
High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

Representing Appearance and Pre-filtering Subpixel Data in
Sparse Voxel Octrees

Eric Heitz and Fabrice Neyret

INRIA Grenoble Rhône-Alpes and Laboratoire Jean Kuntzmann (Université de Grenoble and CNRS)

(a) (b) (c) (d) (e)

Figure 1: Multiple surface details projecting within subpixels can produce complex shading effects that can be rendered in
real-time with our pre-filtered SVO representation (a). Other real-time methods, such as MIPmapping, tend to neglect various
correlation effects. Our method allows for correct filtering of color variations (b), anti-aliasing (c), and depth-of-field (d),
without oversampling and with seamless transitions when zooming or defocusing. Moreover, our representation can be used
directly to easily design light- and view-dependent materials (e).

Abstract
Sparse Voxel Octrees (SVOs) represent efficiently complex geometry on current GPUs. Despite the fact that LoDs
come naturally with octrees, interpolating and filtering SVOs are still issues in current approaches.
In this paper, we propose a representation for the appearance of a detailed surface with associated attributes stored
within a voxel octree. We store macro- and micro-descriptors of the surface shape and associated attributes in
each voxel. We represent the surface macroscopically with a signed distance field and we encode subvoxel micro-
details with Gaussian descriptors of the surface and attributes within the voxel. Our voxels form a continuous
field interpolated through space and scales, through which we cast conic rays. Within the ray marching steps,
we compute the occlusion distribution produced by the macro-surface inside a pixel footprint, we use the micro-
descriptors to reconstruct light- and view-dependent shading, and we combine fragments in an A-buffer way.
Our representation efficiently accounts for various subpixel effects. It can be continuously interpolated and filtered,
it is scalable, and it allows for efficient depth-of-field. We illustrate the quality of these various effects by displaying
surfaces at different scales, and we show that the timings per pixel are scale-independent.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Color, shading, shadowing, and texture—I.3.3 [Computer Graphics]: Antialiasing—

1 Introduction

With finite resolution screens, explicit shapes are not
necessarily at the scale of a pixel footprint, and are
even a drawback to render the pixel since either costly
supersampling is required or disturbing aliasing will occur.
Thus the interest for SVO in the gaming-oriented literature
[Car08], representing complex local geometry only at
the required scale, and greatly benefiting from the 3D
hierarchical grid structure for efficient traversing. Still,
subpixel features can impact a pixel value, and not only
through the linear separable way that MIPmapping assumes:
averaging maps is not sufficient to capture subpixel effects

like non-linear attributes such as normals and roughness,
and the contribution of a microsurface to a pixel is
correlated to its visibility from the eye (masking) and the
light (shadowing). This is even more obvious when an
attribute such as color is correlated to depth within the local

Figure 2: Real surfaces showing correlations of colors with
depth. Masking produces view-dependent color variations.

c© The Eurographics Association 2012.

DOI: 10.2312/EGGH/HPG12/125-134

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGGH/HPG12/125-134

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

heightfield, and thus with the visibility [BN11]. Numerous
natural or human-made surfaces show such correlations of
attributes with depth, from fabrics to barks, from soils and
landscapes to structured surfaces, from fractured to rusty or
aged layers (Figure 2).

2 Previous Work

2.1 Sparse Voxel Octree

John Carmack and Id Software [Car08] popularized voxel
engines for displaying complex geometry in the gaming
world. Because their voxels are not interpolated they look
like Lego(TM) bricks at close view, and aliasing is high.

GigaVoxels [CNLE09] octrees store n3 voxel bricks (in
a 3D texture) at the nodes. They mimic volume density
rendering and rely on 3D MIPmapping and texture inter-
polation. This representation makes interpolation possible
through space and scale (including efficient soft shadows
simulations and depth-of-field), but it ignores subvoxel cor-
relation with visibility. Moreover, alpha or density is a crude
approximation of subpixel occupancy when correlation be-
tween successive pixel fragments along a ray is high (see
Figure 4), as it is on an object silhouette. This impacts the
macroscopic color, lighting, and silhouette thickness.

Crassin et al. [CNS∗11] encode light-view dependent
energy and material (color + normal) in voxels, and filter
normal sets as Normal Distribution Function (NDF) lobes
used to control Phong exponent and cone aperture (i.e.,
the MIPmap level used to integrate incoming energy). But
visibility is not accounted for during LoD pre-filtering, and
the representation has preferred directions best adapted to
architectural scenes.

Efficient Sparse Voxel Octrees (ESVO) [LK10a, LK10b,
LK10c] are the first step toward surface (rather than
volumetric) representation with subvoxel content. They
explicitly represent the geometric occupancy within a
voxel through an oriented slab engulfing surface variations,
which allows view-dependent intersections. However, this
approach has strong limitations (described in [LK10b] 3.2
and 3.3) concerning:

• Magnification: The representation makes spatial interpo-
lation of the geometry impossible. Data are accessed in
nearest mode which results in polyhedral aspect at close
views and sharp aliased edges in the silhouettes.

• LoD: Quadrilinear interpolation of the geometry (between
two levels in the octree) is not possible and produces pop-
ping artefacts at transitions. Moreover, the ESVO con-
struction process is top-down which does not guarantee
consistency of appearance between scales while top level
appearance/BRDF should match the effect of bottom mi-
crostructures.

• Filtering: Aliasing occurs at distance even using several
samples per pixel. Screen-space blurring has to be done
to reduce these flaws.

A complete SVO model definitely needs to account
for subgeometry distribution as in [LK10a], but on a
continuous way (with interpolation) as in [CNLE09],
taking into account effects on multiscale materials as
in [CNS∗11]. Correlation between surface attributes and
visibility producing view-dependent effects should also be
taken into account for many real-world surfaces. To make
it possible on a generic way, we will reframe the rendering
problem to be solve following a differential cone tracing
formalism, i.e., the integration over the pixel using a ray and
its footprint radius in the spirit of [Ige99].

2.2 BRDF

BRDFs have long be though of as the macroscopic light-
and view-dependent appearance of a statistically defined
microgeometry, including visibility effects [CT81, ON94].
However, the micro-surface is assumed as ideal (e.g.locally
specular, or pure diffuse) and not varying in its attributes.
Thus, the derivations should be reformulated to include local
BRDF and colors (and any other attributes). Smith [Smi67]
(see Eqs (4)-(6)) proposes a formulation of visibility similar
to [CT81] but parameterized by depth within the heightfield.
We will draw on this BRDF model since it is very adapted
to account for depth-dependent attributes.

Fournier [Fou92] and Han et al. [HSRG07] propose
to represent normal distributions as sum of lobes and to
convolve BRDF and NDF. Note that in the scope of voxel
storage and real-time rendering, the base memory footprint
and calculation must be kept lightweight: decomposition in
basis (e.g., Spherical Harmonics) is not affordable. Similarly
to Olano et al. [OB10] we rely on a simple NDF lobe and
a simple BRDF on microsurface to treat these attributes
through our pre-integration.

2.3 Visibility and Correlation

Microfacet-based BRDF models above account for local
light-view visibility with some simplifying assumptions.
More complex cases (e.g.correlated visibilities) have been
treated in other domains, from horizon maps to hotspot in
satellite views of forests. See the survey on filtering non-
linear effects on macro-surfaces [BN11].

Non-local visibility correlation along a cone ray has
also to be considered: the occupancy distribution within
a pixel fragment is equivalent to a transparency (or
alpha) only in the case of non-correlation between the
content of successive fragments. Classical volume rendering
and GigaVoxels [CNLE09] assume random scatterers
distribution within voxels, but this assumption cannot apply
to SVOs since they represent opaque coherent objects: along
a ray passing through the silhouette, all the subvoxel density
is on the same side of the silhouette.

This has been studied for meshes in the scope of efficient
anti-aliasing: two neighbor triangles are very correlated, and
some manufactured objects have structured features prone to

c© The Eurographics Association 2012.

126

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

alignments. With his A-buffer algorithm [Car84], Carpenter
proposed a representation of the subpixel occupancy through
a compact bitmask (possibly stored in the bits of a
single int). The bitmask of the various fragments along
a ray are combined through logical operators to determine
their contribution to the pixel. The 2D subpixel occupancy
mask of a fragment is obtained from a pre-calculated
mask table indexed by the edge rasterization within a
pixel. Several variants, including vector masks, have been
proposed. We inspire ourselves from this idea for combining
fragments masks along a ray. Our fragments will correspond
to traversed voxels, introducing a view-independent 3D
vector mask to represent subvoxel occupancy. When
marching along a ray, these will generate 2D bitmasks
combined as for A-buffer.

3 Filtering Local Surface Appearance: Problem Study

Basic Problem and its Naive Solutions Let suppose
that the BRDF ρ at location x can be expressed as a
sum of elementary BRDFs [Pho75, LFTG97] weighted by
attributes ai(x) (e.g.the specular, diffuse, and ambient terms
scaled by color coefficients, in the Blinn-Phong model).

ρ(x,n(x)) = ∑
i

ai(x) ρi(x,n(x)) (1)

ai are usually expressed as RGB values.

The local illumination equation expresses the light
intensity reflected by surface towards the observer as a
function of the surface attributes. Radiance I perceived in
direction v from surface A (meant to be a fragment of a given
pixel’s footprint) is:

I =
∑i

∫
A El(x)ai(x)ρi(v, l,x,n(x))ln(x)V (v,x)V (l,x)vn(x)dx∫

A V (v,x) vn(x) dx
(2)

At point x of A, vn(x) and ln(x) are the clamped dot products
between the surface normal and the eye and light directions,
V (v,x) and V (l,x) designate the visibility values along the
eye and light source, and El the entering radiance emitted
by the environment from direction l (see [BN11] for more
details).

Usual MIPmap-based mesh shading as well as 3D
MIPmapping [CNLE09] assume separability of terms,
averaging these attributes and approximating

Ii ≈ Ēl āi ρi(v, l, n̄) ln̄ V̄ (l) (3)

where Ēl =
∫

A El(x) d x∫
A d x , āi =

∫
A ai(x) d x∫

A d x , n̄ =
∫

A n(x) d x∫
A d x and

V̄ (l) =
∫

A V (l,x) d x∫
A d x are the surface mean values of the

incoming radiance, the surface attributes, the normals, and
the visibility from the light source. However, attributes ai(x)
might be correlated with their visibilities V (v,x) and V (l,x)
so their screen-wise mean value is not the mean of ai,
a constant, but a view-dependent function āi(v, l). Also,
applying the BRDF equation to the mean normal –ρ(v, l, n̄)–

Symbol Description
x local position on the surface A

n(x) local normal
a(x) local attribute
El(x) incoming radiance from direction l

ρ(v, l,x,n(x)) local BRDF
V (v,x) visibility of x from eye
V (l,x) visibility of x from light source

q̄ pixel-wise average of local quantity q(x)

does also not produce the correct result since a convolution
with the normal distribution is missing: naively MIPmapping
a specular bumpmap yields a specular macro-surface instead
of diffuse.

Choosing a Microscopic Surface Model To account for the
light-view-dependent effect of microgeometry, microfacet-
based analytical BRDF models such as [CT81, ON94]
reproduce the reflectance of surfaces of known (e.g.,
Gaussian) statistical properties. This principle could be used
to filter macrogeometry as well, but the models above do
not account for attribute variations along the surface: an
attribute can be factored out the integral only if the BRDF
is an affine function of it (e.g., Phong colors coefficients)
and if attributes values are not correlated to their visibility.
In practice, this hypothesis is often not valid since attributes
are correlated to geometry by construction. Fortunately, for
many real-world surfaces (Figure 2) attributes are simply
correlated with depth h within the surface heightfield. In
such a case, we can rely on Smith’s formulation [Smi67] of
micro-surface visibility which integration is parameterized
over the depth within the heightfield, so that it is easy
to revisit it adding an extra weight. For a surface
where depth h(x) and slopes (nx,ny) are two Gaussian
random processes N (0,σ2

h) and N (0,(σ2
nx ,σ

2
ny)), then the

probability of visibility V (v,h) is given by [Smi67]:

V (v,h) = g(h)Λ(v) (4)
with

g(h) = 1− 1
2

erfc
(

h√
2σh

)
(5)

Λ(v) = 1
2

(√
2
π

σn(v)
µ(v)

e
− µ(v)2

2σn(v)2 − erfc
(

µ(v)√
2σn(v)

))
(6)

µ(v) = cot(θ) where θ is the angle between the surface
normal and the eye-direction, and σn(v) is the distribution of
the slopes in the projected direction of v. In our model, we
use this formulation to compute the visibility of an attribute
correlated to its depth in the surface.

4 Our General Rendering Framework

Formally, anti-aliased rendering is integrating the radiance
reaching a pixel by using a pixel-width cone-tracing
through the scene. For representations allowing LoD
pre-integration (like texture MIPmap and several SVO
approaches mentioned above), setting the LoD according to

c© The Eurographics Association 2012.

127

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

the pixel footprint is a differential approximation of the cone
integration. We revisit SVO rendering integration following
this formalism.

Our hierarchical representation traversed by the cone con-
tains view-dependent pre-integrated geometry. We consider
a cone as a set of successive cone elements locally similar to
cylinders, whose length equals their diameter. These cone el-
ements constitute the neighborhood over which we integrate
the microscopic rendering. Cone tracing ensures the macro-
scopic integration. Shadow-ray cones are treated similarly,
launched from contributing cone elements, and of a size
such as to fit to cone element and to light source diameters.
By pre-computing a hierarchy of neighborhoods, we use
the local cone diameter to access the correct MIPmap level.
Thereby, our rendering scheme is similar to volume render-
ing with differential cones [CNLE09], but our storage and
shading of voxels account for subpixel occlusions and cor-
relation effects. This model ensures a rendering with nearly
constant computational complexity. It provides smooth tran-
sitions between scales, by progressively merging the macro-
geometry into the microgeometry as the MIPmap level in-
creases. We thus get an anti-aliased and coherent render-
ing at the different scales that reproduces view-dependent
macro- and microgeometric effects.

4.1 Cone Tracing

In a perspective camera model, a pixel value is the
light intensity I perceived over a solid angle Ω. To
each direction ω with solid angle dω corresponds a
ray leaving the pixel (this generalizes easily to cameras
with lenses and depth-of-field). The intersection of the
geometry A at distance z for the ray going through ω

is a binary value 1A(w,z) ∈ {0,1} and its visibility is
given by 1−1A(w, [0,z[). The visible occlusion distribution
produced by the geometry

α(ω,z) = 1A(ω,z) (1−1A(ω, [0,z[)) (7)

expresses the fact that the ray going through ω is occluded
by the geometry exactly at distance z. The light intensity I
perceived at the pixel, and reflected by the geometry of
the scene, is the sum of the visible outgoing radiances L
towards the viewer’s direction. A localized description of
this integral expresses it as the sum of the accumulated
radiances through the space covered by the cone

I =
∫ ∞

0

∫
Ω

α(ω,z)L(ω,z) dωdz (8)

where, for each cone section at distance z along the ray,
point (ω,z) is the intersection of the cone section with the
ray associated to the direction ω. L(ω,z) is the outgoing
radiance of the coincident surface { (ω,z) | 1(ω,z) = 1} at
the intersection of the visible geometry and the cone section
(Figure 3).

Figure 3: Comparison between cone tracing and differential
cone tracing.
4.2 Differential Cone Tracing

In the perspective of local neighborhood pre-integration
to ensure efficiency and scalability, we split the cone in
successive cone elements

I =
∞
∑

d=0

∫ zd+1

zd

∫
Ω

α(ω,z)L(ω,z) dωdz (9)

To permit pre-filtering, our objective is to find a way
to represent the pre-integrated local visible occlusion
αd =

∫ zd+1
zd

∫
Ω

α(ω,z) dωdz and the mean local visible

outgoing radiance Ld =
∫ zd+1

zd

∫
Ω

α(ω,z)L(ω,z) d ωd z∫ zd+1
zd

∫
Ω

α(ω,z) d ωd z
in a cone

element. Then, at runtime we only need to compute
I = ∑

∞
d=0 αdLd (Figure 3).

Ld and αd represent a pre-filtered element. They are not
scalars, but anisotropic view-dependent functions. The two
next subsections explain how to compute them.

4.3 Visible Occlusion Distribution αd in a Cone
Element

The visible occlusion in the dth cone element

αd =
∫ zd+1

zd

∫
Ω

1A(ω,z) (1−1A(ω, [0,z[)) dωdz (10)

can be rewritten as

αd =
∫

Ω

1A(ω, [zd ,zd+1]) (1−1A(ω, [0,zd [) dω (11)

where 1A(ω, [zd ,zd+1]) is the indicator function of the
intersection of the ray going through x and surface A in

c© The Eurographics Association 2012.

128

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

(d) (e)

Figure 4: (a): A pixel is only half covered by opaque
geometry, thus the fragment has an opacity α = 0.5.
(b,c): Successively accumulating opacity by naive blending
progressively saturates the final result, while it should stick
to 0.5, i.e., the α-blending model is wrong when fragments
(or successive cone elements) are highly correlated, which is
the case at silhouettes. This tends to thicken silhouettes and
become especially visible with depth-of-field (d). Our model
takes into account correlations along the ray and produces
correct silhouettes even with depth-of-field (e).

the cone element [zd ,zd+1]. The product of the indicator
functions in the integral expresses the correlation between
the intersections events along different rays. If we suppose
them uncorrelated, we could integrate them in a separable
way

αd =
∫

Ω

1A(ω, [zd ,zd+1]) dω

∫
Ω

(1−1A(ω, [0,zd [) dω

(12)
which corresponds to the blending model
αd = α[zd ,zd+1](1−αd−1) used in volume render-
ing [KVH84]. Indeed, in volume rendering the opacity
α of a voxel represents the occlusions produced by an
important amount of microscopic elements statistically
uncorrelated along a ray. Yet, this uncorrelation hypothesis
is not valid in the case of occlusions produced by dense ob-
jects with well-contrasted spatial distributions. Neglecting
this produces errors such as excessive opacity accumulation
along silhouettes (see Figure 4). A good rendering model
should thus take the correlation between the terms in inte-
gral (11) into account. Evaluating αd requires to represent
and to manipulate the distributions 1A(ω, [zd ,zd+1]).

4.4 Outgoing Radiance Ld in a Cone Element

We make the hypothesis (H1) that correlation between
radiance and visibility only exists at the neighborhood’s
scale, and that there is no correlation between faraway
occlusion and local radiance. This allows us to consider local
Li independently. We have Ld ≈

∫ zd+1
zd

∫
Ω
1A(ω,z) L(ω,z) d ωd z∫ zd+1

zd

∫
Ω
1A(ω,z) d ωd z

by canceling out the term 1−1A(ω,z) that gets out of the
integral thanks to uncorrelation hypothesis.

To compute Ld , we need a model that describes the
geometry inside the dth cone element, a model for the
distribution of the surface attributes (we propose one in
Section 5), and the analytical integration of the masking
and shadowing effects on these attributes over a complex
surface (Figure 3). By considering the correlation between
the surface attributes and their visibility, we get a similar

form of Eq. (3)

L≈ Ēl ā(v, l) ρ̄(v, l) ln̄ V̄ (l) (13)

in which we replace ā by the mean visible attribute ā(v, l)
given by

ā(v, l) =
∫

A a(x)V (v,x)V (l,x) vn(x) dx∫
A V (v,x)V (l,x) vn(x) dx

(14)

From Eq. (3), we only keep the earlier hypothesis of far-
away uncorrelation between radiance and occlusion which
allows to take El out of Integral (2) (this is already in
(H1)), and the hypothesis of uncorrelation between ai(x) and
ρi(x,n(x)), let us denote it (H2).

(a)

(b) (c)

(d)

Figure 5: Correlation between the surface attributes and
their visibility. The red boxed images show how our shading
model (Eq. (13)) reproduces geometric occlusion effects on
an anisotropic surface. (a) View and light are normal to the
surface, there are no light- or view-dependent effects. (b,c)
The light and the camera are moved to a grazing angle
parallel to the direction in which the anisotropic surface
is constant. Still no view-dependent effects. (d) The light
is moved to a grazing angle parallel to the direction in
which the anisotropic surface oscillates. The green bumps
stay in the lighted zone while the red grooves disappear in
the shadow making dark green the resulting average color.

5 Our Computation Model

In this section, we propose a way to represent the
microgeometry and the attributes distributions in order to
calculate Eqs. (11) and (14).

5.1 Hypotheses

We base our approach on five additional hypotheses :

(H3) The microgeometry is represented with a Gaussian
surface [Smi67], possibly anisotropic. This common choice
is justified by the compactness of such a representation, the
simplicity of computing, interpolating, and manipulating its
parameters, as well as the properties that can be analytically
derived from it.

(H4) BRDF ρi(x,n(x)) and depth h of the surface are
uncorrelated, in particular normals with respect to depth (for

c© The Eurographics Association 2012.

129

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

applicability of [Smi67]. But it is already a consequence
of (H3)).

(H5) We assume surface attributes ai are correlated only with
their depths h within the surface (which is the case for many
real surfaces). This allows to separate

∫
a(x) and

∫
n(x) in

Eq. (14).

(H5bis) We assume that the distributions of the average
attributes values can be represented as a function of the
heights of the surface details: a(h) = ā+ass(h), where ā
is the mean value of the attribute and s(h) a centered and
normalized increasing function. It is interesting to take a
sigmoid function s to avoid spoiling the dynamics of a in
loosely representative extrema. We choose s(h) = 2g(h)−1
with g(h) from Eq. (5) which enables the analytical
integration of Eq. (14). Parameter as represents the
correlation between h and a.

(H6) The macrosurface is locally planar, i.e.the macroscopic
curvature does not interfere with the computation of the
Gaussian parameters, like in most of the previous work
on surface attributes pre-filtering [BN11]. Our computation
of visibility V is also based on that approximation. This
hypothesis fixes the validity domain of our model.

(H7) The macrosurface belongs to a B-rep object. We do not
represent thin objects whose inside parts cannot be captured
by the resolution of the voxels.

5.2 Voxel-based Data Structure Representation

We use the octree structure from Crassin et al. [CNLE09],
with n3 voxel bricks stored at each node, which makes hard-
ware interpolation between voxels possible. We consider
volumetric objects as macroscopic signed distance fields
with statistical descriptors of the microscopic behavior. Fig-
ure 6 shows the data we store in each voxel

• Macroscopic distance field h̄ and the variance of its
microscopic oscillation amplitudes σ

2
h

• Macroscopic normal n̄ and the roughness σ
2
n of the

microgeometry. The associated NDF is a Gaussian lobe
with mean n̄ and slope variance σ

2
n (σ2

nx and σ
2
ny in the

anisotropic case)
• Microscopic distributions of each attribute with ā and

as. Representing RGB colors thus requires 3× these two
parameters.

Note that we store and interpolate variances σ
2, which is

the quantity that interpolates linearly (and is thus suited for
hardware interpolation).

Pre-computation We pre-compute a hierarchical represen-
tation of filtered attributes and geometric details. Each pa-
rameter p described above is initialized at the deepest level
from the corresponding input data as p̄ = p and σ

2
p = 0. The

statistics of the parameter at each scale are computed as an
integral in the deepest level over the corresponding neigh-
borhood. We compute h̄, n̄, and ā (mean values) and σ

2
h and

Figure 6: Our voxel representation of surfaces with
attributes.

σ
2
n (variances) with the usual statistic formulas. We compute

projection as =
∫

s(h(x))a(x) d x∫
s2(h(x)) d x of attribute a on the function

s(h) (H5bis) parametrized by σh (see Eq. (5)).

Memory Footprint We use two channels for the dis-
tance field parameters (h̄ and σ

2
h), four (isotropic) or five

(anisotropic) channels for the macro-normal (n̄) and the
micro-NDF (σ2

n) and two channels per surface attribute (ā
and as), e.g., color channels. While 32-bit precision is prefer-
able for the distance field, 8- or 16-bit channels are reason-
able for the other components. Thus, our representation han-
dles multi-scale geometry, view-dependent filtered RGB col-
ors and shading for an average 15-20 bytes per voxel (possi-
bly less at the deepest level where σ

2
p = 0). This is about two

or three times as much as in [CNLE09] with RGBA values
and normals.

5.3 Overall Algorithm

We use the octree traversal algorithm described in
[CNLE09] to sample the voxel field. Algorithm 1 explains
how we use the voxel data structure to achieve practical
calculations of illumination and occlusion at runtime and is
illustrated in Figure 7.

Algorithm 1 Cone tracing for one pixel
1: d = 0 : cone element index
2: vec3 p(d) : cone element d center’s position
3: int α = 0 : binary mask with N bits
4: float L = 0 : mean pixel incoming radiance
5: while p(d) in volume data do
6: compute cone width wd and MIPmap level
7: sample voxel data at p(d) at the proper MIPmap level

get h̄, σ
2
h, n̄, σ

2
n, ā, as

8: compute float θ(h̄, n̄) and float v(h̄, n̄) (5.4)
get int 1A(θ,v) (texture fetch)

9: compute float Ld(n̄,σ
2
n,σ

2
h, ā,as) (5.5)

10: L = L+Ld
bitcount(1A\α)

N
11: α = α∪1A
12: d = d +1
13: end while
14: return L

c© The Eurographics Association 2012.

130

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

5.4 Computation of the Occlusion Distribution

This section proposes a representation and an algorithm
to compute 1A(ω, [zd ,zd+1]) necessary for the evaluation of
Eq. (11). According to hypothesis (H6), the mean geometry
can be locally represented by the plane specified by the
signed distance h̄ and the normal n̄ = (nx,ny,nz). This plane
defines a half-space whose 3D intersection with the cone
element gives a 2D occupancy distribution over the pixel
footprint which is computed analytically. It enables us to
compute the contribution of the local geometry to the pixel,
while taking into account the correlations with occlusions
along the cone’s axis. We associate a tabulated mask to
that distribution to represent the functions 1A. We can thus
compute and combine them efficiently as in [Car84].

Figure 7: Computation of the mask in a cone element. Left:
The data are sampled at the cone center. The equation of the
plane tangent to the geometry is given by h̄ and n̄. Right: We
test for a given ray if it lays in the part of the pixel footprint
covered by the geometry.

Computation of the masks The cone element d is locally
approximated with a cylinder at distance zd from the eye
and oriented in direction~z, of radius rd , and length ld . The
binary mask is a set of points (ωx,ωy) on the pixel footprint
associated with the rays going through the directions ω. For
each ray (ωx,ωy) we compute if it intersects the plane with
normal (nx,ny,nz) and distance h̄ (see Figure 7). This plane
is given by the equation xnx + yny +(z− zd)nz + h̄ = 0. The
ray passing through ω intersects the geometry in the cone el-
ement if at least one of the extremities (rdωx,rdωy,zd ± ld)
is below the plane: rdωxnx + rdωyny− ldnz + h̄≤ 0. The
intersection test for the bit of the mask associated with
point (ωx,ωy) of the pixel is then ωxnx +ωyny ≤ nzld−h̄

rd
.

We rewrite the projection of the normal on the pixel

footprint (nx,ny) =
√

n2
x +n2

y(cosθ,sinθ) in polar coor-
dinates and the final intersection test has the form
ωx cosθ+ωy sinθ≤ v with v = nzld−h̄

rd
√

n2
x+n2

y
(see Figure 7).

The state of each bit (ωx,ωy) of the mask and thus the dis-
tribution 1A(ω, [zd ,zd+1]) is then entirely described with the
two parameters (θ,v). We pre-compute each mask and store
it as an integer value in a 2D texture parametrized by (θ,v).

At the runtime, for each cone element d, we compute θ and
v and fetch the texture in nearest mode to get the mask.

5.5 Computation of the Local Illumination

When the cone intersects the geometry, the radiance
emitted by the geometry contributes to a part of the pixel.
This section focuses on the representation and on the
computation of the BRDF of the microscopic surface and of
the view-dependent mean surface attributes ā(v, l) involved
in the computation of the outgoing radiance (Eq. (13)).

BRDF Representation To simplify the convolution of
NDFs with BRDFs, we assume as in previous work that
both can be represented in the same way. We rely on their
Gaussian slope statistics N (n̄,σ2

n) representation [CT81,
ON94]. The initial microfacet statistics of the BRDF σ

2
nρ

is progressively enriched with the filtering of meso-surface
normals σ

2
n. Convolving two random Gaussian variables

comes down to adding the variances. At runtime, we
compute the shading with the convolved BRDF with
variance σ

2
n +σ

2
nρ

.

View-dependent attributes According to (H5), attribute
a(h) and visibilities V (v,h) (from the eye) and V (l,h)
(from the light source) are expressed as functions of h. We
reformulate Eq. (14) by integrating over h:

ā(v, l) =
∫∞
−∞ a(h)V (v,h)V (l,h) P(h)dh∫∞
−∞ V (v,h)V (l,h) P(h)dh

(15)

where the microscopic surface has heights with distribution
N (0,σ2

h), attributes a(h) = ā+ass(h), and visibility proba-
bility V (d,h) given by Smith’s model (Eq. (4)) for direc-
tion d.

In Eq. (15), we can expand a(h) out of the integral.
According to Smith’s model, we have P(h) = g′(h) and
V (v,h) = g(h)Λ(v). Eq. (15) hence becomes

ā(v, l) = ā−as +2as

∫ ∞
−∞

g′(h) g(h)Λ(v)+Λ(l)+1 dh∫ ∞
−∞

g′(h) g(h)Λ(v)+Λ(l) dh
(16)

which has the following analytical solution

ā(v, l) = ā+as

(
2

Λ(v)+Λ(l)+1
Λ(v)+Λ(l)+2

−1
)

(17)

6 Implementation and Results

We implemented our algorithm in CUDA on an NVIDIA
GTX 560 graphics card in a PC with an Intel Core 2.40
GHz and 8 GB memory. Our SVO implementation (data
management, octree traversal and sampling) is essentially
based on the voxel engine presented in [CNLE09] in which
we added the stages described in Sections 5.4 and 5.5.

In the following results, our images are rendered with a
resolution of 512×512. The typical performances are 40-
60 fps without shadows and 10-25 fps with shadows (in

c© The Eurographics Association 2012.

131

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

the following, if not explicitly mentioned, performances are
without shadows). While zooming in, the cost per covered
pixel is nearly constant around 0.1-0.3 µs/pixel. This cost
mainly depends on the presence of silhouettes: views with
no silhouettes are the fastest, views with large grazing areas
are the most expensive since several cone elements per ray
are computed.

(a) (b) (c) (d)

Figure 8: Our model shows seamless transitions when
zooming in (see also the video).

far mid close closer closer far far
View view view view (silh) (no DoF shadow
Fig. 8 8.a 8.b 8.c 8.d silh)

fps 57 37 25 19 66 110 26
ms 17.5 27 40 52.6 15 9 38.5

µs/pix .26 .13 .22 .32 .06 .13 .57

The importance of interpolation for good-looking SVOs
is illustrated in Figure 10. Carmack’s SVO are blocky
and aliased due to the lack of interpolation. Crassin et
al. [CNLE09] reveals cubical patterns since opacity is not
a correct descriptor for occlusion correlated along a ray.
ESVOs (not figured here) encode a subvoxel 3D boundary
yielding a sharp polygonal-like magnification. But it is
aliased and looks polyhedral by lack of integration and
interpolation, and it suffers from parallax shifting under
animation due to the nearest operator. Our method ensures
anti-aliased sharp magnification as well as temporal and
zooming in and out coherency. The three methods compared
here achieve the same performances. This means that the
computational overhead introduced by our algorithm is
negligible in comparison to the time spent in the other
parts of the algorithm (data management, octree traversal
and sampling). The dataset is a voxelized Marko Dabrovic’s
Sponza. The octree has a resolution of 20483 voxels and
occupies 8 GB. We use masks (see Section 5.4) with 128
Poisson-distributed samples, so that atomic mask operations
are done using four 32-bit integers. Our pre-calculed mask
table is 256×256.

Anti-aliasing Our method ensures proper anti-aliasing of
silhouettes even for complex subgeometry and correlated
fragments, at very good performances, when classical
solutions are either costly (oversampling) or biased (see
Figure 4(d) for cone rendering on volume densities).
Indeed, our scheme works exactly the same for depth-of-
fields, yielding even better performances: As for [CNLE09],
our cone-tracing scheme is faster for depth-of-fields (see
Figure 1(d)) than for focussed images, as the former relies
on coarser LoDs.

Material Filtering We demonstrate how our method is
able to filter correctly view-dependency on real material
(Figure 9). The plots compare the groundtruth and separate
color MIPmapping with the output of our model (Eq. (17)).
Color variation becomes an important feature at grazing
angles (especially at silhouettes like in Figure 11) and
are well captured by our model while seperate color
MIPmapping is not view-dependent at all. The effects
of surface anisotropy (σ2

nx 6= σ
2
ny) and combined light-

and view-dependency are illustrated on the cylinders in
Figure 5. Our model can also be used directly as a material
editor without the burden of managing explicit details (see
Figure 1(e)). In such case the shader has to evaluate Eq. (17)
which is possible with a few lines of code and easy to insert
in an existing rendering pipeline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

R
 v

a
lu

e

Groundtruth
Color MIPmap

Our model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

G
 v

a
lu

e

Groundtruth
Color MIPmap

Our model

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140

B
 v

a
lu

e

angle theta (view direction)

Groundtruth
Color MIPmap

Our model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

R
 v

a
lu

e

Groundtruth
Color MIPmap

Our model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

G
 v

a
lu

e

Groundtruth
Color MIPmap

Our model

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140

B
 v

a
lu

e

angle theta (view direction)

Groundtruth
Color MIPmap

Our model

Figure 9: Testing our method using materials having
height/color correlation. Left: Comparison for two typical
view angles of our resulting pixel color against the
groundtruth (obtained by averaging a high-res image) and
MIPmapping for view-dependency only (lighting is disabled
and the term Λ(l) is set to 0 in Eq. (17)). Right: detailed
comparison of R,G,B curves for varying view angles. Our
model is view-dependent and fits pretty well the groundtruth
(especially for real-time usage) while MIPmapping is
constant and correct only for normal view angles. Top:
The maximum error of our method is less than 1% on a
Perlin noise height map (which tends to produce a Gaussian
surface (H3) and with a color s(h) of the height (H5) and
(H5bis). Bottom: On a real-world texture which is not really
Gaussian, the error is about 5% at grazing angles.

Accurate 3D Filtering Our algorithm is able to correctly
reproduce subpixel color effects due to correlated visibility
from the eye and from the light source, that are comparable
to the groundtruth, contrary to the naive method processing
separate filtering of geometry and color (see Figure 11).
In particular, we ensure seamless zoom with close to
no color shift (see Figure 8) and correct transformation
of meso-granularity to BRDF roughness (see Figure 12)
while keeping good real-time performances. See also the
companion video. The voxel octree containing the data in

c© The Eurographics Association 2012.

132

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

Figures 11 and 12 has a resolution of 5123 and requires
300 MB storage on the GPU. To obtain enough data for
really deep zoom, we further enhance these details with 3 to
8 octaves of 3D Perlin noise: The close views have a virtual
resolution of 81923. Note that our representation (based on a
distance field) allows procedural surface enhancement which
is not possible with contour data [LK10a] or blurry opacity
[CNLE09].

7 Conclusion and Future Work

In this paper, we have presented a new multiscale surface
representation and a rendering algorithm able to reproduce
view-dependent effects of detailed geometry accounting
for correlation of occlusion and attributes with visibility.
We have shown how our algorithm handles deep zoom,
and maintains coherency through scales while achieving
real-time results. We produce anti-aliased constant-cost
accurate effects in real-time, making the management of
very detailed objects scalable without compromising quality
or performances.

Our contributions are two folds: a theoretical framework,
and a computational model with stronger practical hypothe-
ses. We described explicitly our hypotheses and limitations
along the paper. Indeed, we consider our model as a step
toward the real-time rendering of complex geometry with
smooth and coherent transitions between many scales. Here,
we released as much as possible non-valid or restrictive hy-
pothesis of common pre-filtering schemes. Among the lim-
itations of our current representation, the macro B-rep as-
sumption could probably be released through the manage-
ment of thin parts, like the 2-sided sheets as in [CNS∗11].
The management of reflection and refraction as secondary
differential cone is already described in [Ige99]. Beside the
extra cost, the complication mainly stands in the current
lack of recursive threads in Cuda. At least, reflection toward
environment maps should be an tractable extension. In the
scope of animation one could use pseudo-volumetric struc-
tures such as shellmaps.

Still, more complex configurations exist, and deep
filtering remains a "Holy Grail", starting with accounting
for the curvature of coarse surfaces. This leaves a lot of
interesting problems to solve. For instance, really complex
surfaces or subpixel details no longer behave like surfaces,
but like volumes at a distance (grass, wire mesh, foliage,
semi-transparent material, etc.). Our volume implementation
assumed opaque objects with defined coarse surfaces.
Adapting it to the filtering of view-dependent effects in
semi-transparent volumes would be another interesting but
challenging future work.

Acknowledgements
We thank Charles de Rousiers for his precious advices and
and Pierre Poulin for his careful proofreading.

References
[BN11] BRUNETON E., NEYRET F.: A Survey of Non-linear Pre-

filtering Methods for Efficient and Accurate Surface Shading.
IEEE Transactions on Visualization and Computer Graphics
(2011). 2, 3, 6

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden
surface method. In Proceedings of SIGGRAPH ’84 (1984),
pp. 103–108. 3, 7

[Car08] CARMACK J.: John Carmack on id Tech 6. Interview in
PC Perspective, 2008. 1, 2, 10

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of I3D ’09 (2009). 2, 3, 4, 6, 7,
8, 9, 10

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel cone
tracing. Proceedings of Pacific Graphics 2011 30, 7 (2011). 2, 9

[CT81] COOK R. L., TORRANCE K. E.: A reflectance model for
computer graphics. In Proceedings of SIGGRAPH ’81 (1981),
pp. 307–316. 2, 3, 7

[Fou92] FOURNIER A.: Normal distribution functions and
multiple surfaces. In Graphics Interface ’92 Workshop on Local
Illumination (1992), pp. 45–52. 2

[HSRG07] HAN C., SUN B., RAMAMOORTHI R., GRINSPUN
E.: Frequency domain normal map filtering. In Proceedings of
SIGGRAPH ’07 (2007). 2

[Ige99] IGEHY H.: Tracing ray differentials. In Proceedings of
SIGGRAPH ’99 (1999), ACM, pp. 179–186. 2, 9

[KVH84] KAJIYA J. T., VON HERZEN B. P.: Ray tracing volume
densities. In Proceedings of SIGGRAPH ’84 (1984), pp. 165–
174. 5

[LFTG97] LAFORTUNE E. P. F., FOO S.-C., TORRANCE K. E.,
GREENBERG D. P.: Non-linear approximation of reflectance
functions. In Proceedings of SIGGRAPH ’97 (1997), pp. 117–
126. 3

[LK10a] LAINE S., KARRAS T.: Efficient sparse voxel octrees.
In Proceedings of ACM SIGGRAPH 2010 Symposium on
Interactive 3D Graphics and Games (2010), pp. 55–63. 2, 9

[LK10b] LAINE S., KARRAS T.: Efficient sparse voxel octrees.
IEEE Transactions on Visualization and Computer Graphics 17
(2010), 1048–1059. 2

[LK10c] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees
– Analysis, Extensions, and Implementation. NVIDIA Technical
Report NVR-2010-001, NVIDIA Corporation, Feb. 2010. 2

[OB10] OLANO M., BAKER D.: Lean mapping. In Proceedings
of ACM SIGGRAPH 2010 Symposium on Interactive 3D
Graphics and Games (2010), I3D ’10, ACM, pp. 181–188. 2

[ON94] OREN M., NAYAR S. K.: Generalization of Lambert’s
reflectance model. In Proceedings of SIGGRAPH ’94 (1994),
pp. 239–246. 2, 3, 7

[Pho75] PHONG B. T.: Illumination for computer generated
pictures. ACM 18 (June 1975), 311–317. 3

[Smi67] SMITH B.: Geometrical shadowing of a random rough
surface. IEEE Transactions on Antennas and Propagation 15
(1967), 668–671. 2, 3, 5, 6

c© The Eurographics Association 2012.

133

E. Heitz & F. Neyret / Representing Appearance and Pre-filtering Subpixel Data in Sparse Voxel Octrees

Scene resolution 0/1 opacity [Car08] smooth opacity [CNLE09] Our model voxel bricks (83)

2563

5123

20483

(a) (b) (c) (d)

Figure 10: Comparison of SVO interpolation and magnification quality. (a) Subvoxel geometry is represented as 0/1 opacity,
nearest value is used at samples along the ray (as in [Car08]). (b) Using smooth opacity (α values), quadrilinearly interpolated
at samples along the ray ([CNLE09] and volume rendering). (c) Subvoxel geometry is represented using our 3D mask,
quadrilinearly interpolated at samples along the ray. (d) Bricks (yellow) of 83 voxels and empty nodes (blue).

Groundtruth Separate filtering Our model

Figure 11: Comparisons of light- and view-dependent color effects. Grazing light or view directions cancel out the contribution
of colors correlated to deep locations (here, the red) as seen in the two regions of interest. Average color shifts from yellow to
green. Naive separate filtering of colormap gives uniform yellow, while our model reproduces the groundtruth.

Groundtruth Separate filtering Our model

Figure 12: Comparisons of emboss-to-shading filtering. A bumpy specular area appears diffuse at distance. With a correct
filtering, details go from geometry to BRDF. Naive separate filtering of normals applied to the base BRDF gives a wrong
shading, while our model reproduces the groundtruth.

c© The Eurographics Association 2012.

134

