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Abstract 

Multi-projector systems are increasingly being used to provide 
large-scale and high-resolution displays for next-generation inter- 
active 3D graphics applications, including large-scale data visual- 
ization, immersive virtual environments, and collaborative design. 
These systems must include a very high-performance and scalable 
3D rendering subsystem in order to generate high-resolution im- 
ages at real-time frame rates. This paper describes a sort-first paral- 
lel rendering system for a scalable display wall system built with a 
network of PCs, graphics accelerators, and portable projectors. The 
main challenge is to develop scalable algorithms to partition and 
assign rendering tasks effectively under the performance and func- 
tionality constraints of system area networks, PCs, and commodity 
3-D graphics accelerators. We have developed three coarse-grained 
partitioning algorithms, incorporated them into a working prototype 
system, and run initial experiments aimed at evaluating algorithmic 
trade-offs and performance bottlenecks in such a system. Results of 
our experiments indicate that the coarse-grained characteristics of 
the sort-first architecture are well suited for constructing a parallel 
rendering system running on a PC cluster. 

Key Words: Immersive display systems, cluster computing, 
parallel rendering, load balancing. 

1 Introduction 

Multi-projector computer displays are increasingly important for 
applications such as collaborative computer-aided design and in- 
teractive scientific and medical visualization. The high resolution 
of the images (several million pixels) enables visualization of very 
detailed data sets (e.g., astrophysics simulations). The large phys- 
ical size of each display surface (a room-sized wall) allows users 
to interact with rendered objects at their natural sizes, which can 
be critical to perception and evaluation of 3D models (e.g., for au- 
tomotive CAD). The space in front of the display supports natural 
collaborations among multiple people simultaneously viewing and 
discussing visual data (e.g., for medical treatment planning) and en- 
ables immersive visualization applications in which the entire field 
of view for each user is covered with computer-generated imagery. 

A multi-projector display must include a very high-performance 
3D rendering system to support interactive and immersive visual- 
ization applications. It will be increasingly common to find me- 
chanical CAD, medical imaging, and scientific visualization appli- 
cations that process 3D models with millions of polygons to be ren- 
dered over several million pixels at thirty frames per second. As 
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more projectors are added to the system, more pixels are available, 
and more complex 3D scenes can be viewed, requiring higher pixel 
fill and polygon rendering rates. 

The state-of-the-art approach to multi-projector rendering is to 
use a high-end computer with multiple tightly-coupled graphics 
pipelines. The Power Wall at the University of Minnesota and the 
Infinite Wall at the University of Illinois at Chicago are examples, 
each driven by an SGI Onyx2 with multiple InfiniteReality graphics 
pipelines. The main drawback of this approach is that the rendering 
system is very expensive, sometimes costing millions of dollars. 

In the Scalable Display Wall Project at Princeton University, we 
take a different approach. Rather than relying upon a tightly inte- 
grated graphics subsystem, we combine multiple commodity graph- 
ics accelerator cards in PCs connected by a network to construct a 
parallel rendering system capable of driving a multi-projector dis- 
play with scalable rendering performance and resolution. The main 
theme of this approach is that inexpensive and high-performance 
systems can be built using a multiplicity of commodity parts. The 
performance of PCs and their graphics accelerators have been im- 
proving at an astounding rate over the last few years, and their price- 
to-performance ratios far exceed those of traditional high-end ren- 
dering systems. Some inexpensive PC graphics accelerators can 
already deliver performance close to an SGI InfiniteReality while 
costing an order-of-magnitude less. Our goal is to leverage the ag- 
gregate performance of multiple networked PCs to construct a flex- 
ible and high resolution parallel rendering system comparable in 
performance to highly specialized display systems at a fraction of 
the cost. 

The architecture of our prototype system is shown in Figure 1. 
One client PC and P server PCs with fast graphics accelerator cards 
are connected by a system area network. The frame buffer of each 
server drives one projector whose image is combined with the oth- 
ers in a tiled grid pattern to form a seamless picture on a large-scale 
rear projection screen. 

Figure 1: Scalable Display Wall Architecture. 
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As compared to traditional parallel rendering systems, our ar- 
chitecture has several unique characteristics that present potential 
advantages and new research challenges. First, we use a system 
area network for communication among processors, which provides 
modularity and flexibility. Processors may be added and removed 
from the system easily, the system may be comprised of heteroge- 
neous computers, and specific rendering processors can be accessed 
directly via standard protocols by remote computers attached to 
the network. However, system area networks usually have a frac- 
tion of the performance of internal communication channels. The 
challenge of cluster computing is to develop low-overhead commu- 
nication mechanisms and to choose a coarse-grained partitioning 
schemes that scale within the bandwidth and latency limitations of 
the network. 

Second, we use commodity hardware components and access 
them only via standard APIs. The advantage is that the system 
is less expensive, more flexible, and tracks technology better than 
systems with custom hardware and software, since we can replace 
components frequently as faster versions become available. The 
disadvantage is that our design space is constrained. We can only 
take advantage of features available on commodity graphics accel- 
erators and exposed through standard APIs (e.g., Windows NT and 
OpenGL or D3D), and thus direct data access and targeted perfor- 
mance tuning is usually impossible. As an example, geometry pro- 
cessing and rasterization are usually tightly coupled within a graph- 
ics accelerator, and standard APIs, such as OpenGL, give no high- 
performance access to intermediate rendering results. As a result, 
it is impractical for us employ a sort-middle rendering approach in 
which graphics primitives are repartitioned after hardware transfor- 
mations and before rasterization. The challenge is to develop effec- 
tive parallel rendering algorithms that send 3D graphics primitives 
to the commodity graphics cards and read pixels from the frame 
buffer only via standard APIs. 

Finally, the display is composed of multiple images correspond- 
ing to projectors attached to frame buffers of different server PCs. 
This characteristic provides a natural image-parallel decomposition 
of the rendering computation. Each server PC drives only a sin- 
gle graphics accelerator, putting less performance and bandwidth 
pressure on each CPU and memory systems than traditional multi- 
projector systems. On the other hand, pixels rendered on one com- 
puter, but projected onto the screen by another, must be sent over 
a network and loaded into the appropriate frame buffer for display 
each frame. The challenge is to find coarse-grained screen space 
partitions that balance the load among all the graphics accelerators, 
while minimizing the overhead of redistributing the resulting pixels 
among the frame buffers. 

In this paper, we investigate research issues in using a cluster 
of PCs to construct a high-performance rendering system driving a 
multi-projector display. Our prototype system is based on a sort- 
first architecture in which the entire screen is partitioned into a set 
of “tiles” to be rendered on different PCs. Within this framework, 
the main research challenges are to find a good partition of screen- 
space into tiles, to assign the tiles to PCs so that the load is balanced, 
and to schedule rendering of the tiles to achieve the minimum frame 
times. We have implemented several algorithms to address these 
challenges and incorporated them into a working prototype. We 
report the results of initial experiments aimed at investigating the 
feasibility of constructing a sort-first rendering system using a net- 
work of PCs and evaluating algorithmic trade-offs and performance 
bottlenecks within such a system. 

2 Background and Related Work 

There are a number of academic groups and commercial compa- 
nies working on multi-projector display systems based on high-end 
workstations. Example systems include SGI’s RealityCenter, HP’s 

Visualize Center, the Power Wall at the University of Minnesota, 
the Infinite Wall, and the Cave [9] at the University of Illinois at 
Chicago, the Office of the Future at UNC [29, 301, the Information 
Mural at Stanford, and our Scalable Display Wall at Princeton. Re- 
seach on these systems has addressed many important challenges, 
including automatic projector calibration seamless projection, un- 
encumbered user interaction, and new content creation. Our re- 
search focus is on constructing a high-performance parallel render- 
ing system with a network of PCs. 

Parallel rendering systems are often classified according to the 
stage in which primitive partitioning is done - sort-first, sort- 
middle, or sort-last [7, 231. Most are based on a sort-middle ar- 
chitecture, in which processing of graphics primitives is partitioned 
equally among geometry processors, while processing of pixels is 
partitioned among rasterization processors according to overlaps 
with screen-space tiles. This approach is best suited for tightly- 
coupled systems that use a fast, global interconnection to send prim- 
itives between geometry and rasterization processors based on over- 
laps with simple and static tilings, such as a regular, rectangular 
grid. For instance, in SGI’s Infinite Reality Engine [24], a Vertex 
Bus is used to broadcast screen space vertex information to each 
fragment generator driving 80 image engines allocated to vertical 
strips of pixels. In UNC’s PixelPlanes 5, a global work queue is 
used to distribute primitives sorted into tiles to rasterization pro- 
cessors [12]. In addition to the constraints of commodity graph- 
ics accelerators discussed earlier, the communication demands of 
sort-middle are too large for a system such as ours in which geom- 
etry and rasterization processors are connected only by a network. 
Moreover, they follow the superlinear growth of the overlap factor 
(the number of tiles overlapped by each graphics primitive) as more 
rasterization tiles are added to support higher resolutions. 

Recently, sort-last systems have been built that render multiple 
images, each containing a portion of the graphics primitives, and 
then composite these images with depth into a single image for dis- 
play [22, 11, 32, 371. This approach avoids global connectivity 
of geometry and rasterization processors. However, it provides no 
strict primitive ordering semantics, and it incurs latency as subim- 
ages must be composited before display. Moreover, it requires an 
image composition network with very high bandwidth and process- 
ing capabilities to support transmission and composition of depth 
images. These bandwidths exceed the capabilities of commodity 
networks for high-resolution, multi-projector displays. 

In a sort-first system [23], screen-space is partitioned into non- 
overlapping 2D tiles, each of which is rendered independently by a 
tightly-coupled pair of geometry and rasterization processors, and 
the subimages for all 2D tiles are composited (without depth com- 
parisons) to form the final image. The main advantage of sort-first 
is that its communication requirements are relatively small, and 
they scale well with increasing numbers of processors. Unlike sort- 
middle, sort-first must send primitives between processors only if 
they migrate between tiles [26]. The disadvantages are that geom- 
etry processing must be performed redundantly for all tiles over- 
lapped by each 3D primitive, and extra processing (3D-to-2D trans- 
formations) must be performed to compute overlaps between 3D 
graphics primitives and 2D tiles before rendering each frame. As a 
result, sort-first is best suited for use with retained-mode graphics 
systems in which overlap decisions can be made for hierarchical 
groups of spatially co-located primitives. 

This paper builds upon a long history of prior work on screen- 
space partitioning methods for parallel rendering [6, 391. So far, 
partitions have been based on scan lines [ 151, horizontal strips 
[19, 38, 51, vertical strips [38], and rectangular areas [19, 35, 33, 
40, 8,4]. At the highest level, partitioning approaches can be clas- 
sified based on whether the decomposition of screen-space into tiles 
is static [ 19, 27, 10, 24, 81 or whether the tile boundaries are deter- 
mined dynamically according to the distribution of graphics prim- 
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itives on the screen [38, 33, 35, 251. Dynamic decomposition ap- 
proaches can be divided into three types: top-down, bottom-up, and 
optimization. Top-down approaches start from the screen-space as a 
whole and divide it recursively into tiles based on estimated work- 
loads [38, 251. Bottom-up approaches start from a large number 
of predetermined tiles and combine them into larger tiles that are 
then assigned to processors. For example, a quadtree representation 
of screen-space may be used, and the leaves merged to construct 
tiles based on estimated loads. Optimization approaches begin with 
some initial decomposition and assignment (e.g. a static one or the 
one from the previous frame) and adjust it to balance the workload 
by cutting out and reassigning smaller tiles from existing partitions 
to meet some load balancing criterion [40]. 

If there are more tiles than processors, tiles can be assigned to 
processors either statically or dynamically. Although larger num- 
bers of tiles usually lead to more balanced schedules, each addi- 
tional tile adds overheads due to extra primitive-tile overlaps and 
loss of spatial coherence across tile boundaries [8]. Several studies 
have investigated the impact of primitive overlaps in tiled rendering 
systems. Molnar proposed an equation for modeling the overlap 
factor for 2D bounding boxes on 2D rectangular tiles [21]. His 
analytical model has been corroborated by experimental evidence 
[8, 231, and it has been used as the basis for subsequent studies 
[4, 81. Cox and Bhandari investigated the relationships between 
tile (bucket) sizes and overlap factors incurred in a bucket render- 
ing system using static, grid-aligned rectangular tiles [8]. Although 
they consider alternative tile arrangements, they do not examine the 
extent to which they may reduce overlap. 

Relatively little work has been done on interactive polygon ren- 
dering using a cluster of networked PCs [18, 341. The primary 
problem has been that the latency and bandwidths of typical net- 
works has not been adequate for fine-grained parallel rendering al- 
gorithms. Accordingly, prior distributed rendering systems have 
mostly focused on inter-frame parallelism [ 181, rendering separate 
frames of an image sequence on separate computers in parallel, 
rather than on intra-frame parallelism, which is required to achieve 
scalable speedups in a real-time system utilizing many processors. 
Networks of workstations have been used successfully for parallel 
graphics algorithms with coarse granularity, such as volume ren- 
dering [20, 171, radiosity [31, 141, and batch rendering of image 
sequences [18, 281. We are not aware of any prior system that has 
achieved scalable intra-frame polygon rendering speedups via dy- 
namic screen-space partitions using a cluster of PCs. 

3 Overview of Approach 

In multi-projector systems, the most common approach to paral- 
lel rendering is to dedicate one graphics processor to each projec- 
tor and sort graphics primitives among the processors according to 
their overlaps with projection regions. Unfortunately, this simple 
strategy achieves poor performance if graphics primitives are not 
uniformly distributed over all processors, such as in the case when 
an object covers only one or two projectors on the screen, or when 
there are more processors than projectors. The imbalance often 
causes the majority of system resources to go unused, and it gener- 
ally becomes worse as more projectors and processors are added to 
the system. 

Our approach is to use a sort-first architecture in which the 
rendering computation is partitioned into coarse-grained tasks re- 
quiring relatively little inter-process communication using “virtual 
tiles,” non-overlapping pixel regions of the screen not necessarily 
corresponding one-to-one with projection regions (“physical tiles”). 
Rendering all the pixels of a single virtual tile is the atomic task in 
our parallel rendering system, and thus rendering a virtual tile re- 
quires processing all graphics primitives potentially overlapping it. 
In principle, we allow virtual tiles (or just “tiles”) to be any size or 

shape, including non-rectilinear, concave, or even disjoint regions, 
as long as each pixel on the screen maps to exactly one tile. Since 
tiles do not overlap, pixels of images rendered independently for 
separate tiles can be combined without depth comparisons to con- 
struct images for projection on the wall. Pixels of a tile rendered on 
a “remote” server, but projected onto the display by another (the 
pixels’ “local” server), are sent over a system area network and 
loaded into the local frame buffer. 

The sort-first approach provides a coarse-grained, high-level 
decomposition of the rendering computation [25]. Unlike sort- 
middle systems, which must either broadcast or independently sort 
many low-level rasterization primitives among the screen-space 
tiles during every frame, our sort-first system is able to partition 
the scene based on high-level 3D primitives, possibly taking ad- 
vantage of frame-to-frame coherence, precomputed work load dis- 
tribution statistics, sophisticated rendering time prediction mod- 
els, scene graph hierarchies, and/or other application-specific data 
structures. Consequently, it is possible to predict rendering times 
effectively and to consider irregular tile arrangements and dynamic 
server assignments, potentially achieving lower overlap factors and 
better load balances than using the rectangular grid-aligned tilings 
commonly employed in sort-middle systems. 

In order to reduce the communication requirements among pro- 
cessors, our system replicates the 3D scene on every PC. Unlike 
sort-middle approaches where graphics primitives are sent to ras- 
terization processors during sorting, this design requires no trans- 
mission of graphics primitives and thus requires little inter-process 
communication. In contrast to sort-last systems or SGI’s Monster- 
Mode where all rendered pixels are sent to the frame buffer, this ap- 
proach transfers only those pixels rendered for remote processors, 
since the final image remains distributed across many projectors or 
PCs. The image appears only via optical blending as the projec- 
tors composite the contents of all the frame buffers into a single, 
seamless image. Although the re-distribution of pixels rendered on 
remote nodes require communication, with clever screen-space par- 
titioning algorithms, these cases can be kept well within the band- 
width limits of system area networks. 

4 System Organization 

We have built a prototype sort-first parallel rendering system on 
the scalable display wall system constructed at Princeton. The cur- 
rent implementation uses eight Proxima 9200 LCD polysilicon pro- 
jectors arranged in a 4 by 2 fashion to project a seamless image 
on an 18’ by 8.5’ rear projection screen. The pixel resolution of 
each projector is 1,024 by 768 so the display wall system delivers 
4,096 by 1,536 (or 6 million) pixels per frame. The system uses 
a network of eight 450Mhz Xeon Pentium II PCs with Integraph 
3410T 3-D graphics accelerators to drive these projectors. The 
parallel rendering system uses the eight PCs as rendering servers 
and another 300Mhz Pentium II PC without a graphics accelerator 
as the client machine to do sort-first processing: Each server cur- 
rently can render approximately 300K independent quads/second 
and fill approximately 60M textured pixels/second. .A11 nine PCs 
are connected by a Myrinet system area network (see Figure 1) us- 
ing the VMMC-2 communication firmware and software developed 
by Princeton’s SHRIMP project [3]. The communication mecha- 
nism can achieve around 13 PS one-way end-to-end latency and 100 
MB/second bandwidth simultaneously between each pair of nodes. 

Execution of the system proceeds as shown in Figure 2. At the 
start, the client and all the servers read the same 3D scene graph 
from a file on disk and store it entirely in memory. Then, during 
each frame of an interactive visualization session, the client ex- 
ecutes the following steps as the user moves a simulated camera 
through the 3D scene. It first uses occlusion culling and detail eli- 
sion algorithms to compute a potentially visible set (PVS) of scene 
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graph nodes to be drawn in the current frame [ 131. It then decom- 
poses screen-space into non-overlapping tiles, sorts the nodes of 
the PVS according to their tile overlaps, and assigns each tile to 
a server. Next, it sends a sequence of render tile messages to the 
servers, each containing: 1) the simulated camera parameters, 2) 
the 2D extent of the tile, 3) a list of IDS representing the PVS nodes 
potentially overlapping the tile, and 4) an optional list of pixel re- 
distribution commands (if parts of the tile do not reside within the 
region of the screen covered by the projector attached to the server). 

Client ne -a01 Server A 

Server B 

Figure 2: Flow chart of client-server execution. 

When a server receives a render tile message, it sets the OpenGL 
camera and viewport regions to match the information sent in the 
message, and it renders the nodes of the PVS indicated by the list 
of IDS in the message using standard OpenGL commands to up- 
date the “back” buffer of a double buffered video memory. After 
all primitives overlapping the tile have been rendered, the server 
may read the resulting pixels from the frame buffer back into mem- 
ory (using glReadPixels) and send them in a pixel redistribution 
message to every server whose projection region overlaps the tile. 
When a server receives a pixel redistribution message, it loads the 
rendered pixels into the appropriate location of its frame buffer (us- 
ing glDrawPixels). 

Finally, at the end of each frame, the client exchanges synchro- 
nized “end of frame” messages with each server so that all server 
PCs swap buffers within a few tens of microseconds of each other. 

5 Load Balancing Algorithms 

The main research challenge in implementing our prototype system 
is to develop algorithms that decompose screen-space into tiles and 
assign them to PCs so as to achieve the fastest frame rates possible. 
An effective partition must balance multiple conflicting goals: 

l Minimize Overheads: The partition should minimize over- 
heads due to pixel redistribution (when a tile is rendered on a 
remote server), redundant rendering (when a group of primi- 
tives is geometry bound and overlaps more than one tile), and 
basic “per bucket” processing. These factors favor construc- 
tion of large tiles assigned to “local” servers and small tiles 
assigned to remote servers. 

l Balance Assignments: The tiles should be constructed and 
assigned to servers so that the load is balanced. In our case, 
the tiles cannot be too few, too large, or too “chunky,” or else 
balanced assignments become difficult. These factors favor 
construction of many small tiles of varying sizes or construc- 
tion of exactly P tiles with equal work loads. 

l Partition Quickly: The partition must be simple enough that 
it can be computed in real-time for each frame, and the system 
must be able to sort all 3D scene graph nodes among the tiles 
during each frame time. 

Of course, finding an optimal partition to meet all these goals is 
intractable, and thus we focus on developing good heuristic meth- 
ods. To simplify our investigation, we consider only geometry- 
bound models stored in a scene graph data structure. In this con- 
text, we have developed three screen-space partitioning algorithms, 
two of which are based on balanced assignment of pixels grouped 
in grid buckets (GRID and UNION), and one which is based on a 
combination of recursive splitting and greedy optimization. 

5.1 Grid Bucket Assignment Algorithm 

Our first partitioning algorithm, GRID, focuses on balanced assign- 
ment of grid-aligned tiles to server PCs. In this algorithm, the basic 
unit of work is rendering all the primitives overlapping a single grid 
tile (or “bucket”). Every tile is rendered independently, so the al- 
gorithm can assign each one to any server in order to balance the 
load. This approach is similar in spirit to work-queue algorithms 
(as in [ 121). The only differences are that assignments are made a 
priori based on predicted rendering times, and pixel redistribution 
overheads are incurred if a bucket is assigned to a remote server. 

Our assignment strategy is motivated by “first-fit decreasing” al- 
gorithms. At the start of every frame, the client constructs a set of 
tiles corresponding to rectangular regions of a regular grid. It then 
estimates the rendering cost for each scene graph node using primi- 
tive distribution statistics stored in the scene graph, and it computes 
the 2D axis-aligned bounding box containing the projection of ev- 
ery 3D scene graph leaf node on the screen. It sorts the scene graph 
nodes among the tiles according to their 2D bounding box overlaps, 
forming an estimate of the cumulative time required to render each 
tile. Initially, every tile is assigned to its “local” server (i.e., the one 
whose projection region contains it), and an estimated work load 
(Lj) is computed for each server Sj. Next, for every tile Ti initially 
assigned to Sj, the client determines the local benefit (Bi,j) and the 
remote cost (Ci,k) of rendering the tile on another server, Sk: 

Bi-j = RenderTimei*j - SendTimei,j - WriteTimei,j 

Ci,k = RenderTimei,k + RcvTimeivk + ReadTimei,k 

where SendTimei,? and RcvTimei,j represent networking over- 
heads, and ReadTzmei,k and W&eTi?nei,r, represent pixel re- 
distribution overheads. 

The client proceeds by iteratively finding the most loaded server, 
S,,,t, and it tries to reduce estimated work load of Slnost by send- 
ing one tile to the least loaded server, SI,,,~. If considers tiles 
of S,,,t in descending order of estimated benefit and assigns to 
Sleast the first one that reduces the maximum of the two servers’ 
estimated work loads (i.e., if Bi,most+Ci,teast < Lmost-Lleast). 
The algorithm terminates when the most loaded server has no re- 
maining tiles with positive benefit that can be assigned remotely in 
this way. 

After all tiles have been assigned, the client generates a render 
tile message for every tile and sends it to the server to which the tile 
has been assigned. The sequence of messages is ordered such that 
the ones representing tiles assigned to remote servers are sent first. 
In this way, tiles can be rendered by remote servers without concern 
for writing over pixels already rendered for its local tiles, and most 
pixel re-distribution messages can be generated early in the frame 
cycle in order to avoid potential temporal imbalances. 
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5.2 Grid Bucket Union Algorithm 

Our second algorithm, UNION, is aimed at reducing the impact of 
high overlaps possible with small buckets in geometry-bound situa- 
tions, while avoiding inefficiencies due to imbalanced assignments 
and large pixel redistributions. The idea is to construct tiles dynam- 
ically based on server assignments. Specifically, all grid buckets 
mapping to the same projector and assigned to the same server are 
unioned into a single tile. The overlap factor reductions of this 
bucket merging strategy are potentially quite significant, especially 
for the many buckets assigned to their local servers. Rather than 
rendering each primitive separately for each of these buckets, they 
can be rendered only once. Buckets rendered on remote servers 
are merged into tiles in a similar fashion. Intuitively, each server is 
able to cutout small, contiguous bucket-aligned regions of its frame 
buffer and off-load rendering of them to other servers. So, over- 
heads due to overlaps are incurred only once per sender-receiver 
pair. 

The idea behind this algorithm is related to the dynamic schedul- 
ing method proposed by Whitman [40]. He started with a set of ini- 
tial tiles and “stole” part of another processor’s work dynamically 
when no initial tiles remain. The stealing was achieved by splitting 
the remaining tile region on the maximally loaded processor into 
two vertical strips having the same number of scanlines. However, 
the differences between our approaches are significant, as our algo- 
rithm executes in a sort-first system with a priori assignments made 
in a client, and we use commodity rasterizers which do not allow 
control over the order in which scan lines get updated. In general, 
it is expensive for our sort-first system to reassign part of a tile af- 
ter one server has already started rendering it, as color and depth 
buffers would have to be transferred. 

Assignment in our UNION algorithm proceeds in the same fash- 
ion as the GRID algorithm described in the previous section. The 
primary difference is the manner in which rendering is performed, 
and consequently the way in which pixels are redistributed and ben- 
efits and costs are computed. When a server renders a tile, it draws 
all primitives overlapping any of its buckets, marking them as they 
are drawn, and never redraws a primitive marked for the tile. In this 
manner, pixels outside the buckets representing the tile may be up- 
dated, but without harm if the system is geometry-bound. If a tile is 
assigned to a remote server, the pixels inside the tile’s buckets are 
sent to the appropriate local server in a series of pixel redistribution 
commands. 

These differences significantly change the benefits and costs of 
rendering a bucket remotely as compared to the GRID algorithm. 
Most importantly, previous assignments of buckets to servers im- 
pact the benefits and costs of current ones (i.e., RenderTimei,j 
may not equal RenderTimei,& For instance, in the situation 
shown in Figure 3, the cost of including bucket ‘A’ in a tile for 
server ‘2’ is zero, since all primitives overlapping ‘A’ are already 
slated to be rendered on server ‘2,’ while the cost of assigning the 
same bucket to server ‘3’ is non-zero. Similarly, the immediate ben- 
efit of assigning bucket ‘B’ to any remote server is also zero, since 
all primitives overlapping it also overlap other buckets assigned to 
the local tile. Generally, only buckets with primitives wholly inside 
them have positive benefit unless the assignment finds two neighbor 
buckets that cumulatively enclose some primitives. 

5.3 KD-Split Algorithm 

The last algorithm, KD-SPLIT, is motivated by the observation that 
constructing fewer tiles generally leads to lower overheads due to 
overlaps and bucket processing. A plausible strategy is to create 
exactly P tiles with equal rendering loads so that exactly one tile 
can be assigned to each PC. In our algorithm, we start with the 
entire screen in a single tile and recursively split it with P - 1 axial 
lines to form a KD tree with P regions [ 11. 

Figure 3: Prior assignments affect costs and benefits. 

This recursive partitioning strategy is similar to ones used pre- 
viously for dynamic tile construction. For instance, Whelan de- 
veloped a median-cut method in which a tile initially covering the 
entire screen was partitioned recursively by a splitting line per- 
pendicular to its longest axes so that the centroids of its overlap- 
ping graphics primitives were partitioned most equally [38]. In 
later work, Mueller developed a mesh-based median-cut method in 
which primitives were first tallied up according to how their bound- 
ing boxes overlapped a fine mesh, and an estimated cost was calcu- 
lated for each overlapped mesh cell. Then, using this data as a hint, 
screen space tiles were recursively split along their longest dimen- 
sions until the number of regions equaled the number of processors 
WI. 

One difference between our split algorithm and previous ones is 
that it makes more direct use of computed primitive distribution in- 
formation to choose splitting lines that avoid overlaps and balance 
rendering load among tiles. Specifically, at the start of every frame, 
the client computes a screen-space, axis-aligned bounding box con- 
taining the 2D projection of every 3D scene graph leaf node on the 
screen. It then constructs a single tile covering the entire screen and 
builds two lists with pointers to 2D bounding box vertices sorted 
according their X and Y coordinates. For each subdivision of the X 
dimension (subdividing Y is the same), we use a sweep line algo- 
rithm to choose a location for the splitting line (see Figure 4). The 
sweep line starts at the left side of the tile and moves right iteratively 
considering vertex locations stored in the sorted list. As it moves 
incrementally, estimated costs of rendering all primitives overlap- 
ping the left and right halfspaces (Cleft and Cright) are updated. 
Initially, Cleft is zero, and C,.ight is equal to the cost of rendering 
all primitive overlapping the tile. As the sweep line is moved to the 
right, Ct..+ grows monotonically (whenever the left side of a box 
is reached), and C,.ighr shrinks monotonically (whenever the right 
side of a box is passed), and they eventually cross. At this point, we 
construct a splitting line that subdivides the tile. This procedure is 
executed recursively P - 1 times to construct exactly P tiles. 

Figure 4: KD-Split Optimization. 

Another difference in our algorithm is that the KD splits are ad- 
justed with an optimization algorithm after the initial set of tiles 
has been constructed. We note that the estimated rendering times 
of tiles in the left and right halfspaces of any line change mono- 
tonically as the line is moved in one direction, and the curve rep- 
resenting the maximum of Cr,ft and Cright has exactly one min- 
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imum (see Figure 4). Based on these observations, we iteratively 
move the splitting line stored in the root of the KD tree in the di- 
rection that best balances the estimated rendering costs of its left 
and right subtrees. Every time the root split is adjusted, the sub- 
trees rooted at its children are adjusted recursively in the same way. 
This optimization procedure terminates when the root can make no 
further moves to reduce the maximum estimated rendering time of 
any tile in its left and right subtrees. The result is a KD tree with 
the same topology as the initial one, but with splits resulting in the 
global minimum of the maximum rendering time of any server. The 
resulting tiles are assigned to processors so as to minimize pixel 
redistribution times. 

Unfortunately, there are hardware constraints that complicate ap- 
plication of the KD split algorithm in our prototype system. First, 
the servers can render OpenGL commands only to windows that fit 
on one projector screen. Thus, if the KD split algorithm creates 
a tile larger than one screen, it must be split into as many as four 
tiles whose longest dimensions fit within one projector. Second, 
our current optimization algorithm does not incorporate penalties 
for higher pixel redistribution costs while constructing tiles. Fix- 
ing these problems requires incorporating tile assignments into the 
optimization algorithm. Also, adding pixel write times to the cost 
for each tile causes the optimization objective function to become 
non-monotonic. We are currently investigating heuristic optimiza- 
tion methods that take into account pixel redistribution costs within 
this framework. 

6 Experimental Results 

The three algorithms described in the previous sections have been 
implemented in C++ on PCs running Windows NT 4.0 and incor- 
porated into our prototype system. In this section, we report data 
collected during a series of tests run on the system. The goals of 
these experiments are to investigate the algorithmic trade-offs of 
different partitioning strategies, to identify potential performance 
issues in the prototype system, and to assess the feasibility of con- 
structing a sort-first parallel rendering system with a cluster of PCs. 

In each test, we logged statistics while rendering a sequence of 
frames in an interactive visualization program while viewing four 
test models (shown in the color plate section of the proceedings). 
Each model was represented as a scene graph in which multiple 
polygons were grouped at the leaf nodes and treated as atomic 
entities by the partitioning algorithms (the numbers of leaf nodes 
and polygons are listed under the image of each test model in the 
color plate). In all cases, rendering was “geometry-bound.” For 
each model, the camera traveled along a preset path which started 
“zoomed in” such that the model filled the full screen at the begin- 
ning of the path, and it gradually “zoomed out” until the model was 
small enough to fit on a single projector (one-eighth of the screen) 
at the end of the path. 

Table 1 contains comparisons of timing statistics measured dur- 
ing tests with different partitioning algorithms and test models (av- 
eraged over all frames of the camera path in each test). The first 
two columns indicate the name of the test model and the grid gran- 
ularity (expressed as number of buckets across each projector in 
the X and Y dimensions), respectively. The next column (labeled 
‘Client Time’) shows the total time spent in the client for construct- 
ing and assigning tiles. The next column lists the ‘Render Time,’ 
required to render each model with a hypothetical system executing 
with no overheads exactly eight times faster than a single PC. The 
next column (labeled ‘Ovlp Time’) shows the overhead due to re- 
dundant rendering of scene graph nodes overlapping multiple tiles 
(Avg Render Time - Render Time). The column labeled ‘Imbal- 
ance Time’ shows the time servers spent waiting for the last server 
to finish rendering each frame (Max Rendering Time - Avg Render- 
ing Time). The next column (‘Pixel Time’) shows the overhead due 

STATIC ALGORITHM 
Test Grid Client Render Ovlp Imbal Pixel Frame 

Model Buckets Time Time Time Time Time Time 
HORSE IX1 3 21 2 84 0 114 

MOL 1x1 5 31 2 85 0 134 
ASTRO IX1 9 88 9 355 0 452 
BLDG 1x1 13 181 -8 426 0 670 
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95 
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331 
421 
243 
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335 
750 
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375 
654 

UNION ALGORITHM 
Test Grid Client Render Ovlp Imbal Pixel Frame 

Model BllCketS Time Time Time Time Time Time 
HORSE 2x2 9 21 4 59 4 118 

4x3 11 21 8 34 5 89 
8x6 26 21 14 12 4 64 

16x12 215 21 18 22 3 234 
32x24 3169 21 14 51 1 3220 

MOL 2x2 12 31 7 51 7 128 

ASTRO 

BLDG 

4x3 14 
8x6 30 

16x12 223 
32x24 3191 

2x2 17 
4x3 19 
8x6 34 

16x12 234 
32x24 3245 

2x2 24 
4x3 27 
8x6 45 

16x12 251 
32x24 

31 
31 
31 
31 
88 
88 
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88 
181 
181 
181 
181 

11 33 6 
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27 16 3 
21 52 2 
17 301 4 
32 122 3 
49 75 2 
82 18 3 
91 
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6 
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95 
74 
246 

3246 
430 
255 
221 
234 

3245 
405 
299 
247 
331 

1 

KD-SPLIT ALGORITHM 
Test Grid Client Render Ovlp Imbal Pixel Frame 

Model Buckets Time Time Time Time Time Time 
HORSE - 19 21 6 3 15 62 

MOL - 31 31 11 2 15 79 
ASTRO - 20 88 36 14 6 152 
BLDG - 95 181 9 16 16 236 

Table 1: Timing statistics (in milliseconds). 
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to pixel redistribution, including reading pixels, writing them, and 
transmitting them. Finally, the rightmost column, labeled ‘Frame 
Time,’ lists the overall time required to complete each frame aver- 
aged over all cameras in each test. 

More detailed statistics are provided in Figures 5-10. In particu- 
lar, Figures 5, 7, and 9 show times collected for each frame during 
tests with the HORSE model (plots for the other models are simi- 
lar). In these plots, the horizontal axis represents different camera 
locations along the test path, while the vertical axis shows averages 
of times measured in the eight servers. The meanings of the colored 
bands match columns 4-7 of Table 1. Specifically, the lowest band 
(medium gray) shows the ‘Render Time’; the second band (cross- 
hatch) shows the average ‘Ovlp Time’ in each frame; the third band 
(light gray) shows the ‘Imbalance Time’ in each frame; and, the top 
band (black) shows the time spent on other overheads, primarily 
‘Pixel Time.’ The overall server processing times are indicated by 
the curve across the top of all bands in each plot. 

6.1 Static Projector-Based Partition Results 

In our first experiment, we measured the performance of the sys- 
tem with a simple static screen-space partition in which a PC was 
dedicated one-to-one for each projector. This approach, which we 
call STATIC, forms the basis for most commercial multi-projector 
display systems. It also sets a base-line for comparison of perfor- 
mance with our bucket-based algorithms, as the STATIC algorithm 
is equivalent to the GRID 1x1 algorithm, in which one grid bucket 
is allocated per projector. 

Scanning the imbalance time statistics for all models in the top- 
most section of Table 1 (labeled STATIC) and for the horse model 
in the plot of Figure 5, it is easy to see the how imbalanced the 
rendering system is with a projector-aligned static partitioning ap- 
proach. In this test, the camera starts at a viewpoint for which the 
3D model fills the entire screen (the early frames of the plot in Fig- 
ure 5), and it slowly “zooms out” until the model covers only one 
projector at the end of the sequence. As the 3D model becomes 
smaller and spans fewer projectors, the ‘Imbalance Time’ increases 
as more of the rendering load is handled by fewer servers. This ef- 
fect is indicated by the large light gray region in Figure 5. Finally, 
at the end of the path, when the model resides entirely on one pro- 
jector, almost exactly 7/8ths of the system’s resources are idle and 
the ‘Frame Time’ exceeds 160ms. 

Figure 5: Frame times (in milliseconds) measured during tests with 
the HORSE model using STATIC projector-aligned tiles. 

6.2 Grid Bucket Assignment Results 

In our second experiment, we investigated the performance of the 
system with partitions based on the GRID bucket assignment al- 
gorithm described in Section 5.1. The second section in Table 1 
contains results of tests with different 3D models and bucket sizes, 

while detailed timing plots captured during tests with the HORSE 
model appear for different bucket sizes in Figures 6 and 7(a-c). 

Figure 6: Plots of the frame times (in milliseconds) achieved during 
tests with the HORSE model using different GRID bucket sizes. 

The results of this experiment indicate that it is very difficult to 
choose an appropriate bucket size in a sort-first rendering system, 
even if buckets are assigned to processors dynamically. On the one 
hand, if the bucket size is sufficiently small (e.g., 16x12 buckets 
on every projector), overlap factors are very large as indicated by 
high server “Overlap Times.” In this case, the overheads of redun- 
dant rendering dominate the frame time, as indicated by the large 
cross-hatch area in Figure 7(c). On the other hand, if the buckets 
are made large enough to avoid undue overlaps (e.g., 4x3), then it 
becomes difficult to assign the few available rendering tasks evenly 
among the servers, leading to load imbalances indicated by high 
server ‘Imbalance Times.’ In many cases, the cost of rendering the 
most loaded bucket alone on one server limits the frame rate, a sit- 
uation causing the large light gray areas in the rightmost frames of 
the plots in Figures 7(a) and 7(b). 

This result regarding the effect of overlap factors on rendering 
times is interesting when compared with recent results reported by 
Chen et al. in their study of a sort-middle system [4]. Based on an- 
alytical models and experimental evaluations, they concluded that 
the processing overhead due to overlaps is generally less than the 
raw overlap factor in a sort-middle system, since primitives much 
smaller than the bucket size tend to overlap only one bucket, and 
primitives much larger than the bucket size tend to be rasterization 
bound. In contrast, we find that the effective overlap factor has 
a very significant effect on our sort-first system. Since groups of 
primitives are considered atomically for overlap computations, all 
primitives in a group are processed if any primitive in the group 
overlaps a tile, causing the effective overlap factors to be much 
higher than in sort-middle. In a sort-first system, it is possible 
(common) for objects to be both large and geometry-bound, and 
thus minimizing the overlap factor is an important goal. 

6.3 Grid Bucket Union Results 

In our third experiment, we investigated the performance of the grid 
bucket union algorithm (UNION) described in Section 5.2. The 
results appear in the third section of Table 1 and in Figures 8 and 
7(d-f). 

We find the differences between the GRID and UNION algo- 
rithms to be very interesting for small and medium bucket sizes. 
First, the compute time in the client can be a bottleneck if there are 
too many candidate grid buckets on each server (e.g., 16x12). Yet, 
the UNION algorithm significantly reduces measured overlaps as 
compared to the GRID algorithm. The reduction is almost wholly 
due to avoiding redundant rendering for multiple buckets assigned 
to the same local server. This effect is especially noticeable in cases 
where the 3D model appears very large on the screen and scene 
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Figure 7: Timing statistics (in milliseconds) measured during tests with the HORSE model using different bucket sizes. 

graph leaf nodes are very large compared to the bucket size. For in- 
stance, compare the cross-hatch bands representing ‘Overlap Time’ 
in the early frames of the plots for GRID 16x12 and UNION 16x12 
in Figure 7(c,f). 

Unfortunately, the way in which the UNION algorithm avoids 
overlaps leads to a new problem, indicated by the large ‘Imbalance 
Times” (light gray area) in the early frames of the UNION 16x12 
plot in Figure 7(f). The imbalance occurs because a server can only 
avoid rendering a scene graph node if all the tiles it overlaps are 
assigned remotely. Or, similarly, it is easier for the algorithm to 
distribute the load in situations where most scene graph nodes gen- 
erally lie wholly inside buckets. In the situation depicted on the left 
side of Figure 7(f), the scene graph nodes appear large because the 
camera is zoomed in, and the buckets are relatively small. Con- 
sequently, few scene graph nodes are found that can be assigned 
remotely with positive benefit, and the assignment algorithm has 
trouble balancing the load. We are currently investigating algo- 
rithms that grow large tiles from adjacent buckets based on expected 
future benefits. More experimentation is required to understand the 
trade-offs of this new approach. 

Figure 8: Plots of the frame times (in milliseconds) achieved during 
tests with the HORSE model using different UNION bucket sizes. 

6.4 KD-Split Results 

In our fourth experiment, we investigated the performance of the 
KD split algorithm (KD-SPLIT) described in Section 5.3. The re- 
sults appear in the bottom section of Table 1 and in Figure 9. 

The KD split optimization algorithm clearly achieves very uni- 
form rendering times, with low overlap factors, and with few server 
imbalances (e.g., the light gray area is thin and flat in Figure 9). 
Moreover, these features are robust over a wide-variety of 3D model 
sizes (both the left and right sides of the rendering time curve are 
flat), which differentiates the KD split algorithm from the other 
ones which are negatively impacted for either large or small 3D 
models by their choice of bucket size. 

Figure 9: Frame times (in milliseconds) measured during tests with 
the HORSE model using KD-SPLIT partitions. 

On the other hand, the pixel redistribution times are larger for 
the KD split algorithm than the others (indicated by the large the 
black area in Figure 9). As mentioned in Section 5.3, our current 
algorithm does not incorporate penalties due to construction of tiles 
covering many projectors and/or causing large pixel redistribution 
costs. Instead, it only focuses on balancing the rendering load. We 
expect that it will be possible to augment the KD-SPLIT algorithm 
in future work to construct slightly more than P tiles which can 
be balanced and incur less overheads, or to incorporate pixel re- 
distribution costs into the optimization. In any case, we expect the 
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KD-SPLIT algorithm to perform well in systems with less resolu- 
tion and/or lower image composition overheads. 

6.5 Comparison of Frame Times 

Table 2 shows a comparison of the average frame times measured 
in tests with each of the partitioning algorithms (with the best ob- 
served bucket sizes). The rightmost column, labeled ‘Efficiency,’ 
provides the ratio of the average measured frame time in each test 
as compared to an “ideal render time” defined as the time required 
by a single PC divided by eight. 

Test I Part II 

I GRIDSx6 60 
II UNION 8x6 62 

ame Time I 

90 I 146 II 0.34 
14 91 0.42 

Table 2: Frame time statistics (in milliseconds). 

It is impossible to declare that any one of our three partition algo- 
rithms is superior to the others. Examining the plot of overall frame 
times in Figure 10, we see that the KD-SPLIT algorithm achieves 
the fastest frame times in situations when the 3D model is zoomed 
in (the right side of the plot). Yet, others, such as the UNION algo- 
rithm, do better when the 3D model covers many pixels. Perhaps, 
in future work, it will be possible to combine these two approaches 
into a hybrid top-down and bottom-up approach in which KD tree 
tiles are iteratively split and merged during an optimization proce- 
dure. 

Figure 10: Overall frame times measured with the MOL test model 
during experiments with different partition algorithms. 

Another interesting result is shown by comparison of our system 
to a single, more expensive, high-end graphics workstation. To in- 
vestigate this question, we executed our tests on an SGI Onyx2 with 
4 195MHz processors and one InfiniteReality graphics pipeline 
(the only modification to our test application was to draw the scene 

graph locally in a 1024x560 window on its screen). Comparing 
the frame time statistics measured during these tests (rows labeled 
‘SGI IR2’ in Table 10) with ones discussed previously, we see that 
our prototype display wall system compares favorably with a far 
more expensive and more tightly-coupled commercial parallel ren- 
dering system. The range of polygon rendering rates measured with 
our system was 700K - 1.2M polygons per second, as compared to 
600K - 900K with the SGI IR2 (display list mode, independent 
tris and quads, RGB, smooth shaded, two infinite lights, z-buffer 
[ 161). Moreover, the difference in screen resolution is a factor of 
ten. We conclude that building a parallel rendering system com- 
prising a network of commodity PCs is an attractive alternative and 
warrants further attention. 

7 Discussion 

Our investigation of PC-based parallel rendering systems is very 
preliminary at this point. In particular, we have made several sim- 
plifying assumptions to aid implementation and analysis of our pro- 
totype system. 

First, our system is integrated into a retained-mode graphics 
package and utilizes scene graph data structures to sort graphics 
primitives and to predict rendering times. It is unclear whether these 
tasks can be performed effectively in an immediate-mode graphics 
system. In particular, transforming, projecting, and sorting indi- 
vidual primitives into partitioning data structures in real-time is a 
significant challenge. 

Second, we have only developed algorithms and executed experi- 
ments for situations in which rendering is geometry-bound. Clearly, 
rasterization-bound scenes are important. In these situations, the ra- 
tios of fill rate to pixel I/O rates will determine the minimum depth 
complexity for which remote rendering is useful, and it seems best 
to search for tiles that balance depth complexity rather than primi- 
tive overlaps. Further work is required to develop such algorithms 
and to quantify the impact of higher overlaps in sort-first on the 
relative loads of geometry and rasterization processing. 

Third, our implementation is based on the notion that we can 
predict processing times for several operations (e.g., rendering a 
group of primitives, reading a block of pixels, etc.). Our current 
prediction methods are very simple, based on estimates of the la- 
tency and throughput of each operation, and thus they are accurate 
only in “controlled” situations (e.g., rendering time predictions are 
usually within 10% when the system is purely geometry-bound). 
However, it is not clear how practical it will be to extend these 
simple prediction methods to more general cases containing var- 
ied work loads. We note that accurate predictions are more likely 
with sort-first than sort-middle because the system can utilize pre- 
computed data structures, frame-to-frame coherence, and averag- 
ing over groups of primitives. Nonetheless, we are investigating 
dynamic scheduling algorithms that use a work queue approach to 
assign tiles to remote servers dynamically as others are rendered. 
A difficulty with this approach in our system is sequencing the tile 
rendering and pixel redistribution operations so that a server must 
not write over pixels to be projected locally in order to render a tile 
for a remote frame buffer. 

There are many extensions that can be made to our current sys- 
tem. Some topics for future work include partitioning the scene 
graph and client processing among the servers, investigating better 
assignment and scheduling algorithms, developing bottom-up al- 
gorithms, and experimenting with different classes of tile arrange- 
ments (e.g., BSP, irregular mesh, etc.). We plan to investigate sev- 
eral alternative system designs. For instance, object-based parti- 
tions based on tiled sort-last seem interesting. In this case, the scene 
graph is partitioned into objects which are rendered into separate 
tiles, and overlapping tiles are composited with depth comparisons 
to form the final image. This approach [35] avoids overheads due 
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to overlaps, as each primitive is rendered exactly once. But, it in- 
curs extra pixel read, transmit, and write overheads. For instance, 
with our current hardware, reading the z-buffer into memory takes 
around 5 times longer than reading the color buffer, and these over- 
heads make implementation of a high-performance sort-last system 
almost impossible. Hardware and software enhancements that im- 
prove pixel transfer performance would greatly increase the space 
of practical parallel rendering system designs. 

8 Conclusion 

In this paper, we have investigated research issues in constructing a 
low-cost parallel rendering system using a network of PCs to drive 
a multi-projector display. Our initial study is a first step towards 
understanding how to use the coarse-g&red, sort-first approach to 
build a parallel rendering system for a PC cluster architecture. 

We have developed and experimented with several sort-first algo- 
rithms to balance the rendering load across a network of PCs. Our 
findings are: 1) all of the proposed algorithms do better than no 
load balancing, 2) the GRID algorithm works well in some cases, 
but it is sensitive to bucket sizes. The impact of overlap factors 
is important, which is different from a result recently reported for 
sort-middle, 3) the UNION algorithm can avoid the impact of over- 
lapping factors, at the expense of a more costly partition computa- 
tion and poor imbalances when few scene graph nodes fit wholly 
inside buckets, and 4) the KD-SPLIT algorithm leads to the least 
overlaps in our tests, but it requires significant pixel redistribution 
when the tiles are large and irregularly shaped. 

With the last two load balancing algorithms, we have been able 
to achieve modest efficiencies in our experiments (30-70%). The 
result is a prototype system that is able to leverage the aggregate 
performance of multiple PC graphics accelerators to deliver perfor- 
mance comparable to high-end graphics machines, at a fraction of 
the cost. 
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ORSE: Tess& 
(730 nodes, 48,688 polygons) 

(b) MOL: Molecule with spheres aud cylinders. 
(I, 1 I8 nodes, 89,900 polygons) 

(c) ASTRO: Hydrogen density iso-surface. (d) BLDG: Architectural model with furniture. 
(569 nodes, 164,922 p’lygons) (2,Y81 nodes, 265,032 ~~lygolls) 

Color Plate: Test models used in exlwriments with difkrent load balancing algorithms. 

Load Balancing for Multi-Projector Rendering Systems 
Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, Jaswinder Pal Singh 

Figure 6: Separable approximations of reff ectances for a single light 
source: anisotropic brushed metal [32], HTSG copper [14], velvet 
[6], vinyl [41], Ward’s anisotropic model [40], and varnished wood 
[6]. The last two also use a texture mapped diffuse component. 

Figure 7: Variable glossiness reflections simulated with superposi- 
tion of filtered environment maps. Left: sharp reflection. Middle: 
uniformly blurred reff &ion (Gaussian lobe). Right: blend between 
blurry normal reff ections and sharp glancing angle reflection. 

Texture Shaders 
Michael D. McCool, Wolfgang Heidrich 
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