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Abstract 
There are many progressive image transmission schemes using vector quantization-related schemes, but 
there are some problems associated with them.  First, these schemes need to train a codebook, and this 
codebook will directly decide the quality of the recovered image.  VQ-related PIT methods also need 
some time to search the codebook to find the indices of corresponding vectors.  Thus, this paper looks for 
a new PIT method without VQ.  By applying SVD to PIT, image will be decomposed into three matrices.  
After decomposition, certain processes are applied to these matrices, and PIT will be achieved by 
transmitting these three matrices.  The use of the proposed method resulted in higher image quality than 
would result from the use of traditional methods, like the bit-plane method and the improved bit-plane 
method, in the experiments conducted in this paper.  This paper proposes a new way of PIT, and this new 
method is achieved PIT without VQ. 
 
Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Applications]: Signal processing   

 

1. Introduction 

Recently, many image progressive transmission (PIT) 
researches use vector quantization-related schemes 
[CheCha97], [HCC03], [JCC97].  However, the 
schemes using VQ need to train a good codebook from 
a large number of images first. Then they also need to 
search this codebook to get the indices of 
corresponding vectors for each image.  When VQ is 
applied to the PIT scheme, it also needs to transmit the 
codebook first.  The sender and receiver need to have 
the same codebook to achieve the PIT.  Thus, a 
codebook is good or not directly affects the quality of 
the PIT. 

Image compression using VQ-based SVD, proposed 
in [CSC21], [YanLu95], compresses the decomposed 
matrices using VQ.  It can achieve PIT by transmitting 
each index of each block.  But it still needs to train the 
codebook. Furthermore, it needs to train two codebooks 
for two decomposed matrices and also needs to search 
vectors from these two codebooks. 

This paper looks for a new PIT scheme without using 
VQ.  Traditional PIT schemes without VQ are the bit-
plane method (BPM) and the improved bit-plane 
method (IBPM) [CSC99]. BPM and IBPM need to 
transmit all phases to have a clear image.  In the low 
phases of these two methods, there are less 
representative colors. Although the PSNR of the 
recovered image is very high in some phases, the 
recovered image still looks bad.  But PIT using the 
SVD method will result in clear images in the low 
phases.  And the amount of data transmitted using the 
SVD method is less than those using BPM and IBPM, 
respectively.  Thus, the proposed method is an effective 
PIT method. 

Singular value decomposition (SVD) is a linear 
algebra matrix decomposition method [GVL89] and is 
widely used in many areas like watermarking [HTH01], 
data hiding [CSC21], and noise estimation [KNY97].  
SVD will decompose a matrix into three matrices, and 
when these three matrices are multiplied, the original 
matrix will be obtained. 
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In this paper, SVD is applied to each block divided 
from an image and decomposes each divided block into 
three matrices.  After each block is decomposed, three 
new matrices are generated.  And after some processing, 
these three matrices are used to achieve the PIT. 

The rest of this paper is organized as follo+ws.  In 
Section 2, the property of singular value decomposition 
and the traditional non-VQ PIT methods BPM and 
IBPM are introduced.  The proposed SVD-based PIT 
scheme is described in Section 3.  Section 4 describes 
the experimental results.  The conclusions are given in 
Section 5. 

2. Related Works 

Singular value decomposition is a matrix 
decomposition method.  It can be applied to all kinds of 
matrices even if a matrix is not square.  It will 
decompose a matrix into three matrices.  Given a 
matrix M of size m*n, when SVD is applied to M, SVD 
will decompose M into three matrices: U, D, and V.  
The equation is shown below: 

M = U*D*VT      (VT means the transpose of V) 
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where U and V are square matrices.  The sizes of U, V, 
and D are m*m, n*n, and m*n, respectively.  Here U 
and V are real unitary matrices (U*UT=1, V*VT=1), 
and D is a diagonal matrix with nonnegative entries.  
But in this paper, only a square matrix is considered, so 
only a matrix where m=n is used.  The values 
d1,d2,...,dn in the diagonal part of D are called the 
singular values of M and are also the nonnegative 
square root of the eigenvalues of MTM. 

(MT*M)*xi=di * xi  for i=1,2,…,r  ,                         (2) 

where r is the rank of M, r≤n, and xi is the 
corresponding eigenvector of di.  If the rank of the 
matrix M is r, the number of nonzero singular values 
will be r, and the singular values di‘s in the diagonal of 
D will satisfy 

0...... 2121 ====≥≥≥≥ ++ nrrr dddddd  

(3) 
U is composed of u1,u2,,…,un and each ui=[ ui1, ui2,…, 

uin]T, 1 ≤ i ≤ n, {u1,u2,…,ur}  is the orthonormal basis of 
the column space of M, where r ≤ n. V is the same as U, 

where vi is a collection of orthonormal basis of the 
column space of MT and 1 ≤ i ≤ r.  Then 
{ ur+1,ur+2,…,un } and { vr+1,vr+2,…,vn } are the 
orthonormal basis of the kernel space of MT and the 
kernel space of M, respectively.  Because 
dr+1=dr+2=…=dn=0, Equation (1) can be rewritten as 
follows: 

M=U*D*VT=[u1,u2,…,un]*
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Using Equation (4), the image progressive 
transmission method can be achieved.  Given a matrix 
of size n*n, the matrix will be decomposed into three 
matrices, each of size n*n, by applying SVD on it.  And 
these three matrices can be separated into r parts.  After 
these r parts are combined, the original matrix will be 
recovered. 

Because ui and vi are orthonormal, they satisfy the 

property iu =1 and iv =1.  By this property, we 

can prove that -1 ≤ uik, vik,≤ 1 , for i=1,2,...,n and 
k=1,2,…,n . 

iu = ui T* ui =[ ui1, ui2,…, uin] * [ ui1, ui2,…, uin]T=1 

for i=1,2,..n 

= ui1
2+ ui2

2+…+ uin
2  ,   uik

2≥0 and iu =1   for 

k=1,2,..,n 

=>  uik
2 ≤ 1 .  That is, │uik│≤ 1 .           

for i=1,2,..n and k=1,2,..,n 

So we have -1≤ uik ≤1 .                       

for i=1,2,..n and k=1,2,..,n                      (5) 

The number of progressive phases that a matrix with 
n*n entries needs is r, where r≤n. If a matrix has a full 
rank n, it will need n phases to recover the original 
image.  But in fact, a matrix with size 8*8 will always 
have a high PSNR in the second and the third phases.  
Thus, it is not necessary to transmit a full phase. Only a 
half or a less number of phases is needed so that a high 
PSNR can be obtained. 
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3. The Proposed Method 

In this section, we propose a new method using a non-
VQ PIT to obtain a higher quality image in fewer 
phases with a lower amount of transmission.  The 
method is called SVD progressive image transmission.  
This method can be separated into four parts: the 
decomposition part, the quantization part, the sending 
part, and the combination part.   

Figure 1 shows the flowchart of the SVD PIT. 
The first step of our new method is to decompose an 

image using SVD and obtain three matrices U, D, and 
V.  In the second step, according to Property (5), the 
matrices U and V will be quantized, and D will also be 
quantized but in a different way. Then the matrices Uq, 
Dq, and Vq will be obtained.  After quantization, the 
total memory size needed to store these three matrices 
can be a little smaller than the original image.  The 
third step is to send the information step by step.  The 
fourth step is to combine the information received in 
every phase. 

decomposition quantization sending combination

Original image U         D         V Uq Dq Vq Internet Recovered Image

decomposition quantization sending combination

Original image U         D         V Uq Dq Vq Internet Recovered Image  
Figure 1: The flowchart of SVD PIT 

3.1 Decomposition Step 

An image I of size w*h is first divided into several 
blocks Bi, where 0 ≤ i ≤ (w*h)/(k*k), with each block 
of size k*k.   SVD is applied to each Bi. Then each Bi is 
decomposed into two matrices Ubi and Vbi and one 
vector Dbi.  Ubi and Vbi are matrices of size k*k. Dbi is 
a one-dimension vector of size k.  All Ubi’s will form 
the matrix U, and all Vbi’s will form the matrix V.  U 
and V will be the same size as image I.  Because, when 
SVD is applied, the matrix which contains singular 
values is a diagonal matrix, only a one-dimensional 
vector is needed to store the singular values.  Then the 
matrix D is of size [(w*h)/(k*k)]*k, where (w*h)/(k*k) 
is the quantity of Bi. 

Determining the value of k is important in this step.  
The value k will affect the transmitted bit per pixel 
(bpp) in each transmission phase.  If the value k is 
increased, the bpp of the transmission phase will 
decrease. The decrease of the bpp will be illustrated in 
Section 4.2. 

Figure 2 illustrates the decomposition of each Bi. The 
decomposed matrices Ubi and Vbi will be stored in U 
and V, Dbi is stored in the matrices D.  After 
decomposition, the memory size needed to store the 

image will be larger, so quantization is needed to 
process the decomposed matrices U, D, and V. 

 
Figure 2: The decomposition of Bi 

3.2 Quantization Step 

Because the memory size of the blocks after SVD 
will be larger, this step is used to reduce the 
amount of decomposed matrices.  According to 
Equation (5), all elements in U and V will be 
between -1 and 1.  Although the elements in U 
and V are all floating point values, fewer bits that 
less than the original floating point values need 
can be used to represent them. 

3.2.1 Direct 8-bit Quantization 

In this paper, we first directly use 8-bit quantization on 
U and V.  By using 8 bits, the quantization levels will 
be 256.  Thus, the interval (-1,1) is divided into 256 
levels, and all values in U and V are quantized into 
these 256 levels.  This is the simplest method of 
quantization, but from observation of the distribution of 
all values in U and V, they are likely to be a normal 
distribution. Assume a distribution of the U and V 
matrices of the image Lena of size 512*512, with block 
size 16*16 (k=16). The quantization levels from 1 to 
256 are on the x-axis. The length of each interval is 
1/256, and the y-axis gives the times of elements appear 
in each level.  Almost all values are centered around -

0.5 to 0.5, that is (-2 / k  , 2 / k ), and a large 

number of values are centered from -1 / k  to 1 / k .  
As shown in Figure 3, there are tip points around 1 

/ k . This happens only on the positive side.  From 
observation on our experiment, the values in the first 
column of each block in Ubi and Vbi are all positive 

and almost are centered around 1 / k .  So the 

numbers of values around 1 / k  are very large. That 

is why the tip points occurred around 1 / k .  
According to the above property, the quantization can 
be revised. In this paper, we quantize the values which 
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are less than - 2 / k  and larger than 2 / k  using 
only six levels, and the main 250 levels are centered in 

the interval (-2 / k , 2 / k ).   

Quantization is also applied to matrix D. The 
quantization of matrix D is direct. The decimal of each 
element in matrix D is truncated directly.  That is 
because the singular values in D are the multiplication 
coefficients of each matrix ui*vi

T , which is shown in 
Equation (4).  Because the values in ui and vi are 
between -1 and 1, the values in ui*vi

T are quite small. If 
the value of a corresponding singular value is not large 
enough, the effect will be very small.  So we truncate 
its decimal directly.  The decimal of each singular 
value will not affect the quality of the transmitted 
image too much.  But after this processing, the needed 
memory size is still larger than the size needed for the 
original image. 

The distribution of matrix U
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(a) The distribution of matrix U 

 

The distribution of matrix V

0

1000

2000

3000

4000

1 51 101 151 201 251

 
(b) The distribution of matrix V 

Figure 3: The distribution of the 512*512 Lena 
image with block size 16*16 

3.2.2 Truncation 

Because SVD has a property like the discrete cosine 
transformation’s energy centralization, singular values 
from d1 to dn in Dbi can be seen as the DC to AC in 
DCT.  The larger singular value is more important, so 
we can truncate some unimportant singular values and 
their corresponding ui and vi.  In this way, memory size 
will be saved, and the quality of this image will not be 
distorted too seriously.  This means that, in the original 
method shown in equation (4), a matrix is composed of 
u1*d1*v1

T+ …+ur*dr*vr
T , where r≤n. Now, however, 

we use only u1*d1*v1
T+ …+ul*dl*vl

T, where 1≤ l ≤r, to 

represent the original matrix and truncate ul+1, dl+1, 
vl+1, …,ur, dr, vr.  In this way, memory size will be 
saved. 

When an image is decomposed, a threshold value T 
should be calculated first.  The value T represents the 
average number of singular values which are larger 
than the given threshold H in a block in matrices U and 
V.  Then we will keep only the first T triples (ui, di, 
vi)’s , where 1≤ i ≤T, and use them to recover the 
original matrix. 
The threshold value H is always given by k because a 
large number of values in U and V are centered around 

-1 / k  to 1 / k .  The values of each ui*vi
T will 

always be less than 1/k. Thus, if di is less than k, the 
entry of this matrix di* ui*vi

T will always be less than 1. 
The influence of this matrix and the matrices after it are 
not so important.  Accordingly, if the value T is 6.7, the 
8th to kth columns of each block in U and V will be 
pruned away.  In the same way for D, the first 7 
singular values will be kept and the 8th to kth singular 
values will be pruned away in each block.  Thus, the 
needed memory for the image will be reduced.  By this 
method, the needed memory size is reduced to a little 
less than the original image. 
 

3.2.3 Bit Reduction Quantization 

As shown in Figure 3, there are some properties that 
can be used to reduce the amount of transmission.  In 
the first phase, all first columns of each block in 
matrices U and V are transmitted during the 
transmission phase.  From our experiment, we observed 
that all the values in the first column of each block in 
the U and V matrices are all positive, where those 
values are between 0 and 1.  The distribution of all first 
columns in each block in matrices U and V are shown 
in Figure 4.  Because the amount of values which is 
larger than 0.5 is quite few, the graph only shows the 

range from 0 to 0.5. A lot of values are around 1 / k , 
where k is equal to 16. Thus, lots of values are around 
0.25. 

According to this property, the first phase can be 
reduced further.  The range of all values in the first 
phase is smaller than those of all values in the other 
phases, so fewer bits can be used to quantize the values 
in the first phase.  According to our experiment, instead 
of 8 bits being directly used, five bits are enough for 
the first phase.  When five bits are used, there are 
thirty-two levels that can be used to quantize the values.  

Lots of values are centered around 1 / k , so that 
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twenty-six levels are used to quantize the values around 

1 / k , and the remaining six levels are used to 

quantize the values that are far from 1 / k .  Also, the 
mean values for each level are calculated. These mean 
values need to be transmitted, too, and are used to 
reduce distortion.  The amount of the first phase needed 
for transmission is reduced. 

The importance of a block from the second phase to 
the Tth phase decreases.  The larger singular value is 
more important, so bit reductions are used in the second 
phase to the Tth phase.  The second phase is the most 
important phase, aside from the first phase, so 7 bits are 
used in this phase.  The third phase uses 6 bits, and the 
fourth phase to the Tth phase (the last phase) uses 5 bits 
to quantize their corresponding blocks.  In this way, the 
amount needed for transmission is reduced for the 
whole image. 
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(a) The distribution of all first columns of each block in 

matrix U 
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(b) The distribution of all first columns of each block in 

matrix V 

Figure 4: The distribution of the first phase of 512*512 
Lena with block size 16*16 

3.3 Sending Step 

After the quantization step, an image is decomposed 
into three quantized matrices Uq, Vq, and Dq.  When 
sending the first phase, a sender sends all the first 
columns in each block in Uq and Vq and all the first 
items of each vector d (all the first singular values).  In 
the second phase, the sender will send all the second 
column of each block in Uq and Vq and all the second 
items of each vector d, and so on.   

When singular values are sent, because all singular 
values in the same phase are close to each other, and 
the singular values in the higher phase are very small, 
fewer bits can be used for the singular value in the 
higher phase.  All the first singular values are very 
large. When they are sent, the largest singular value in 
the first phase needs to be found because the number of 
bits a singular value requires for the first phase needs to 
be decided.  Similarly in each phase, the largest 
singular values in each phase need to be found in order 
that the number of bits needed to represent them can be 
determined. 

3.4 Combination Step  

In each phase, each block of a receiver will receive two 
columns ui and vi and one value di to represent one 
block.  By multiplying di*ui*vi

T for each block, we will 
produce a matrix with size k*k, where k*k is the block 
size.  In each phase, there are three items, which are di, 
ui, vi in each block, and we use di*ui*vi

T to represent the 
original block in the recovered image.   

The first phase is the base phase. All the calculated 
blocks are called base blocks, and all the base blocks 
form the recovered image.  The second phase will add 
the blocks calculated in this phase to the base blocks, 
and the added block will become the new base blocks. 
All the new base blocks also form the recovered image 
for this phase.  Similarly, in the third phase, the blocks 
will be calculated and added to the base blocks, and so 

on.  After the third phase, the value ∑
=

3

1i
di*ui*vi

T is 

used to represent the block.  In each phase and each 
block, two columns and one value will be used to 
calculate a matrix (block), and this matrix added to the 
base block will generate a new base block.  After all the 
phases are processed, the recovered image will be 
generated. 

4. Experiments 

In this section, some experimental result shows.  The 
experiment includes different size of images, which are 
images Lena, Baboon, Pepper and Airplane of sizes 
256*256 and 512*512.  The images are processed with 
a different value k, and all the results are shown below. 

4.1 Progressive Transmission Result 

Figure 5 shows the recovered images for each phase by 
using the bits reduction quantization method. The 
image is Lena with 512*512 pixels.  The block size is 
16*16. H=16 and T is rounded up to 6.  The first phase 
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uses the received mean values to recover the original 
quantization level.  In our proposed method, from the 
second phase to the last phase, the mean values for each 
phase can be calculated, but calculation is not required.  
In this experiment, we only transmit the mean values 
for all quantization levels in the first phase, and from 
the second phase we use a fixed quantization level to 
recover the blocks. 

Figure 6 shows the maximum d value in each phase.  
The table shows that the needed bits for the d values 
can be reduced in each phase.  In the first phase of 
Figure 6 (a), the d values need twelve bits for each 
value, and in the second phase the d values need ten 
bits for each value.  The needed bits for the d values 
can be decided by their maximum value in each phase. 
Figure 7 shows the needed T for each image with a 
different k.  Value T indicates the number of phases an 
image with different k is needed for transmission to 
have good effect.  In our experiment, the 512*512 Lena 
image is the principal example.  Its T with k=16 is 
5.272. In Figure 5, T is rounded up to 6.  So six phases 
are used to store and transmit this image. 

4.2 A Comparison of BPM and IBPM 

Figure 8 shows a comparison of BPM and IBPM using 
the method of bits reduction quantization.  In the first 
three phases, the proposed method has a higher PSNR 
than BPM and IBPM. After the fourth phase, the PSNR 
will become lower than them.  Although BPM and 
IBPM have a higher PSNR than the proposed method, 
they only have sixteen kinds of colors to represent an 
image in the fourth phase.  The recovered image will 
look bad.  But in our proposed method, it is clear and 
with full colors in the third phase.  When the bpp (bits 
per pixel) is compared with BPM and IBPM, the 
proposed method has a total 3.062 for a 256*256 image 
and a 3.039 for a 512*512 image in the first four phases, 
only a little higher than BPM and IBPM in the first 
three phases.  The total amount of transmission in the 
bits reduction method in the first four phases is almost 
the same as the total amount of transmission in BPM 
and IBPM in the first three phases.  So if the PSNR in 
the fourth phase of the bits reduction method is 
compared to the PSNR in the third phase of BPM and 
IBPM, the PSNR of the bits reduction method is higher 
than those of the BPM and the IBPM. 

The bpp of the proposed method is fixed from phase 
four to the last phase.  The direct 8-bits method will 
have a fixed bpp in all phases. The bits reduction 
method will have a different bpp in each phase.  But 
both methods have the same property in that if k is 
increased, the bpp of each phase will decrease.  
Increasing the block size will decrease the bpp for each 

phase, but more phases will be needed to transmit all of 
an image.  Figure 9 shows the bpp for a different block 
size k and the same k. If k is decreased, the bpp will 
increase, but fewer phases will be needed to transmit all 
of an image. 

Comparing Figure 9 and Figure 7, if we want to 
decrease the bpp in each phase, we can increase the 
block size k. For example, if k=32, the image Lena 
needs eight phases in order to be a clear image, but in 
each phase the bpp is decreased to around 0.37.  
Increasing the block size will cause some block effects 
in the sharp area of the image. If the whole image is a 
smooth image, a bigger value k is suitable and will not 
cause a serious block effect.  If the block size k needs 
to be increased to a larger number, the direct 8-bits 
method will have a better performance and will not 
cause a serious block effect. 

4.3 Comparison with the Direct 8-bits method 

The PSNR of the proposed method is close to the 
original SVD method shown in Figure 10 (a).  The 
original SVD method does not use quantization but 
only decompose an original block into three real 
number matrices.  It wastes too much space in storing 
the matrices.  The proposed method needs a lower 
storage memory and fewer bpp for transmission in each 
phase, but its PSNR will be close to that of the original 
SVD method. 

5. Conclusions 

Most progressive image transmission methods use VQ-
related methods. This paper proposed a new way to 
progressively transmit an image without VQ processing.  
Unlike the traditional BPM and IBPM methods, the 
proposed method will have a higher PSNR in the lower 
phases and require a lower amount of transmission.  
This method is time-consuming in the decomposition 
step and the combination step.  Decomposition using 
SVD has been researched for a long time.  There are 
some papers about speedup of SVD [HsiDel96], so the 
decomposition step is not the problem.  Similar to the 
combination step, matrix (vector) multiplication has 
been researched for a long time.  In [BAI88] a speedup 
method was proposed.  Thus, there are models for SVD 
decomposition and combination.  The problem of 
taking too much time in these two steps has thus been 
resolved. From the experimental results, we see that the 
proposed method is an efficient and effective method in 
progressive image transmission and can obtain a clear 
recovered image in fewer phases. As the experiment 
shows, a big block size k can reduce the bpp of an 
image, and a small block size will have a better 
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performance in the low phases.  Thus, we can use 
different block sizes of an image in our future work.  A 
large block size k is used in smooth areas while a small 
k is used in sharp areas.  Therefore, the bpp can be 
reduced even further, and the PSNR will also be 
increased in each phase in this way. 

(a) The first 
phase 

(b) The second 
phase 

(c) The third 
phase 

(d) The fourth 
phase 

(e) The fifth 
phase 

(f) The sixth 
phase 

Figure 5: The recovered image of 512*512 Lena with 
block size 16*16 in each phase 
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  512*512 ( k=16 ) 
Image 
name Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

Lena 3028 757 443 233 199 128 
Baboons 3122 559 434 286 267 189 
Pepper 3420 718 499 206 148 114 

Airplane 3565 670 509 261 144 87 
(a) The maximum d value in each phase with block size 16*16 

 

  512*512 ( k=32 ) 
Image name Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

Lena 5896 1205 821 549 486 357 
Baboons 6051 761 600 501 480 379 
Pepper 6464 1486 889 452 391 317 

Airplane 7124 1535 824 490 379 270 
(b) The maximum d value in each phase with block size 32*32 

Figure 6: The maximum d value in each phase 
 

H=k 256*256 512*512 
Image 
name 16*16 32*32 16*16 32*32 

Lena 6.543  11.922 5.272  8.031  
Baboons 11.402 20.703 11.191 19.879 
Pepper 5.844  10.719 6.793  10.211 

Airplane 5.945  10.766 4.668  7.590  
Figure 7: The needed T for each image with a different k 

 
256*256 Phase 1 Phase 2 
Image 
name SVD BPM IBPM SVD BPM IBPM

Lena 22.737 16.822 18.001 26.432 22.676 23.328
Baboons 22.380 17.613 19.256 24.304 23.334 23.806
Pepper 23.216 16.253 21.201 27.794 22.445 23.206

Airplane 22.720 19.809 21.245 26.466 22.83 26.003
Avg. 22.764 17.624 19.926 26.249 22.821 24.086 
BPP 0.703 1 1 0.914 1 1 
(a) The comparison of Phases 1 and 2 of a 256*256 image 

 
256*256 Phase 3 Phase 4 
Image 
name SVD BPM IBPM SVD BPM IBPM

Lena 28.808 28.622 29.077 30.371 34.766 34.917
baboons 25.867 28.647 29.043 27.128 34.686 34.926
pepper 30.597 28.809 29.127 31.989 34.848 34.872

airplane 29.136 29.385 29.532 30.787 34.813 35.1
Avg. 28.602 28.866 29.195 30.069 34.778 34.954 
BPP 0.785 1 1 0.660 1 1 
(b) The comparison of Phases 3 and 4 of a 256*256 image 
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512*512 Phase 1 Phase 2 
Image 
name SVD BPM IBPM SVD BPM IBPM 

lena 25.895  16.274 18.098 29.803 22.791 23.131 
baboons 21.085  16.63 20.565 23.201 22.348 23.148 
pepper 26.116  17.609 19.167 30.497 23.202 23.773 

airplane 25.033  19.951 21.463 29.381 22.85 26.067 
Avg. 24.532  17.616 19.823 28.220 22.798 24.030  
BPP 0.680  1 1 0.914 1 1 

 (c) The comparison of Phases 1 and 2 of a 512*512 image 
 

512*512 Phase 3 Phase 4 
Image 
name SVD BPM IBPM SVD BPM IBPM 

lena 32.513  28.847 29.304 34.088 34.924 35.116 
baboons 24.982  28.819 29.151 26.445 34.836 34.889 
pepper 32.836  28.698 29.053 33.938 34.723 34.958 

airplane 32.147  29.365 29.525 33.678 34.826 35.105 
Avg. 30.619  28.932 29.258 32.037 34.827 35.017  
BPP 0.785  1 1 0.660 1 1 

 (d) The comparison of Phases 3 and 4 of a 512*512 image 

Figure 8: PSNR compare with BPM and IBPM in each phase 
 

R-bits Phase 1 Phase 2 Phase 3 Phase 4 

8*8 1.424  1.891  1.625  1.359  
32*32 0.333  0.448  0.385  0.322  

Figure 9: BPP with a different k 
 
 

No quantization (16*16) 
Image name Phase 1  Phase 2 Phase 3 Phase 4

Lena 26.106 30.369 33.974 36.777 
Baboons 21.141 23.304 25.333 27.226 
Pepper 26.399 31.364 34.860 37.085 

Airplane 25.283 30.139 34.121 37.442 
 (a) The PSNR from the original SVD method 

 

Direct 8-bits (16*16) 
Image name Phase 1 Phase 2 Phase 3 Phase 4

Lena 26.000 30.081 33.327 35.610
Baboons 21.093 23.219 25.191 27.002
Pepper 26.243 30.873 33.817 35.454

Airplane 25.057 29.468 32.590 34.628
 (b) The PSNR from the direct 8-bits method 

Figure 10: The PSNR from the direct 8-bits method and the original SVD method 
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