
Self-Organizing Multimedia and Extremely
Distributed Architectures
(Keynote Presentation)

William Butera and V. Michael Bove, Jr.

MIT Media Laboratory, Cambridge MA USA
{bill, vmb}@media.mit.edu, http://www.media.mit.edu/~vmb/obmg.html

Abstract. The Object-Based Media Group at the MIT Media Labora-
tory is developing robust, self-organizing programming models for dense
ensembles of ultra-miniaturized computing nodes which are deployed
by the thousands in bulk fashion, e.g. embedded into building materi-
als. While such systems potentially offer almost unlimited computation
for multimedia purposes, the individual devices contain tiny amounts
of memory, lack explicit addresses, have wireless communication ranges
only in the range of millimeters to centimeters, and are expected to fail
at high rates. An unorthodox approach to handling of multimedia data is
required in order to achieve useful, reliable work in such an environment.
We describe the hardware and software strategies, and demonstrate sev-
eral examples showing the processing of images and sound in such a
system.

1 Introduction

We begin by observing that semiconductor process technology will shortly arrive
at the point where autonomous computing elements – possibly coupled with
sensing or actuating devices – can be scaled to the size of large sand grains and
sold at bulk prices. It then will become possible to move computing out of the
sort of packaging in which it is currently housed and make it part of the built
environment, embedding processors in rboards, and into everyday objects such
as furniture, clothing and random surfaces. As a representative embodiment,
consider the architecture advanced by Sussman, Abelson and Knight [1]: ultra-
miniaturized computing nodes each fitted with an on board microprocessor, 50K
of memory and a wireless transceiver, all shrunk down to the size of a pin head
and powered parasitically.

In the domain of interest, these nodes would be embedded in a 2D surface
(such as the plywood in a table top) with a density on the order of tens of
thousands per square meter. Positioning would be pseudo-random, with no local
restrictions on density or regularity. Once exposed to power, they should boot
and self organize their local address space. External I/O would be via physical
proximity with an object fitted with a transceiver whose protocols are identical
to the transceivers on the chips.

http://www.eg.org
http://diglib.eg.org


In our research we adopt a hardware reference model constructed around a
single IC with dimensions 2 mm x 2 mm. Onboard subsystems include a block
for power harvesting, a full featured microprocessor, a wireless transceiver for
inter-particle communication within a radius of at most a few centimeters, a 50
MHz internal clock, a ROM for the operating system, and approximately 50K
RAM for program and data space. More detail on the hardware characteristics
of the proposed system can be found in [2] and [3].

2 Software Model

Such an ensemble of processing nodes, running asynchronously (and perhaps
intermittently) and communicating locally via an ad hoc network places unusual
demands on the programming model. Worst among these are:

– Asynchrony: Clock level synchrony is out of the question. Two neighbor-
ing particles cannot be guaranteed to have the same clock rate, let alone
phase lock. Event level synchrony also seems beyond reach. In an unknown
topology with sporadic unit failures, there is no way for a process on one
particle to predict what processes will be running on a neighboring particle.
Code running on one particle should never explicitly synchronize to events
generated on another particle.

– Extreme Fault Tolerance: Allied with the inherent asynchrony is the propen-
sity of individual particles to fail completely, whether because of lack of
power, hardware problems, interference with communications, or physical
damage (e.g. hammering a nail into a surface filled with these processors
may disable one or more.)

– Network Locality: Particles can communicate directly only with other parti-
cles in the immediate spatial vicinity. While the size of the neighborhood can
vary substantially, current experiments run on neighborhood sizes ranging
from 8 to 20 particles.

– Adaptive Topology: Any ensemble of embedded particles will have final topol-
ogy which is unknown at the time that much of the application code is writ-
ten. While it will always be possible to recover an approximate coordinate
system at run-time, no application code should rely on a particular spatial
layout of the processors.

– Code Compactness: On-particle memory is very limited, inter-particle band-
width is slow compared to processor speed, and there is no external support
for virtual memory. Functions running on a given particle should therefore
be self-contained and sized to fit completely in a single particle.

– Shared Data: Nevertheless, the utility of a single particle’s computation will
often go up if it has access to results from local computations on neighboring
particles. With the caveat that no process can predict what processes are
running in the neighborhood, tagged data passed within the neighborhood
should be available to processes running on a given particle.

– Mobility: Inter-particle migration of code segments will increase both the
functionality of the individual particles and the adaptability of the overall



system. The restriction here is that exact trajectory of the migrating code
cannot be pre-ordained.

Programs running on a particle’s microprocessor reside in the particle’s RAM
space. Most of the RAM is available for use as program, data, and scratch space
for these programs. However, a section of the RAM is reserved for what we
refer to as the I/O space – an area which is at least readable by any program
running on the particle’s microprocessor. A subset of the I/O space is called the
HomePage. The HomePage is an area where programs can both read and write
tagged data. Any program local to the particle can post to the HomePage, and
posts to the HomePage are readable by all local programs.

The remainder of the I/O space is subdivided into mirrored instances of the
HomePages of neighboring particles. When a program on a given particle posts
a piece of tagged data to the particle’s HomePage, copies of that post appear at
the mirror sites of all the neighboring particles. The caveat is that the latency
in the mirroring operation is unconstrained.

Collectively, the I/O space functions as a public bulletin board, where the
HomePage portion is writable and the entire I/O space is readable.

At run-time, code segments migrate nomadically looking for particles on
which to install themselves. In those particles where entry into the program
RAM is successful, the code segments will set up shop and begin searching for
relevant data in the I/O space. The side effect of the code segment’s activities is
additional posts to the HomePage. Often, the number of code segments seeking
entry will exceed the particle’s capacity. The allocation of program space is
regulated by the operating system (OS) in response to competition among the
code segments. Each code segment must draw its competitive advantage from
the I/O space and therefore, indirectly from the activity of other code segments.
The competition is arbitrated by the particle’s OS. And when a particular code
segment loses out, it is de-installed and passed to the output port to migrate
further via diffusion.

As a platform for application development, we have developed a simulator
modeled after the Gunk simulator [4]. Code segments are written as Java ob-
jects with the functions for communicating with the OS implemented as public
methods. Each segment is archived individually as a serialized Java object. I/O
portals, capable of mimicking the networking behavior of the particles, can be
arbitrarily positioned to diffuse the code segments into the particle ensemble.
Ilustrations to follow are snapshots taken from the simulator environment.

How does a particle in one location get data to particles more distant than
its direct communications radius, given that there is no explicit addressing? A
method that we have found useful is to diffuse a code segment that generates
a gradient field tagged with a label identifying the source (Figs. 1,2). It is then
possible for code segments in remote locations to “ride the gradient uphill” to
communicate with the source, or indeed to migrate back in that direction. More
details can be found in reference [2].



3 Multimedia Applications

The use of such a system for storage or processing of streaming multimedia data
is complicated by the lack of explicit addressing. Data packets must therefore
themselves know where to go and to make this decision dynamically in response
to the topology of the particle ensemble.

An example application we have implemented on the simulator stores pack-
etized audio data in the memory of a particle ensemble. Data is exchanged with
the particle ensemble via streaming through arbitrarily positioned I/O portals.
On input, the audio packets should diffuse outward, quickly distancing them-
selves from the input portal. Once the input streaming is complete, the pack-
ets should uniformly distribute themselves throughout the ensemble’s collective
memory. In the process, they should also randomize their position, effectively
decorrelating the time codes of the packets from their spatial position. Finally,
on output, the packets should reestablish their original sequential ordering prior
to streaming out through an output portal.

During pre-processing, audio is packetized and each packet is embedded into
a code segment called a Carrier. The Carriers also record a stream-relative time
code for the packet. Once the Carriers are streamed into the particle ensemble,
the transport behavior of the audio packets is defined by the migration strat-
egy of the Carrier. At the start of every execution cycle, the Carriers determine
whether they are diffusing through the ensemble or being retrieved for playback.
In the diffusion mode, the Carriers migrate randomly, yielding a quasi-uniform
distribution of the Carriers over the entire particle ensemble, and a spatial shuf-
fling of the Carriers. This is the default mode and is active during storage.
Carriers enter their call-back mode when they see a gradient radiating from an
output portal. The posts from this gradient field list estimates of the distance
back to the output portal, an ID for the requested audio stream, and range of
time codes which are active and should soon be queued for playback. When a
Carrier sees the post from the CallBackGradient, it does one of three things:
if its time code falls within the range of active time codes, it proceeds directly
toward the output portal; else if it is too close to the portal, it moves away from
the gradient source, thus increasing the bandwidth efficiency in the vicinity of
the portal; otherwise, it builds a local average of time codes, and adjusts its
position relative to this average using the gradient field for orientation.

Using a similar diffusive strategy, one can use this system to store images. If
the images are subjected to a hierarchical wavelet decomposition and the more
important coefficients are replicated in multiple packets, even relatively small
subsets of the particle ensemble can yield usable (if imperfect) reconstructions
of the images.

4 Acknowledgments

The authors wish to thank numerous co-workers from the faculty, staff, and stu-
dent body at the MIT Media Laboratory and the MIT Laboratory for Computer



Science. Particular thanks to Joshua Lifton, Stefan Agamanolis, Chris Hanson,
and James McBride. This work has been supported by the Digital Life Consor-
tium and by a fellowship from Intel corporation.

Fig. 1. Snapshot of the simulator, showing code diffusing outwardly from the source
on the left.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R.
Nagpal, E. Rauch, G. J. Sussman, and R. Weiss: Embedding the Internet:
amorphous computing. Communications of the ACM 43(5), (2000).
2. W. Butera: Programming a Paintable Computer. PhD thesis, Massachusetts
Institute of Technology, Cambridge MA USA, (2001).
3. W. Butera and V. M. Bove, Jr.: Literally Embedded Processors. Proc. SPIE
Media Processors 4313, Society of Photo-Optical Instrumentation Engineers,
Bellingham WA USA, (2001).
4. S. Adams: A high level simulator for Gunk. Technical report, Massachusetts
Institute of Technology AI Lab, Cambridge MA USA, (1997).



Fig. 2. The portal on the right can now route information to the portal on the left by
following the gradient.


