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Figure 1: Left: Comparison with pixel–based synthesis of [LH06]. Our result does not require a distance map to achieve
high quality synthesis. Right: Our patch–based synthesizer samples in parallel multiple patches from E and stitches them to an
existing texture. For each patch the synthesizer aims to hide existing visible seams (red) and to avoid new ones (green). Patches
that still produce visible seams are rejected (blue).

Abstract

Fast parallel algorithms exist for pixel–based texture synthesizers. Unfortunately, these synthesizers often fail to
preserve structures from the exemplar without the user specifying additional feature information. On the con-
trary, patch–based synthesizers are better at capturing and preserving structural patterns. However, they require
relatively slow algorithms to layout the patches and stitch them together.
We present a parallel patch–based texture synthesis technique that achieves high degree of parallelism. Our syn-
thesizer starts from a low–quality result and adds several patches in parallel to improve it. It selects patches that
blend in a seamless way with the existing result, and that hide existing visual artifacts. This is made possible
through two main algorithmic contributions: An algorithm to quickly find a good cut around a patch, and a defor-
mation algorithm to further align features crossing the patch boundary. We show that even with a uniform parallel
random sampling of the patches, our improved patch stitching achieves high quality synthesis results.
We discuss several synthesis strategies, such as using patches of decreasing size or using various amounts of
deformation during the optimization. We propose a complete implementation tuned to take advantage of massive
GPU parallelism.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The past decade has seen the development of many by exam-
ple texture synthesis algorithms. They can be roughly cat-
egorized into pixel–based approaches and patch–based ap-
proaches [WLKT09].

Pixel–based approaches exhibit a high degree of par-
allelism and map well to GPUs [LH05]. In addition,
many search strategies have been proposed to acceler-
ate neighborhood–matching during the synthesis [Ash01,
BSFG09, PELS10].

In contrast to pixel–based synthesis, patch–based ap-
proaches require relatively slow algorithms to layout the
patches and stitch them together, for instance optimizing for
the patch frontier (or cut) using graph–cut [KSE∗03]. How-
ever, patch–based techniques are better at preserving struc-
tures, while per–pixel synthesis must be guided by the addi-
tion of a feature distance map [LH06], which is sometimes
difficult to define (Figure 1).

Contributions We present in this paper a fast patch–based
texture synthesizer having the following main contributions:
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• We introduce a fast, albeit approximate algorithm to opti-
mize for the patch boundaries. This greatly improves per-
formance with little impact on quality.

• We propose a novel algorithm to deform the patches after
boundary optimization and improve feature alignment.

• We synthesize textures by optimizing for multiple patches
in parallel. Our global scheme uses newly added patches
to hide existing errors. It rejects patches producing visible
seams or requiring strong deformations.

• We design a full GPU implementation enabling fast syn-
thesis and interactive user controls with the same level of
quality than state–of–the–art patch based synthesizers.

2. Related work

Patch–based texture synthesis Early schemes [GSX,
PFH00] select patches at random and feather the edges to
form a new texture. In image quilting [EF01] patches are
added in scanline order to a grid. The frontier between new
and previous patches is optimized, finding a path of mini-
mal color difference with dynamic programming. Graph–cut
textures [KSE∗03] later improved this process by relying on
patches of arbitrary shapes, also adding the ability to hide
existing error with newly added patches.

Patch placement Kwatra et al. [KSE∗03] proposed to se-
lect patches using an FFT-based block matching algorithm
to match regions of overlap before stitching. Patchmatch
[BSFG09] introduces an efficient sampling strategy for
matching small patches by alternating between coherent and
random searches.

In this paper we focus on improving the stitching of large
patches and rely on a simple, uniform random patch sam-
pling strategy. Despite the random search, our optimization
strategy enables the synthesis of structured patterns: Patches
are constantly added to the result, hiding previous errors.

Patch stitching Graph–cut [BVZ99] and gradient domain
Poisson image editing [PGB03] are two successful tools ap-
plied to patch stitching in the context of textures and images
[KSE∗03, ADA∗04, LZPW04].

In drag–and–drop pasting [JSTS06], a cyclic boundary
around the patch is computed so as to reduce gradient mis-
match prior to the Poisson optimization. The boundary opti-
mization involves several passes of dynamic programming to
find a shortest cycle around the patch. In our method, rather
than computing an optimal cycle we compute an approxi-
mate cycle using a single dynamic programming pass.

Feature alignment Most texture synthesizers have diffi-
culties capturing contours and edges. Wu et al. [WY04]
extract a sparse set of curvilinear features capturing con-
tours. A contour map is then synthesized and used to guide
the synthesis of the colors. Matusik et al. [MZD05] align

the features of multiple textures prior to interpolating be-
tween them. In appearance space texture synthesis [LH06]
neighborhood–matching comparisons incorporate a feature
distance to better preserve contours. In each of these papers
the synthesis results are greatly improved by the explicit fea-
ture alignment step.

We explicitly align features by deforming patches dur-
ing our parallel optimization. Such deformation typically re-
quires extracting structural information from the example to
produce a feature map. i.e. a sparse set of matchable fea-
tures [JT05]. Instead, our color alignment step is inspired by
work in stereo–pair matching [BB81] where dynamic pro-
gramming is used to densely align features along epipolar
lines. After aligning the colors along the boundary of the
patch we propagate the deformation inside.

3. Our patch–based synthesizer

Given a source exemplar E our method synthesizes a visu-
ally similar toroidal texture by repeatedly stitching multiple
patches from E. The result is stored in a map S containing
coordinates in E. We note E[S] the final colored texture.

The synthesis is done in an iterative manner where in
each iteration multiple patches are randomly selected in E
and placed on S. To process patches in parallel within an
iteration, the placement is made in a way such as patches
placed on S do not overlap. To maximize the number of non–
overlapping patches, S is overlaid with a grid where each cell
contains one patch. To avoid any bias, the alignment of the
grid with respect to the synthesized image randomly changes
between iterations. Cells in the grid are then independently
processed in parallel (Figure 1 Left).

For each patch placed in each cell we optimize for the
boundary of the patch so as to minimize visual seams. The
optimization aims to minimize the discontinuities along the
cut of the patch and to hide existing cuts in E[S] that are
produced during previous iterations (Section 4).

We further reduce seams by deforming the patch so as to
align features (Section 5). In order to avoid altering struc-
tural patterns in E[S] we use constraints that limit the defor-
mations in the result.

We can decide to either accept or reject a patch depending
on its benefit to the overall quality. The patch is rejected if
the seam along its cut has more error than all existing seams
inside the cut (Section 6).

4. Fast approximate cyclic cuts

In this section we describe the boundary optimization for a
single patch that we note P . Section 7 gives details on how
to optimize simultaneously for multiple patches.

We interpret P as a disk of radius R centered at a position
oe in E and placed at a center position os on S. The goal is
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Figure 2: (a): P (b): Placing P on E[S]. (c): Ppolar (d):
Error map with the cut C in green. (e): The optimized bound-
ary T −1(C) on P . (f): Stitching result.

to find a closed cut C in P that contains at least the point os
in S. C should produce as little color differences as possible
between P and E[S].

Instead of using graph–cut to compute C we want to use
dynamic programming (DP). DP is simpler, faster and relies
on simple arrays suitable to a GPU implementation. How-
ever, to make the optimization compatible with DP we pro-
cess P in polar space.

We note Ppolar the parameterized version of P with polar
coordinates (Figure 2). Ppolar is a rectangle of sizeW×H
such as: W = Nρ × R and H = Nθ × 2πR . Nρ and
Nθ are two constant factors used to add some accuracy to
the discrete sampling when transforming P into Ppolar. We
note T the transformation from Cartesian to polar space and
T −1 the inverse transformation.

One can notice that in Figure 2 distortions appear in
Ppolar and this especially in the left area of Ppolar which
corresponds to the interior of P . To account for this distor-
tion a normalizationN is necessary. For a position located at
u in Ppolar, N is such as: N (u) = 2πux

H×N2
ρ

. The computation

ofN is given in Appendix A.

Using Ppolar, the cut C is now a path that starts at the first
row of Ppolar and ends at the last row of Ppolar. Since C is
closed in P , it has to start and end at the same abscissa in
Ppolar (cyclic cut).

We now define C as being in polar space and let T −1(C)
to be the actual boundary ofP . We note C[y] the x coordinate
of the curve C at row y in Ppolar . Since T −1(C) is cyclic we
access C in a wrap mode. e.g. C[H+ 1] = C[0]. Using this
definition, the existing seams in S now lie on the left side of
C in Ppolar and will be hidden by the newly placed patch P .

As in graph–cut textures, we define C as lying between the
pixels of Ppolar. Also, both horizontal and vertical transition
errors along C will be taken into account.

Figure 3: Top: A left/right texture regions to be overlapped.
Middle: From left to right: separating the two regions with
graph–cut, image quilting and our cut using Jmax = 16. Bot-
tom: Error maps produced by the overlap. Each map sums
up the vertical and the horizontal transition errors. Light ar-
eas indicate high errors. Cuts are shown with a green color.

We relax the Y –monotony constraint of image quilting to
be: ∀y ∈ {1..H−1} |C[y]−C[y+1]| ≤ Jmax. Jmax is a posi-
tive integer that limits the maximum offset between C[y] and
C[y+ 1]. In image quilting Jmax = 1. The improvement of
relaxing this constraint is shown in Figure 3.

Seams cost To quantify the visible discontinuities along C
we use a cost functionM similar to the one used in graph–
cut textures and defined as:

M(te, ts,δ) =
(
||E[te]−E[S[ts−δ]]||2+||E[S[ts]]−E[te+δ]||2

η+||E[te]−E[te+δ]||2+||E[S[ts]]−E[S[ts−δ]]||2
)d

te are coordinates in E, ts are coordinates in S, δ is a displace-
ment vector. δ = (1,0) when cutting vertically and δ = (0,1)
when cutting horizontally. η is a strictly positive regulariza-
tion factor used to limit the effect of the denominator. The
denominator allows for free transitions at high frequency
locations in E and E[S]. The exponent d penalizes strong
seams when its value is high. It is typically set to 2.

The existing errors in S can be easily computed as follows:

MS(te, ts,δ) =M(S[te], ts,δ)

Because our optimization is done in polar space we define
a polar version ofM as follows:

Mpolar(u,δ) =N (u)×M(oe + p,os +q,−→pq)
p = T −1(u)
q = T −1(u+δ)

c© The Eurographics Association 2012.

117



A. Lasram & S. Lefebvre / Parallel patch–based texture synthesis

Figure 4: Parameters used inMpolar. p is the image of u by
T −1, q is the image of u+δ by T −1, p and q have different
directions for clarity reasons, the actual p and q have the
same direction but different lengths. Note that ~pq is not the
image of δ and unlike δ it is not a constant due to the non
linearity of T .

u are coordinates in Ppolar. As before, δ = (1,0) when cut-
ting vertically and δ = (0,1) when cutting horizontally. Fig-
ure 4 shows the parameters used inMpolar.

Similarly, we define a polar version ofMS as follows:
MS

polar(u,δ) =N (u)×M(S[os + p],os +q,−→pq)
p = T −1(u)
q = T −1(u+δ)

Patch cost We associate a quality cost to the patch P . It
consists in taking the cost of the seam C from which we
subtract the existing costs on the left side C (costs inside
T −1(C)). This leads to an energy function involving three
terms: H, V and E .

H represents the cost of horizontal transitions along C and
is defined as:
H(u) = N2

ρ ×Mpolar(u,(1,0)).
The constant N2

ρ cancels the term Nρ inN . It is used because
C has a unit thickness and is not affected by Nρ.

V represents the cost of vertical transitions along C. Be-
cause a horizontal gap, that can be as long as Jmax pix-
els, may appear between C[y] to C[y+ 1] (Figure 3 bottom–
right), V has to sum up all the vertical costs along this
gap. The gap starts at x1 = min(C[y],C[y+ 1]) and ends at
x2 = max(C[y],C[y+1]). V is thus defined as: V (x1,x2,y) =

max(x1,x2)

∑
x=min(x1,x2)

Mpolar((x,y),(0,1)) i f y <H

V (x1,x2,y) = 0 otherwise

E represents existing errors in S. These existing errors lie
on the left side of C and will be hidden by P . This means
that for the row uy in Ppolar all existing errors that precede
C[uy] will be subtracted. E is as follows:


E(u) =

ux

∑
xi=1

(h+ v)

h =MS
polar((xi,uy),(1,0))

v =MS
polar((xi,uy),(0,1))

We now define the energy E (C) as:

E (C) =
H
∑
y=1

(H(C[y],y)+V (C[y],C[y+1],y)−E(C[y],y))

Our goal is to find a cut C such as E (C) is minimized.

Optimization with DP To optimize for E (C) with DP we
pre–compute all sub–solutions in a table T using the follow-
ing recurrence:

T [y, i] = argmin
j=i−Jmax..i+Jmax

(T [y−1, j]+V ( j, i,y))+H(i,y)−E(i,y)

T [y, i] is the cost of having C[y] = i. y ∈ {1..H} and i ∈
{1..W}.

Approximate cuts Our cut C is constrained to start and end
at the same abscissa. This usually requires repeating the op-
timization of E (C) for all starting and ending abscissas as in
drag–and–drop pasting [JSTS06]. Repeating the optimiza-
tion requires an O(W2×H× Jmax) complexity. Instead, we
propose an approximation that optimizes once for E (C) and
reduces the complexity to O(W×H× Jmax). The approxi-
mation is based on the following property of our DP:
by backtracking all the paths from bottom to top, there exists
at least one path that starts and ends at the same abscissa.
This property is proved in Appendix B.

Approximate cut quality We have experimentally com-
pared our approximate cut to the optimal one by running
multiple tests on a large number of textures. The table be-
low shows the average results of the experiment.

Number of textures 3000
Optimal cut average error 50.855

Approximate cut average error 53.633
Approximate cut average ranking 8.59/256

All cuts average error 81.962
Approximate cut ranked first 17.76%

Compared to the average, our approximate cut gives a low
energy. It is indeed a shortest path and it quickly joins some
of the few shortest paths along low–cost channels. How-
ever, there are rare cases where our approximation produces
seams stronger than the ones produced by the optimal cut.
Such seams are likely to be rejected (Section 6).

5. Feature alignment

Minimizing E (C) does not always guarantee a seamless re-
sult. This is especially the case if the texture contains aligned
structural patterns like bricks or straws. For instance it is
possible to offset the two overlapped textures of Figure 3 to
produce a case where any cut optimization produces seams.
In Figure 5 the overlapping is made so that the error map
contains high–cost strips (the bright slanted strips in the fig-
ure) and our cut as well as graph–cut are constrained to cross
these strips, therefore producing visible seams.
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Figure 5: Top: A left/right texture regions to be overlapped.
Middle: From left to right: separating the two regions with
graph–cut, image quilting and our cut using Jmax = 16. Bot-
tom: Error maps produced by the overlap. Each map sums
up the vertical and the horizontal transition errors. Light ar-
eas indicate high errors. Cuts are shown with a green color.

Figure 6: (a) The patch P produces seams when placed on
E[S]. (b) Result after feature alignment. (c) Polar space view
before feature alignment. (d) Polar space view after feature
alignment. (e) Colors along C before feature alignment. (f)
Colors along C after feature alignment.

If the cut optimization fails and produces seams, we pro-
pose to apply small deformations to align features on each
side of C. The deformation consists of two steps: In a first
step, the colors in Ppolar along C are offset to match the col-
ors in E[S] lying on the other side of C (Figure 6 e and f). In
a second step a deformation is smoothly propagated to the
inside of P (the left of Ppolar) based on color displacements
made in the first step (Figure 6 b).

Offsetting colors along the cut Recall that the curve C
is represented as an array where C[y] is the x coordinate
of the curve at row y in Ppolar. Our goal is to offset the
indices of C in order to to align features. We note D the
array that contains the new indices in C after offsetting.
i.e. the color at Ppolar[C[y],y] is replaced by the color at
Ppolar[C[D[y]],D[y]].

As C, D is accessed using wrap mode. We note C[D] the
cut with the offset colors but having the same shape as C.

Since we propagate the deformation at the next stage, we
take care that no fold–over occurs when optimizing for D.
For this we ensure that: y≤ z⇒D[y]≤D[z].

Recall that the shape of C can have a gap as long as Jmax
between C[y] and C[y+1]. Since C only encodes one x coor-
dinate per row in Ppolar, offsetting colors within the gap is
difficult. We therefore ignore the cost of vertical transitions.

D is obtained by minimizing the following energy:

ED(D) =
H
∑

y=1
MD(D[y],y)

MD is the cost of replacing the color at coordinates (C[y],y)
with the color at coordinates (C[D[y]],D[y]). It is defined as:

MD(i,y) =M(oe +d,os +q,−→pq)
p = T −1(C[y],y)
q = T −1(C[y]+1,y)
d = T −1(C[i], i)

Since we are only interested in applying small deforma-
tions, we limit the maximum offset between two rows to be:
∀y ∈ {1..H−1} D[y+1]−D[y]≤ 2
The constant 2 has been chosen empirically. It represents the
smallest possible offset. We also limit the maximum amount
of deformation by setting the global constraint:
∀y ∈ {1..H} |D[y]− y| ≤ Dmax
Dmax is a constant set by the user to limit the maximum pos-
sible offset. By using a small value, we prevent strong defor-
mations and reduce the required memory (The DP optimiza-
tion table T has a size of (2Dmax +1)×H).

Optimization with DP The optimization computes all sub–
solutions using the recurrence:

T [y, i] = argmin
j=i−2..i

(T [y−1, j])+MD(i,y)

T [y, i] is the cost of havingD[y] = i. Notice how the DP min-
imizes ED(D) by performing 3 actions:

• D[y] =D[y−1] : repeating the same pixel.
• D[y] =D[y−1]+1 : advance to the next pixel.
• D[y] =D[y−1]+2 : advance twice (jumping one pixel).

Initial state The solution D must start and end at the same
abscissa in T otherwise parts of the texture will be lost after
propagation. We face the same issue we encountered during
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Figure 7: Left: Random cut with no deformation. Middle:
Deformation using a fixed initial state. The starting position
is pointed by the blue arrow. Right: Deformation using our
approximate solution for D.

the optimization of E (C). Repeating the optimization for all
initial states is impractical. Starting from a random initial
state could lead to artifacts (Figure 7). We therefore re–use
the same approximate solution of E (C) optimization.

Deformation propagation The propagation is done by re-
placing the color at pixel (x,y) in Ppolar with the color at
pixel (x′,y′) using the following interpolation:

y′ = lerp(y,D[y],
(

x
C[y]

)γ

)

x′ = x× C[y
′]

C[y]

γ controls the amount of deformation inside Ppolar. A small
value will make the propagation spread further. lerp func-
tion represents linear interpolation. It considers the fact that
Ppolar is vertically cyclic and always interpolates along the
shortest path. e.g. C[0] is closer to C[H] than C[H/2].

6. Patch rejection

After the optimization, we decide to merge the patch with
the result or reject it if it has no benefit to the overall quality.

We use two rejection policies: The first one is applied
before feature alignment and is based on a simple predi-
cate noted isImprovingbe f ore(C) returning true iff E (C)≤ 0.
When isImprovingbe f ore(C) is true the subtracted existing
errors in S, i.e. E , are greater than the errors produced by
C and in this case the patch corresponding to C provides a
benefit and will be accepted. The patch will be rejected oth-
erwise. Rejecting patches before feature alignment is a good
heuristic. Accepted patches would have few seams and fea-
ture alignment performs well in these cases.

The second rejection is applied after feature alignment
and requires changing the predicate as follows:

isImprovinga f ter(C) = E (C[D])+E (P)−E ≤ 0

E (C[D]) is the energy along C after color offsetting, E (P) is
the total energy in P after deformation and E is the total ex-
isting energy on the left of C. isImprovinga f ter requires some
extra computations while isImprovingbe f ore(C) comes prac-
tically for free. However isImprovinga f ter ensures a mono-
tonically decreasing global energy.

7. Implementation details

We implement the algorithm using NVIDIA CUDA.
Multiple patches are processed simultaneously by placing
their optimization tables one next to the other from left to
right. For n patches, the global optimization table will have a
size of w×h where w= n×W and h=H. Using this layout,
the optimization is quite similar when processing a single or
multiple patches. A thread just needs to know which patch
is being processed to set the corresponding boundaries (The
yellow dashed lines in Figure 8). Data beyond the boundaries
are not accessed by the thread (clamp mode is used).

The algorithm executes two main optimizations: the op-
timization of E (C) followed by the optimization of ED(D).
The buffers allotted for the optimization of E (C) will be re–
used during the optimization of ED(D). We therefore make
sure that there is enough memory for both optimizations.

We allocate the following texture buffers having a size of
w×h each:
A buffer H that first stores existent horizontal costs then
stores new horizontal costs, a buffer V that stores new verti-
cal costs and a buffer Ev that stores existent vertical costs.

Prior to optimization, we start pre–computing all transi-
tion costs by performing the following steps:

• Fill H with horizontal existing costs and Ev with vertical
existing costs (Pass1: one thread per entry in the table).

• For each row within each patch in H and Ev, accumulate
costs from left to right (Pass2: a thread per row of a patch).

• Fill V with zeros.
• Compute the new horizontal costs in H and the new ver-

tical costs in V and subtract the existing content before
storage (Pass3: one thread per entry in the table).

To efficiently process each pass within a same kernel H,
V and Ev share the same texture unit. Texture memory is
mainly used to avoid cache conflicts when accumulating ex-
isting errors (Pass2). After pre–computing the costs, H will
be used as the main optimization table. V and Ev will be
read–only and will provide the additional terms of E (C).

The DP optimization consists of a top–down sub–solution
pre–computation in H followed by backtracking all cuts and
storing the result in–place in H. Cuts that do not start and
end at the same abscissa will be assigned an infinite cost. A
reduction algorithm then selects for each patch the cut with
the minimum cost.

The DP we solve has the property that each row y can be
processed in parallel and only depends on the preceding row
y−1. For the DP accumulation task a single row parallelism
suffers from 3 limitations:

• By parallelizing a single row at a time, the number of
threads will be too limited to fully exploit the GPU.

• After processing one row a global synchronization (stop-
ping and re–running the kernel) is required before pro-
cessing the next row.
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Figure 8: The DP table is subdivided into blocks and each
block is processed by a block of threads. A block of threads
needs to access some data in the left and right blocks and
the first row of above blocks (the green padded regions).

• The synchronization suspends the computation within a
column for a long time. Meanwhile other computations
will fill–up the cache losing its coherence.

We address these limitations by processing many rows be-
fore making a global synchronization. This is done by subdi-
viding H into blocks as shown Figure 8. A local DP accumu-
lation is done in each block and the global synchronization
happens after processing a line of blocks.

To correctly compute the result in each block, the blocks
are padded with additional data (The green parts in Figure 8).
These data belong to the left, right and above neighboring
blocks. The padded data are only used to ensure correctness
within each block. The additional computations within these
padded regions are wasted but the overhead is small com-
pared to the benefit of the increased coherence. We use one
block of threads to process one block of data (including the
padded regions). Because the padded data can be processed
simultaneously by multiple blocks, they are first stored in a
read–only temporary buffer. A block of threads is thus re-
sponsible of loading the data in shared memory and a subset
of the threads applies the DP accumulation in this shared
memory. The threads in the block finish by copying the pro-
cessed data (without the padding) from shared memory back
to H. The size of the blocks is determined empirically to be
Bw = 32+Jmax and Bh =

32
√

Jmax−16
Jmax

. The number of threads
per block is also determined empirically by rounding–up the
constant 32+Bh× Jmax to the next multiple of 32.

The same process is used for the bottom–up backtracking
with the difference that there is no padding. The temporary
memory will now store the solution which is then copied
back to the table H before a global synchronization. For the
backtracking operation, if memory is not an issue one can
eliminate the synchronization by allocating a table having
the same size as H to store all the results.

The optimization of ED(D) is quite similar to the opti-
mization of E (C). We can easily re–use the same DP. How-
ever since we are ignoring vertical transition costs when op-
timizing ED(D) and since only 3 actions are performed at
each step, the buffers V and Ev are set to zero while Jmax = 1.

Figure 9: Varying the maximum radius R.

8. Results

In this section we use the following synthesis settings: S is
initialized with white noise texture coordinates and it has a
size of 512× 512. R = 64, Dmax = 32, Nρ = 2, Nθ = 1.5,
Jmax = 4 and γ = 1. We use the predicate isImprovinga f ter
for rejection. We notify the reader if settings are changed.
In general, the user can interactively tweak any parameter to
improve the quality for a specific texture. User interactions
are shown in the accompanying video.

Varying the maximum radius R The parameter with most
effect on quality is the maximum patch radius R. Figure 9
shows synthesis results for the same texture but using dif-
ferent values for R. The synthesis is only iterated 8 times
(it is necessary to iterate the synthesis a few times to cover
the whole map S; 3 to 5 iterations are often enough to cover
the whole map S with patches). When R is small the syn-
thesizer fails to capture the flower patterns. It either breaks
the flowers or rejects them. Because of rejection, the flowers
will potentially disappear if the synthesis is further iterated.
When R is large the synthesizer copies large patches from E
producing a seamless result but having little variety. Setting
R to be just large enough to capture the flowers results in a
nice distribution of flowers. Please keep in mind that R is the
maximum possible radius. A patch can be as small as one
pixel regardless of R.

Automatic radius R We allow synthesis with an automati-
cally decreasing radius R. Starting with a large value for R
the synthesizer can quickly capture coarse structures like the
canes in Figure 10. By decreasing R small patches are ac-
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Figure 10: Starting from a patch radius R= 132, R is decre-
mented by 4 every iteration. From left to right: The exemplar
E. Result when R = 72. Result when R = 4. Notice the vari-
ations within the canes when R = 4.

Figure 11: Starting from a max deformation of Dmax = 160,
Dmax is decremented by 10 every iteration. From left to right:
The exemplar E, result when Dmax = 100, Dmax = 50 and
Dmax = 0. S has a size of 256×512.

cepted making local variations in the result. Patch rejection
ensures an unchanged structure during the late iterations.

Automatic Dmax Similar to R, automatically reducing Dmax
starting from a large value can make the synthesis converge
faster. Although the result is highly deformed during ear-
lier iterations, the late iterations will focus on removing de-
formed features rather than avoiding seams (Figure 11).

Texture completion Our synthesizer allows for a straight-
forward texture completion application. If a texture contains
holes it is easy to fill in these holes by setting an infinite ex-
isting cost in the holes. In practice we obtain the high cost
by filling the holes with random coordinates. By running the
synthesizer, patches are accepted within high cost areas cor-
responding to holes. It is also possible to prevent copying
patches from the holes by providing a mask to the synthe-
sizer. Figure 12 shows a completion result.

Multiple exemplars and texture painting One advantage
of patch–based synthesis over pixel–based synthesis is the
ease of using multiple exemplars. In pixel–based approaches
the transition between different texture regions is not well
defined and requires special handling. To use multiple ex-
emplars the only requirement is to add a third coordinate in
S to store the exemplar index. Figure 13 shows a synthesis

Figure 12: Texture completion. Top–left: E. Top–right:
mask. Bottom–left: Using the invert mask. Bottom–right:
Using the mask. S has size 1600×1200.

Figure 13: left: Multiple exemplars. right: Synthesis result.

result that uses patches from different textures.
Using multiple exemplars one can use a texture as a brush to
paint on another texture. The painted zones are considered
as holes and the synthesizer instantly fills these holes.

Patch drag–and–drop In a drag–and–drop task our fast
synthesizer allows seeing the stitching result while dragging
a patch. This gives more intuition to the user on where to
place the patch. We disable rejection for this task. In addi-
tion the user can set a minimum patch radius in which the
existing costs are forced to be zero. The accompanying video
shows an example.

Synthesis convergence The plot in Figure 14 shows the
global cost evolution and the patch acceptance rate during
the iterative synthesis process. At the tenth iteration the syn-
thesis went near a local minimum dropping the patch accep-
tance rate and making the result almost unchanged during
the next iterations. Manually changing synthesis parameters
or disabling rejection is a simple way to get away from local
minima. Please note that convergence could vary from one
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Figure 14: Global cost and patch acceptance rate evolu-
tion. The global error is scaled to be in range [0..100]. The
first 4 iterations produce very high errors and are ignored.

texture to another. In addition, note that the algorithm starts
from random coordinates in S (worst initialization) and that
other initializations may improve convergence.

Performance The following table lists the execution time
and the used memory for one iteration running on an Nvidia
GeForce GTX580. Recall that R = 64.

size of S 256 512 1024 2048
used memory in MB <4 14 56 226
iteration time in ms 6 6 25 59
C DP initialization 9% 19% 29% 51%
C DP optimization 27% 22% 11% 12%
D DP initialization 3% 5% 8% 14%
D DP optimization 28% 22% 10% 8%

In the table above one can notice that the cost of DP ini-
tialization grows quickly with S. This is due to the intensive
evaluation of Mpolar which requires many texture fetches
in E and S in addition to multiple calls to T . The DP op-
timization scales well because the number of patches in-
creases when the size of S increases. Increasing the number
of patches enlarges the optimization table x axis and there-
fore increases the degree of parallelism. However for a same
S using more patches also requires more memory. The num-
ber of patches can be reduced by increasing R. However this
increases the optimization table y axis and reduces the de-
gree of parallelism. Figure 15 shows the DP performance
while R increases.

Comparison with pixel–based synthesis Our algorithm is
roughly ten times slower than fast per–pixel synthesizers due
to the number of iterations required before convergence. For
instance, our GPU implementation of [LH05] synthesizes
the texture of Figure 16 in 15 ms using only 4 iterations
while our method needs 16 iterations to correctly align fea-
tures and this requires 112 ms of computation. Nevertheless,
our implementation achieves interactivity and inherits the
benefits of patch–based approaches. In particular, the qual-
ity achieved by fast per–pixel algorithms largely depends on

Figure 15: Effect of increasing the maximum patch radius
R. Each curve corresponds to one resolution of S. The opti-
mization table uses a much larger resolution because of T
and the factors Nρ and Nθ.

Figure 16: Comparison with pixel–based synthesis. From
left to right: E having a size of 2562. Pixel–based result com-
puted in 17 ms using a high jitter. Pixel–based result com-
puted in 15 ms using a low jitter. Our result computed in 112
ms using R = 128. S has a size of 5122.

the amount of jitter added during multi–resolution synthesis.
This has to be carefully selected by the user and differs for
each texture. Similarly, structured patterns require the addi-
tion of a feature distance (see Figure 1). Our algorithm of-
fers superior quality without this requirement. To the best
of our knowledge no fast per–pixel algorithm automatically
reaches the quality we demonstrate on highly regular pat-
terns such as the ones shown in Figures 10,11.

9. Discussion

We introduced a parallel patch–based texture synthesis algo-
rithm that quickly achieves high quality results and enables
interactive controls. Our algorithm relies on a parallel imple-
mentation of an approximate boundary optimization, as well
as a patch deformation to align features. A patch rejection
scheme ensures a progressively improving synthesis quality.

The main limitations of our synthesizer stem from the
random patch selection and placement. Quality–wise, global
structures in textures cannot be preserved as shown in Fig-
ure 17. Performance–wise, despite fast iterations global con-
vergence is slowed–down by the high patch rejection rate as
shown in Figure 14. As future work we would like to im-
prove the sampling: First, we could build upon ideas devel-
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Figure 17: Our synthesizer cannot capture global structures
like doors. Left: E. Right: E[S].

opped in [BSFG09] to propagate good choices of patches
throughout the grid. Second, rather than testing a single
patch per cell we could easily test several patches, keeping
only the best (if any). This would enable adaptive sampling,
testing more patches in areas of high error and thereby im-
proving the acceptance probability.
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Appendix A: Normalization Factor

The normalization factor N is used to account for distor-
tions and for the scale factors Nρ and Nθ.N makes sure that
the total cost inside T −1(C) in P matches the total cost in
the left area of C in Ppolar (energy preservation). It is there-
fore the solution of the equality:
∑u∈Ppolar

N (u)× (Mpolar(u,(1,0))+Mpolar(u,(0,1))) =
∑u∈PM(u,u+(1,0),(1,0))+M(u,u+(0,1),(0,1))

Appendix B: Approximate cut existence

To prove the existence of our approximate cut, we note
Ci j the path starting at abscissa i and ending at abscissa j
in Ppolar. Cii is a closed cut starting and ending at i. In our
DP two shortest paths cannot cross (principal of optimal-
ity [Bel54]). If two sub-paths meet, they will continue along
the same sub–optimal path.

Let us assume that there is no closed cut Cii. We first prove
by induction that in this case for any path Cnkn with n≥ 1 we
have kn > n.

The very first path C1k1 is not a closed cut, and we neces-
sarily have k1 > 1. Now, consider a path Cnkn with n > 1 and
assume that kn > n. The next path Cn+1kn+1 has to be such
that kn+1 ≥ kn otherwise Cnkn and Cn+1kn+1 would cross each
other. If kn > n+ 1 then kn+1 > n+ 1 since kn+1 ≥ kn. If
kn = n+1 then we have kn+1 ≥ n+1. However, since there
is no closed cut, it follows that kn+1 > n+1. The first proof
is complete.

Let us now consider the very last path: CWkW . We have
kW > W which is impossible since the path would exit
Ppolar. Therefore, a path Cii has to exist. This proves the
existence of at least one cut Cii.
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