to be pre-
sented when the answer is wrong. It is important to distinguish between source and
destination media items because the question container is presented before the congrats
or explanation scene. Hence, the question container is the source media item and the
congrats scene the destination media. The question is also specified in a descriptive
language (not shown in Figure 1). The specification is on a high abstraction level
because the author does not need to specify how it is determined whether the answer is
right or not.

Fig. 1b shows the example of a tourist guide. A document has always a root
container. In case of a tourist guide this is a LocationArea container. The container type
is denoted in angel brackets ’<’ and ’>’. A LocationArea container includes Location
containers wherein the presentation for particular places of interest is specified. In the
example, the LocationArea contains one Location and a setLocation and circle opera-
tor. With the setLocation operator the presentation of the place of interest is situated on
a map. The circle operator determines the maximum distance between the user and the
place of interest to allow the presentation of the Location to begin. The exact distance
is given by a parameter of the circle operator.

Question correct

Explanation

Congrats

false

(a) (b) Lanzarote <LocationArea>

Timanfaya
<Location>

setLocation

circle

Fig. 1 Examples for specifications in two different application areas

The realization of the semantics of the document model is very important. For the

realization of semantics so-called managers have been introduced. A manager is re-
sponsible for the realization of the semantics of a set of operators. Corresponding
media and container components realize the semantics of media items and containers.
For details about the realization of the semantics please refer to [10, 11].

4. An Authoring Tool
The MAVA Editor (called MED) is an authoring system for MAVA documents. It vi-
sualizes the meta document model presented in the previous section and the necessary
interaction steps for authoring MAVA documents. The graphical user interface makes
use of the properties of the meta document model that are independent of the
application area.

Fig. 2 gives an impression what the user interface of MED looks like. During au-
thoring the author works with different windows. The most important window is the
so-called icon view window. An icon view window represents one single container of

the document. The window in the center of Fig. 2 (with the title “Timanfaya
<Location>”) shows the mapping of the abstract document model on icons. The
Location container comp rises two media items and two operators. The center operator
specifies that the video is centered in the presentation area, whereas the while operator
[3] specifies that the video and the audio are presented in parallel.

To the left of the document window there are two windows for the selection of me-
dia items (top left) and operators (bottom left).

Fig. 2 A screenshot from MED

A document is specified by adding operators and media items and connecting oper-

ators to media items. MED provides all available operators, media items and containers
in two windows (operator selection window and media item selection window). These
windows provide filtering mechanisms to mask out operators which do not belong to a
certain concept (e.g. temporal operators).

To add an operator to the document, an operator icon is dragged from the operator
selection window and dropped into an icon view window. Media items are added in the
same way. Parameters of media items and operators can be specified by so-called prop-
erties sheets which are invoked with the right mouse button.

A relation between media items is established by the connection of source and des-
tination media items with an operator. To the left and the right of the operator there is a
bullet as a user interface element to enable the connection of operators with media
items. The bullet to the left is used for connections with source media, and the bullet to
the right is connected to destination media. To connect a media item to an operator the
author presses the mouse button on a bullet, moves the mouse pointer to the media icon

and then releases the mouse button.
There are also operators which require only destination media items, for example

the center operator which determines that a media item is spatially centered in the pre-
sentation area. Operators without source media just have a bullet to the right for the
connection to destination media.

5. Abstractions in the Authoring Tool
Abstraction can be found not only in the meta document model, but also in the
authoring system, in order to make authoring of documents easier and more intuitive
for authors.

5.1 Navigation
For small multimedia documents, the structure of documents is straightforward for the
author. But when the document becomes more complex, there will be many operators
and media items in the document, and it will become difficult for the author to keep
track of the document’s structure. To make the navigation in documents clear, MED
provides two concepts: a tree view and a filtering mechanism.

The tree view presents the document in form of a tree as an alternative for the visu-
alization of documents in MED. The root container of the document is the root of the
tree, the tree structure is obtained from the containment hierarchy introduced by con-
tainers. All containers of the document are nodes of the tree that can be expanded or
collapsed. An author can open the icon view of a container or bring the corresponding
window to the front by clicking on the corresponding container node in the tree view,
allowing easy navigation through the document structure. An example of the tree view
window of a document is shown in the bottom right of Fig. 2.

In addition, MED provides a filter mechanism in the icon view of a container. This
helps an author to keep track of the specification of one single container. Normally, a
container comprises operators from different concepts. The goal of operator filters is to
mask out operators in the icon view, which do not belong to a particular concept. For
example, if an author processes the temporal aspect of a document, he or she can mask
out all operators that do not belong to the temporal concept. Hence, the author can con-
centrate on the temporal specification.

5.2 Templates
Templates are modules or patterns for regular reuse. The goal of templates in multime-
dia authoring is to improve reusability in multimedia document design. Compared to
the systematic reuse in the field of software engineering [7], many authors still have to
build multimedia documents from scratch [9]. To help authors, MED supports docu-
ment templates as well.

Templates in MED not only improve reusability of authoring work, they also enable
authors to design a document at a high level of abstraction. A part of the document, for
example a multiple-choice question, can be saved as a template for later reuse. Since
multiple-choice questions basically have the same structure, authors reuse a template
each time. Hence, they no longer have to build the structure from scratch.

Some authoring systems such as Macromedia Flash, IBM Hotmedia and
Tribeworks iShell do not support templates, which makes reuse of multimedia
authoring very difficult. Although some authoring systems do support templates, e.g.
Macromedia Authorware and ToolBook, there are still some common deficiencies in

the template support of these authoring systems. On the one hand, the creation of
sophisticated templates in these authoring systems still demands fundamental
programming knowledge for script languages like Lingo and OpenScript. Since authors
are not expected to be programmers, this requirement for programming knowledge has
to be avoided. On the other hand, if the structural information is not visible and not
clearly separated from the media information of the document, efficient reuse of parts
of the document as templates is prevented.

The two problems described above can be avoided in templates provided by MED.
Benefiting from the operator approach; the structural information in MAVA documents
is visible and clearly separated from the media information of the document. The pro-
cess of specifying templates in MED is the same as in normal documents. Any part of
the document can be saved as a template for later reuse.

5.3 Application Specific Views
Further abstractions to simplify authoring are application specific views. Such a view
makes an abstraction from the operators of a language and provides a graphical user in-
terface.

For example, suppose there is the need to describe the spatial layout of a document
in absolute coordinates. The required operators are setPosition and setSize. The speci-
fication of the spatial layout consists of several operators and attributes that have to be
added step by step, but the spatial layout can be specified in a WYSIWYG view. A
graphical visualization of the presentation area enables interactive positioning and re-
sizing of media items. Dragging a media item to a new position determines the
attributes for a setPosition operator. Hence, such an application specific view will
create operators and alter attributes of operators automatically.

It is not possible to provide such views for all concepts. For example for temporal
interval operators [5], such a view cannot be provided. It is also difficult to provide
such a view for the relative spatial positioning of media items.

When possible, an additional view should be provided for all required specifica-
tions. This is not a must because documents can be specified on operator level anyway.

6. Implementation
Architectures for both the MAVA presentation system and the MAVA editor make use
of similarities of the specification language in form of the meta document model. The
meta document model leads to an implementation of the MAVA approach as a frame-
work that can be extended by components. Components are used to realize the seman-
tics of concrete specification languages (e.g. a manager for a set of operators).

6.1 MAVA Presentation System
Fig. 3 shows the architecture of the MAVA presentation system as it is implemented in
the prototype. The core of the presentation system is the MAVA engine, which
includes all functionality that is independent of the application area of a document.
Examples for such functionality are document loading and class loading. The class
manager loads all components that are required for the presentation of a document and
caches them for optimization reasons if the extension is used in another document.

The MAVA presentation system provides a framework which is extended by differ-
ent components loaded by the class manager. These components comprise operators
and managers for the realization of a set of operators in a particular application area.

Media items are realized by media objects and media viewers. Media viewers are re-
sponsible for the presentation of a media item (e.g. a MPEG renderer) and media
objects are responsible for the logical functionality of a media item. A multiple-choice
question uses a check box button that has a state. The state describes whether the check
box is selected or not. The state and the behavior of the check box are its logical
functionality.

The MAVA presentation system is an extensible multimedia presentation system
because all required media items, operators and managers for the presentation of a doc-
ument are dynamically loaded prior to the presentation.

Manager
Media objectMedia viewer

Operator

MAVA engineDocument loader Class manager

MAVA presentation system

Fig. 3 Architecture of the MAVA presentation system

6.2 MAVA Editor
The core of the MAVA document Editor Architecture is the DEVR (document
elements and views repository) and the editor document model (Fig. 4). The editor
document model includes all functionality for an internal representation of a document.
A document specification is a graph where media items and operators are vertices and
connections of operators with media items are edges. For operators the functionality
includes handling of references to media items, for containers the management of
adding and removing of elements and for all elements the handling of their attributes.

The DEVR holds information on which specification languages can be used
currently. Based on the DEVR, the type of actual document elements that are
represented as vertices in the document graph are managed. For example the vertex of a
media item has a reference to the type description (e.g. an audio medium) in the DEVR.
The description from the DEVR describes which attributes are available, like the URL
of the media data or the volume during play-out of an audio. The operator description
also indicates to which types of media items an operator can be connected.

Based on the editor document model there are three different models that are part of
a model-view-controller construct [8]. These models provide different views on the
original editor document model. For example the XML model describes the mapping of
the document model onto XML. The current implementation uses a graph representa-
tion and not a tree-based XML representation for reasons of simplicity (i.e. the docu-

ment is a graph). Using an XML representation would make the XML model
unnecessary but would complicate other modules. Hence, the graph is mapped only for
storage in XML. A detailed description of the XML format used for storing and trans-
ferring MAVA documents can be found in [12].

User Interface

Document
Elements & Vi ews

Repository

Document

DEVR Configuration

Document Loader

X
M

L
M

o
d

e
l

I
c

o
n

M
o

d
e

l

Tr
e

e
M

o
d

e
l

X
M

L

V

ie
w

I
c

o
n

V

ie
w

Tr
e

e

V

ie
w

V
ie

w
M

o
d

e
l

(DEVR)

GUI Configuration

Document Export

Editor Document Model

Fig. 4 Architecture of the MAVA editor (MED)

The icon model describes all properties of the document model for the icon view in

which an author uses drag and drop for editing a document. The tree model provides
the model used for the tree view that supports navigation. For all these models there is
also a view component that is responsible for the view and control of the corresponding
model. It is also possible to integrate application specific views as described in section
5.3. The availability of application specific views is described by the DEVR. All views
are integrated in the graphical user interface.

The last two important modules are the document loader and the document export.
The document export module stores the XML model in a file. The document loader re-
alizes the creation of the editor document model based on an XML file that represents a
MAVA document.

The current configuration of MED is stored in two configuration files. The DEVR
configuration stores the content of the DEVR and the GUI configuration stores the con-
figuration of the graphical user interface, such as window size and working directory.

7. Summary
This paper presents an operator based approach for multimedia authoring. The main
goal of the MAVA approach is to support extensibility of the multimedia system with
specification languages for different application areas. This is achieved by application
specific models (e.g. a computer based training or a travel guide) that provide a high

level of abstraction. For authoring, these models are represented by operators. Opera-
tors are a mechanism to reuse application specific functionality and templates are used
to reuse parts of existing documents in other documents.

An authoring tool that allows interactive document specification is also presented.
Throughout the paper different levels of abstraction of the approach are shown and dis -
cussed. In practice, high level of abstractions result in reduced effort for authors and
therefore reduced costs for multimedia design. Such abstractions are based on reuse of
either an application specific language or work done by other authors (e.g. reuse of
templates).

References
1. Hoschka, P. et al. (Eds.) “Synchronized Multimedia Integration Language (SMIL)

2.0 Specification”. W3C Proposed Recommendation. W3C. 6/2001.
2. Jourdan, M., Layaida N., Roisin, C., Sabry-Ismail, L., Tardif, L. “Madeus, An Au-

thoring Environment for Interactive Multimedia Documents”. In Proceedings of
the ACM int. conference on Multimedia, Bristol, UK, pp 267-272, 1998.

3. Wirag, S. “Modeling of Adaptable Multimedia Documents“. In Proceedings of the
4th International Workshop Interactive Distributed Multimedia Systems and Tele-
communication Services, (IDMS'97), Darmstadt, Germany, pp. 220-230,9/1997.

4. ISO/IEC DIS 13522-5.”Information Technology - Coding of Multimedia and Hy-
permedia Information - Part 5”. 1995.

5. Allen, J.F. “Maintaining Knowledge about Temporal Intervals”. In Communication
of the ACM, 26(11):832-843, 11/1983.

6. Jourdan, M., Roisin, C., Tardif, L. “A scalable Toolkit for Designing Multimedia
Authoring Environments”. In special issue “Multimedia Authoring and Presenta-
tion: Strategies, Tools and Experiences” Multimedia Tools and Applications Jour-
nal. Kluwer Academic Publishers, 2/3(12):257-279. 1999.

7. Gamma, R. Helm, R. Johnson and J. Vissides: “Design Patterns: Elements of reus-
able object-oriented software”, Addison Wesley, 1995.

8. Goldberg, A. “Smalltalk-80: The Interactive Programming Environment”. Addi-
son-Wesley Reading, 1984.

9. Marc Nanard, Jocelyne Nanard and Paul Kahn; "Pushing Reuse in Hypermedia
Design: Golden Rules, Design Patterns and Constructive Templates", In
Proceedings of the ninth ACM conference on Hypertext and Hypermedia, pp. 11-
20, 6/1998.

10. Hauser, J. “Realization of an Extensible Multimedia Document Model“, In Pro-
ceedings of Eurographics Multimedia ‘99”. Milan, Italy, pp. 113-120, 9/1999.

11. Hauser, J. and Rothermel, K. “Specification and Implementation of an Extensible
Multimedia System. In Proceedings of IDMS 2000, LNCS 1905, pp 241-253,
Springer, 10/2000.

12. Hauser, J. “A Component-based Extensible Multimedia System” in Proceedings of
the International Conference on Parallel and Distributed Processing Techniques
and Applications PDPTA'01, pp. 1243-1249, 6/2001.

13. German Research Foundation (DFG). “Distributed Processing and Exchange of
Digital Documents (V3D2)“. URL: http://www.cg.cs.tu-bs.de/dfgspp.VVVDD.

14. “Director version 8.5”. URL: http://www.macromedia.com/products/director.
Macromedia. 2001.

