
Load Balancing for Multi-Projector Rendering Systems

Rudrajit &manta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh
Princeton University

Abstract

Multi-projector systems are increasingly being used to provide
large-scale and high-resolution displays for next-generation inter-
active 3D graphics applications, including large-scale data visual-
ization, immersive virtual environments, and collaborative design.
These systems must include a very high-performance and scalable
3D rendering subsystem in order to generate high-resolution im-
ages at real-time frame rates. This paper describes a sort-first paral-
lel rendering system for a scalable display wall system built with a
network of PCs, graphics accelerators, and portable projectors. The
main challenge is to develop scalable algorithms to partition and
assign rendering tasks effectively under the performance and func-
tionality constraints of system area networks, PCs, and commodity
3-D graphics accelerators. We have developed three coarse-grained
partitioning algorithms, incorporated them into a working prototype
system, and run initial experiments aimed at evaluating algorithmic
trade-offs and performance bottlenecks in such a system. Results of
our experiments indicate that the coarse-grained characteristics of
the sort-first architecture are well suited for constructing a parallel
rendering system running on a PC cluster.

Key Words: Immersive display systems, cluster computing,
parallel rendering, load balancing.

1 Introduction

Multi-projector computer displays are increasingly important for
applications such as collaborative computer-aided design and in-
teractive scientific and medical visualization. The high resolution
of the images (several million pixels) enables visualization of very
detailed data sets (e.g., astrophysics simulations). The large phys-
ical size of each display surface (a room-sized wall) allows users
to interact with rendered objects at their natural sizes, which can
be critical to perception and evaluation of 3D models (e.g., for au-
tomotive CAD). The space in front of the display supports natural
collaborations among multiple people simultaneously viewing and
discussing visual data (e.g., for medical treatment planning) and en-
ables immersive visualization applications in which the entire field
of view for each user is covered with computer-generated imagery.

A multi-projector display must include a very high-performance
3D rendering system to support interactive and immersive visual-
ization applications. It will be increasingly common to find me-
chanical CAD, medical imaging, and scientific visualization appli-
cations that process 3D models with millions of polygons to be ren-
dered over several million pixels at thirty frames per second. As

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on setvers or to redistribute to lists,
requires prior specific permission and/or a fee
1999 Eurographics LosAngeles CA USA
Copyright ACM 1999 I-581 13-170-4/99/08...%5.00

more projectors are added to the system, more pixels are available,
and more complex 3D scenes can be viewed, requiring higher pixel
fill and polygon rendering rates.

The state-of-the-art approach to multi-projector rendering is to
use a high-end computer with multiple tightly-coupled graphics
pipelines. The Power Wall at the University of Minnesota and the
Infinite Wall at the University of Illinois at Chicago are examples,
each driven by an SGI Onyx2 with multiple InfiniteReality graphics
pipelines. The main drawback of this approach is that the rendering
system is very expensive, sometimes costing millions of dollars.

In the Scalable Display Wall Project at Princeton University, we
take a different approach. Rather than relying upon a tightly inte-
grated graphics subsystem, we combine multiple commodity graph-
ics accelerator cards in PCs connected by a network to construct a
parallel rendering system capable of driving a multi-projector dis-
play with scalable rendering performance and resolution. The main
theme of this approach is that inexpensive and high-performance
systems can be built using a multiplicity of commodity parts. The
performance of PCs and their graphics accelerators have been im-
proving at an astounding rate over the last few years, and their price-
to-performance ratios far exceed those of traditional high-end ren-
dering systems. Some inexpensive PC graphics accelerators can
already deliver performance close to an SGI InfiniteReality while
costing an order-of-magnitude less. Our goal is to leverage the ag-
gregate performance of multiple networked PCs to construct a flex-
ible and high resolution parallel rendering system comparable in
performance to highly specialized display systems at a fraction of
the cost.

The architecture of our prototype system is shown in Figure 1.
One client PC and P server PCs with fast graphics accelerator cards
are connected by a system area network. The frame buffer of each
server drives one projector whose image is combined with the oth-
ers in a tiled grid pattern to form a seamless picture on a large-scale
rear projection screen.

Figure 1: Scalable Display Wall Architecture.

107

As compared to traditional parallel rendering systems, our ar-
chitecture has several unique characteristics that present potential
advantages and new research challenges. First, we use a system
area network for communication among processors, which provides
modularity and flexibility. Processors may be added and removed
from the system easily, the system may be comprised of heteroge-
neous computers, and specific rendering processors can be accessed
directly via standard protocols by remote computers attached to
the network. However, system area networks usually have a frac-
tion of the performance of internal communication channels. The
challenge of cluster computing is to develop low-overhead commu-
nication mechanisms and to choose a coarse-grained partitioning
schemes that scale within the bandwidth and latency limitations of
the network.

Second, we use commodity hardware components and access
them only via standard APIs. The advantage is that the system
is less expensive, more flexible, and tracks technology better than
systems with custom hardware and software, since we can replace
components frequently as faster versions become available. The
disadvantage is that our design space is constrained. We can only
take advantage of features available on commodity graphics accel-
erators and exposed through standard APIs (e.g., Windows NT and
OpenGL or D3D), and thus direct data access and targeted perfor-
mance tuning is usually impossible. As an example, geometry pro-
cessing and rasterization are usually tightly coupled within a graph-
ics accelerator, and standard APIs, such as OpenGL, give no high-
performance access to intermediate rendering results. As a result,
it is impractical for us employ a sort-middle rendering approach in
which graphics primitives are repartitioned after hardware transfor-
mations and before rasterization. The challenge is to develop effec-
tive parallel rendering algorithms that send 3D graphics primitives
to the commodity graphics cards and read pixels from the frame
buffer only via standard APIs.

Finally, the display is composed of multiple images correspond-
ing to projectors attached to frame buffers of different server PCs.
This characteristic provides a natural image-parallel decomposition
of the rendering computation. Each server PC drives only a sin-
gle graphics accelerator, putting less performance and bandwidth
pressure on each CPU and memory systems than traditional multi-
projector systems. On the other hand, pixels rendered on one com-
puter, but projected onto the screen by another, must be sent over
a network and loaded into the appropriate frame buffer for display
each frame. The challenge is to find coarse-grained screen space
partitions that balance the load among all the graphics accelerators,
while minimizing the overhead of redistributing the resulting pixels
among the frame buffers.

In this paper, we investigate research issues in using a cluster
of PCs to construct a high-performance rendering system driving a
multi-projector display. Our prototype system is based on a sort-
first architecture in which the entire screen is partitioned into a set
of “tiles” to be rendered on different PCs. Within this framework,
the main research challenges are to find a good partition of screen-
space into tiles, to assign the tiles to PCs so that the load is balanced,
and to schedule rendering of the tiles to achieve the minimum frame
times. We have implemented several algorithms to address these
challenges and incorporated them into a working prototype. We
report the results of initial experiments aimed at investigating the
feasibility of constructing a sort-first rendering system using a net-
work of PCs and evaluating algorithmic trade-offs and performance
bottlenecks within such a system.

2 Background and Related Work

There are a number of academic groups and commercial compa-
nies working on multi-projector display systems based on high-end
workstations. Example systems include SGI’s RealityCenter, HP’s

Visualize Center, the Power Wall at the University of Minnesota,
the Infinite Wall, and the Cave [9] at the University of Illinois at
Chicago, the Office of the Future at UNC [29, 301, the Information
Mural at Stanford, and our Scalable Display Wall at Princeton. Re-
seach on these systems has addressed many important challenges,
including automatic projector calibration seamless projection, un-
encumbered user interaction, and new content creation. Our re-
search focus is on constructing a high-performance parallel render-
ing system with a network of PCs.

Parallel rendering systems are often classified according to the
stage in which primitive partitioning is done - sort-first, sort-
middle, or sort-last [7, 231. Most are based on a sort-middle ar-
chitecture, in which processing of graphics primitives is partitioned
equally among geometry processors, while processing of pixels is
partitioned among rasterization processors according to overlaps
with screen-space tiles. This approach is best suited for tightly-
coupled systems that use a fast, global interconnection to send prim-
itives between geometry and rasterization processors based on over-
laps with simple and static tilings, such as a regular, rectangular
grid. For instance, in SGI’s Infinite Reality Engine [24], a Vertex
Bus is used to broadcast screen space vertex information to each
fragment generator driving 80 image engines allocated to vertical
strips of pixels. In UNC’s PixelPlanes 5, a global work queue is
used to distribute primitives sorted into tiles to rasterization pro-
cessors [12]. In addition to the constraints of commodity graph-
ics accelerators discussed earlier, the communication demands of
sort-middle are too large for a system such as ours in which geom-
etry and rasterization processors are connected only by a network.
Moreover, they follow the superlinear growth of the overlap factor
(the number of tiles overlapped by each graphics primitive) as more
rasterization tiles are added to support higher resolutions.

Recently, sort-last systems have been built that render multiple
images, each containing a portion of the graphics primitives, and
then composite these images with depth into a single image for dis-
play [22, 11, 32, 371. This approach avoids global connectivity
of geometry and rasterization processors. However, it provides no
strict primitive ordering semantics, and it incurs latency as subim-
ages must be composited before display. Moreover, it requires an
image composition network with very high bandwidth and process-
ing capabilities to support transmission and composition of depth
images. These bandwidths exceed the capabilities of commodity
networks for high-resolution, multi-projector displays.

In a sort-first system [23], screen-space is partitioned into non-
overlapping 2D tiles, each of which is rendered independently by a
tightly-coupled pair of geometry and rasterization processors, and
the subimages for all 2D tiles are composited (without depth com-
parisons) to form the final image. The main advantage of sort-first
is that its communication requirements are relatively small, and
they scale well with increasing numbers of processors. Unlike sort-
middle, sort-first must send primitives between processors only if
they migrate between tiles [26]. The disadvantages are that geom-
etry processing must be performed redundantly for all tiles over-
lapped by each 3D primitive, and extra processing (3D-to-2D trans-
formations) must be performed to compute overlaps between 3D
graphics primitives and 2D tiles before rendering each frame. As a
result, sort-first is best suited for use with retained-mode graphics
systems in which overlap decisions can be made for hierarchical
groups of spatially co-located primitives.

This paper builds upon a long history of prior work on screen-
space partitioning methods for parallel rendering [6, 391. So far,
partitions have been based on scan lines [151, horizontal strips
[19, 38, 51, vertical strips [38], and rectangular areas [19, 35, 33,
40, 8,4]. At the highest level, partitioning approaches can be clas-
sified based on whether the decomposition of screen-space into tiles
is static [19, 27, 10, 24, 81 or whether the tile boundaries are deter-
mined dynamically according to the distribution of graphics prim-

108

itives on the screen [38, 33, 35, 251. Dynamic decomposition ap-
proaches can be divided into three types: top-down, bottom-up, and
optimization. Top-down approaches start from the screen-space as a
whole and divide it recursively into tiles based on estimated work-
loads [38, 251. Bottom-up approaches start from a large number
of predetermined tiles and combine them into larger tiles that are
then assigned to processors. For example, a quadtree representation
of screen-space may be used, and the leaves merged to construct
tiles based on estimated loads. Optimization approaches begin with
some initial decomposition and assignment (e.g. a static one or the
one from the previous frame) and adjust it to balance the workload
by cutting out and reassigning smaller tiles from existing partitions
to meet some load balancing criterion [40].

If there are more tiles than processors, tiles can be assigned to
processors either statically or dynamically. Although larger num-
bers of tiles usually lead to more balanced schedules, each addi-
tional tile adds overheads due to extra primitive-tile overlaps and
loss of spatial coherence across tile boundaries [8]. Several studies
have investigated the impact of primitive overlaps in tiled rendering
systems. Molnar proposed an equation for modeling the overlap
factor for 2D bounding boxes on 2D rectangular tiles [21]. His
analytical model has been corroborated by experimental evidence
[8, 231, and it has been used as the basis for subsequent studies
[4, 81. Cox and Bhandari investigated the relationships between
tile (bucket) sizes and overlap factors incurred in a bucket render-
ing system using static, grid-aligned rectangular tiles [8]. Although
they consider alternative tile arrangements, they do not examine the
extent to which they may reduce overlap.

Relatively little work has been done on interactive polygon ren-
dering using a cluster of networked PCs [18, 341. The primary
problem has been that the latency and bandwidths of typical net-
works has not been adequate for fine-grained parallel rendering al-
gorithms. Accordingly, prior distributed rendering systems have
mostly focused on inter-frame parallelism [181, rendering separate
frames of an image sequence on separate computers in parallel,
rather than on intra-frame parallelism, which is required to achieve
scalable speedups in a real-time system utilizing many processors.
Networks of workstations have been used successfully for parallel
graphics algorithms with coarse granularity, such as volume ren-
dering [20, 171, radiosity [31, 141, and batch rendering of image
sequences [18, 281. We are not aware of any prior system that has
achieved scalable intra-frame polygon rendering speedups via dy-
namic screen-space partitions using a cluster of PCs.

3 Overview of Approach

In multi-projector systems, the most common approach to paral-
lel rendering is to dedicate one graphics processor to each projec-
tor and sort graphics primitives among the processors according to
their overlaps with projection regions. Unfortunately, this simple
strategy achieves poor performance if graphics primitives are not
uniformly distributed over all processors, such as in the case when
an object covers only one or two projectors on the screen, or when
there are more processors than projectors. The imbalance often
causes the majority of system resources to go unused, and it gener-
ally becomes worse as more projectors and processors are added to
the system.

Our approach is to use a sort-first architecture in which the
rendering computation is partitioned into coarse-grained tasks re-
quiring relatively little inter-process communication using “virtual
tiles,” non-overlapping pixel regions of the screen not necessarily
corresponding one-to-one with projection regions (“physical tiles”).
Rendering all the pixels of a single virtual tile is the atomic task in
our parallel rendering system, and thus rendering a virtual tile re-
quires processing all graphics primitives potentially overlapping it.
In principle, we allow virtual tiles (or just “tiles”) to be any size or

shape, including non-rectilinear, concave, or even disjoint regions,
as long as each pixel on the screen maps to exactly one tile. Since
tiles do not overlap, pixels of images rendered independently for
separate tiles can be combined without depth comparisons to con-
struct images for projection on the wall. Pixels of a tile rendered on
a “remote” server, but projected onto the display by another (the
pixels’ “local” server), are sent over a system area network and
loaded into the local frame buffer.

The sort-first approach provides a coarse-grained, high-level
decomposition of the rendering computation [25]. Unlike sort-
middle systems, which must either broadcast or independently sort
many low-level rasterization primitives among the screen-space
tiles during every frame, our sort-first system is able to partition
the scene based on high-level 3D primitives, possibly taking ad-
vantage of frame-to-frame coherence, precomputed work load dis-
tribution statistics, sophisticated rendering time prediction mod-
els, scene graph hierarchies, and/or other application-specific data
structures. Consequently, it is possible to predict rendering times
effectively and to consider irregular tile arrangements and dynamic
server assignments, potentially achieving lower overlap factors and
better load balances than using the rectangular grid-aligned tilings
commonly employed in sort-middle systems.

In order to reduce the communication requirements among pro-
cessors, our system replicates the 3D scene on every PC. Unlike
sort-middle approaches where graphics primitives are sent to ras-
terization processors during sorting, this design requires no trans-
mission of graphics primitives and thus requires little inter-process
communication. In contrast to sort-last systems or SGI’s Monster-
Mode where all rendered pixels are sent to the frame buffer, this ap-
proach transfers only those pixels rendered for remote processors,
since the final image remains distributed across many projectors or
PCs. The image appears only via optical blending as the projec-
tors composite the contents of all the frame buffers into a single,
seamless image. Although the re-distribution of pixels rendered on
remote nodes require communication, with clever screen-space par-
titioning algorithms, these cases can be kept well within the band-
width limits of system area networks.

4 System Organization

We have built a prototype sort-first parallel rendering system on
the scalable display wall system constructed at Princeton. The cur-
rent implementation uses eight Proxima 9200 LCD polysilicon pro-
jectors arranged in a 4 by 2 fashion to project a seamless image
on an 18’ by 8.5’ rear projection screen. The pixel resolution of
each projector is 1,024 by 768 so the display wall system delivers
4,096 by 1,536 (or 6 million) pixels per frame. The system uses
a network of eight 450Mhz Xeon Pentium II PCs with Integraph
3410T 3-D graphics accelerators to drive these projectors. The
parallel rendering system uses the eight PCs as rendering servers
and another 300Mhz Pentium II PC without a graphics accelerator
as the client machine to do sort-first processing: Each server cur-
rently can render approximately 300K independent quads/second
and fill approximately 60M textured pixels/second. .A11 nine PCs
are connected by a Myrinet system area network (see Figure 1) us-
ing the VMMC-2 communication firmware and software developed
by Princeton’s SHRIMP project [3]. The communication mecha-
nism can achieve around 13 PS one-way end-to-end latency and 100
MB/second bandwidth simultaneously between each pair of nodes.

Execution of the system proceeds as shown in Figure 2. At the
start, the client and all the servers read the same 3D scene graph
from a file on disk and store it entirely in memory. Then, during
each frame of an interactive visualization session, the client ex-
ecutes the following steps as the user moves a simulated camera
through the 3D scene. It first uses occlusion culling and detail eli-
sion algorithms to compute a potentially visible set (PVS) of scene

109

graph nodes to be drawn in the current frame [131. It then decom-
poses screen-space into non-overlapping tiles, sorts the nodes of
the PVS according to their tile overlaps, and assigns each tile to
a server. Next, it sends a sequence of render tile messages to the
servers, each containing: 1) the simulated camera parameters, 2)
the 2D extent of the tile, 3) a list of IDS representing the PVS nodes
potentially overlapping the tile, and 4) an optional list of pixel re-
distribution commands (if parts of the tile do not reside within the
region of the screen covered by the projector attached to the server).

Client ne -a01 Server A

Server B

Figure 2: Flow chart of client-server execution.

When a server receives a render tile message, it sets the OpenGL
camera and viewport regions to match the information sent in the
message, and it renders the nodes of the PVS indicated by the list
of IDS in the message using standard OpenGL commands to up-
date the “back” buffer of a double buffered video memory. After
all primitives overlapping the tile have been rendered, the server
may read the resulting pixels from the frame buffer back into mem-
ory (using glReadPixels) and send them in a pixel redistribution
message to every server whose projection region overlaps the tile.
When a server receives a pixel redistribution message, it loads the
rendered pixels into the appropriate location of its frame buffer (us-
ing glDrawPixels).

Finally, at the end of each frame, the client exchanges synchro-
nized “end of frame” messages with each server so that all server
PCs swap buffers within a few tens of microseconds of each other.

5 Load Balancing Algorithms

The main research challenge in implementing our prototype system
is to develop algorithms that decompose screen-space into tiles and
assign them to PCs so as to achieve the fastest frame rates possible.
An effective partition must balance multiple conflicting goals:

l Minimize Overheads: The partition should minimize over-
heads due to pixel redistribution (when a tile is rendered on a
remote server), redundant rendering (when a group of primi-
tives is geometry bound and overlaps more than one tile), and
basic “per bucket” processing. These factors favor construc-
tion of large tiles assigned to “local” servers and small tiles
assigned to remote servers.

l Balance Assignments: The tiles should be constructed and
assigned to servers so that the load is balanced. In our case,
the tiles cannot be too few, too large, or too “chunky,” or else
balanced assignments become difficult. These factors favor
construction of many small tiles of varying sizes or construc-
tion of exactly P tiles with equal work loads.

l Partition Quickly: The partition must be simple enough that
it can be computed in real-time for each frame, and the system
must be able to sort all 3D scene graph nodes among the tiles
during each frame time.

Of course, finding an optimal partition to meet all these goals is
intractable, and thus we focus on developing good heuristic meth-
ods. To simplify our investigation, we consider only geometry-
bound models stored in a scene graph data structure. In this con-
text, we have developed three screen-space partitioning algorithms,
two of which are based on balanced assignment of pixels grouped
in grid buckets (GRID and UNION), and one which is based on a
combination of recursive splitting and greedy optimization.

5.1 Grid Bucket Assignment Algorithm

Our first partitioning algorithm, GRID, focuses on balanced assign-
ment of grid-aligned tiles to server PCs. In this algorithm, the basic
unit of work is rendering all the primitives overlapping a single grid
tile (or “bucket”). Every tile is rendered independently, so the al-
gorithm can assign each one to any server in order to balance the
load. This approach is similar in spirit to work-queue algorithms
(as in [121). The only differences are that assignments are made a
priori based on predicted rendering times, and pixel redistribution
overheads are incurred if a bucket is assigned to a remote server.

Our assignment strategy is motivated by “first-fit decreasing” al-
gorithms. At the start of every frame, the client constructs a set of
tiles corresponding to rectangular regions of a regular grid. It then
estimates the rendering cost for each scene graph node using primi-
tive distribution statistics stored in the scene graph, and it computes
the 2D axis-aligned bounding box containing the projection of ev-
ery 3D scene graph leaf node on the screen. It sorts the scene graph
nodes among the tiles according to their 2D bounding box overlaps,
forming an estimate of the cumulative time required to render each
tile. Initially, every tile is assigned to its “local” server (i.e., the one
whose projection region contains it), and an estimated work load
(Lj) is computed for each server Sj. Next, for every tile Ti initially
assigned to Sj, the client determines the local benefit (Bi,j) and the
remote cost (Ci,k) of rendering the tile on another server, Sk:

Bi-j = RenderTimei*j - SendTimei,j - WriteTimei,j

Ci,k = RenderTimei,k + RcvTimeivk + ReadTimei,k

where SendTimei,? and RcvTimei,j represent networking over-
heads, and ReadTzmei,k and W&eTi?nei,r, represent pixel re-
distribution overheads.

The client proceeds by iteratively finding the most loaded server,
S,,,t, and it tries to reduce estimated work load of Slnost by send-
ing one tile to the least loaded server, SI,,,~. If considers tiles
of S,,,t in descending order of estimated benefit and assigns to
Sleast the first one that reduces the maximum of the two servers’
estimated work loads (i.e., if Bi,most+Ci,teast < Lmost-Lleast).
The algorithm terminates when the most loaded server has no re-
maining tiles with positive benefit that can be assigned remotely in
this way.

After all tiles have been assigned, the client generates a render
tile message for every tile and sends it to the server to which the tile
has been assigned. The sequence of messages is ordered such that
the ones representing tiles assigned to remote servers are sent first.
In this way, tiles can be rendered by remote servers without concern
for writing over pixels already rendered for its local tiles, and most
pixel re-distribution messages can be generated early in the frame
cycle in order to avoid potential temporal imbalances.

110

5.2 Grid Bucket Union Algorithm

Our second algorithm, UNION, is aimed at reducing the impact of
high overlaps possible with small buckets in geometry-bound situa-
tions, while avoiding inefficiencies due to imbalanced assignments
and large pixel redistributions. The idea is to construct tiles dynam-
ically based on server assignments. Specifically, all grid buckets
mapping to the same projector and assigned to the same server are
unioned into a single tile. The overlap factor reductions of this
bucket merging strategy are potentially quite significant, especially
for the many buckets assigned to their local servers. Rather than
rendering each primitive separately for each of these buckets, they
can be rendered only once. Buckets rendered on remote servers
are merged into tiles in a similar fashion. Intuitively, each server is
able to cutout small, contiguous bucket-aligned regions of its frame
buffer and off-load rendering of them to other servers. So, over-
heads due to overlaps are incurred only once per sender-receiver
pair.

The idea behind this algorithm is related to the dynamic schedul-
ing method proposed by Whitman [40]. He started with a set of ini-
tial tiles and “stole” part of another processor’s work dynamically
when no initial tiles remain. The stealing was achieved by splitting
the remaining tile region on the maximally loaded processor into
two vertical strips having the same number of scanlines. However,
the differences between our approaches are significant, as our algo-
rithm executes in a sort-first system with a priori assignments made
in a client, and we use commodity rasterizers which do not allow
control over the order in which scan lines get updated. In general,
it is expensive for our sort-first system to reassign part of a tile af-
ter one server has already started rendering it, as color and depth
buffers would have to be transferred.

Assignment in our UNION algorithm proceeds in the same fash-
ion as the GRID algorithm described in the previous section. The
primary difference is the manner in which rendering is performed,
and consequently the way in which pixels are redistributed and ben-
efits and costs are computed. When a server renders a tile, it draws
all primitives overlapping any of its buckets, marking them as they
are drawn, and never redraws a primitive marked for the tile. In this
manner, pixels outside the buckets representing the tile may be up-
dated, but without harm if the system is geometry-bound. If a tile is
assigned to a remote server, the pixels inside the tile’s buckets are
sent to the appropriate local server in a series of pixel redistribution
commands.

These differences significantly change the benefits and costs of
rendering a bucket remotely as compared to the GRID algorithm.
Most importantly, previous assignments of buckets to servers im-
pact the benefits and costs of current ones (i.e., RenderTimei,j
may not equal RenderTimei,& For instance, in the situation
shown in Figure 3, the cost of including bucket ‘A’ in a tile for
server ‘2’ is zero, since all primitives overlapping ‘A’ are already
slated to be rendered on server ‘2,’ while the cost of assigning the
same bucket to server ‘3’ is non-zero. Similarly, the immediate ben-
efit of assigning bucket ‘B’ to any remote server is also zero, since
all primitives overlapping it also overlap other buckets assigned to
the local tile. Generally, only buckets with primitives wholly inside
them have positive benefit unless the assignment finds two neighbor
buckets that cumulatively enclose some primitives.

5.3 KD-Split Algorithm

The last algorithm, KD-SPLIT, is motivated by the observation that
constructing fewer tiles generally leads to lower overheads due to
overlaps and bucket processing. A plausible strategy is to create
exactly P tiles with equal rendering loads so that exactly one tile
can be assigned to each PC. In our algorithm, we start with the
entire screen in a single tile and recursively split it with P - 1 axial
lines to form a KD tree with P regions [11.

Figure 3: Prior assignments affect costs and benefits.

This recursive partitioning strategy is similar to ones used pre-
viously for dynamic tile construction. For instance, Whelan de-
veloped a median-cut method in which a tile initially covering the
entire screen was partitioned recursively by a splitting line per-
pendicular to its longest axes so that the centroids of its overlap-
ping graphics primitives were partitioned most equally [38]. In
later work, Mueller developed a mesh-based median-cut method in
which primitives were first tallied up according to how their bound-
ing boxes overlapped a fine mesh, and an estimated cost was calcu-
lated for each overlapped mesh cell. Then, using this data as a hint,
screen space tiles were recursively split along their longest dimen-
sions until the number of regions equaled the number of processors
WI.

One difference between our split algorithm and previous ones is
that it makes more direct use of computed primitive distribution in-
formation to choose splitting lines that avoid overlaps and balance
rendering load among tiles. Specifically, at the start of every frame,
the client computes a screen-space, axis-aligned bounding box con-
taining the 2D projection of every 3D scene graph leaf node on the
screen. It then constructs a single tile covering the entire screen and
builds two lists with pointers to 2D bounding box vertices sorted
according their X and Y coordinates. For each subdivision of the X
dimension (subdividing Y is the same), we use a sweep line algo-
rithm to choose a location for the splitting line (see Figure 4). The
sweep line starts at the left side of the tile and moves right iteratively
considering vertex locations stored in the sorted list. As it moves
incrementally, estimated costs of rendering all primitives overlap-
ping the left and right halfspaces (Cleft and Cright) are updated.
Initially, Cleft is zero, and C,.ight is equal to the cost of rendering
all primitive overlapping the tile. As the sweep line is moved to the
right, Ct..+ grows monotonically (whenever the left side of a box
is reached), and C,.ighr shrinks monotonically (whenever the right
side of a box is passed), and they eventually cross. At this point, we
construct a splitting line that subdivides the tile. This procedure is
executed recursively P - 1 times to construct exactly P tiles.

Figure 4: KD-Split Optimization.

Another difference in our algorithm is that the KD splits are ad-
justed with an optimization algorithm after the initial set of tiles
has been constructed. We note that the estimated rendering times
of tiles in the left and right halfspaces of any line change mono-
tonically as the line is moved in one direction, and the curve rep-
resenting the maximum of Cr,ft and Cright has exactly one min-

111

imum (see Figure 4). Based on these observations, we iteratively
move the splitting line stored in the root of the KD tree in the di-
rection that best balances the estimated rendering costs of its left
and right subtrees. Every time the root split is adjusted, the sub-
trees rooted at its children are adjusted recursively in the same way.
This optimization procedure terminates when the root can make no
further moves to reduce the maximum estimated rendering time of
any tile in its left and right subtrees. The result is a KD tree with
the same topology as the initial one, but with splits resulting in the
global minimum of the maximum rendering time of any server. The
resulting tiles are assigned to processors so as to minimize pixel
redistribution times.

Unfortunately, there are hardware constraints that complicate ap-
plication of the KD split algorithm in our prototype system. First,
the servers can render OpenGL commands only to windows that fit
on one projector screen. Thus, if the KD split algorithm creates
a tile larger than one screen, it must be split into as many as four
tiles whose longest dimensions fit within one projector. Second,
our current optimization algorithm does not incorporate penalties
for higher pixel redistribution costs while constructing tiles. Fix-
ing these problems requires incorporating tile assignments into the
optimization algorithm. Also, adding pixel write times to the cost
for each tile causes the optimization objective function to become
non-monotonic. We are currently investigating heuristic optimiza-
tion methods that take into account pixel redistribution costs within
this framework.

6 Experimental Results

The three algorithms described in the previous sections have been
implemented in C++ on PCs running Windows NT 4.0 and incor-
porated into our prototype system. In this section, we report data
collected during a series of tests run on the system. The goals of
these experiments are to investigate the algorithmic trade-offs of
different partitioning strategies, to identify potential performance
issues in the prototype system, and to assess the feasibility of con-
structing a sort-first parallel rendering system with a cluster of PCs.

In each test, we logged statistics while rendering a sequence of
frames in an interactive visualization program while viewing four
test models (shown in the color plate section of the proceedings).
Each model was represented as a scene graph in which multiple
polygons were grouped at the leaf nodes and treated as atomic
entities by the partitioning algorithms (the numbers of leaf nodes
and polygons are listed under the image of each test model in the
color plate). In all cases, rendering was “geometry-bound.” For
each model, the camera traveled along a preset path which started
“zoomed in” such that the model filled the full screen at the begin-
ning of the path, and it gradually “zoomed out” until the model was
small enough to fit on a single projector (one-eighth of the screen)
at the end of the path.

Table 1 contains comparisons of timing statistics measured dur-
ing tests with different partitioning algorithms and test models (av-
eraged over all frames of the camera path in each test). The first
two columns indicate the name of the test model and the grid gran-
ularity (expressed as number of buckets across each projector in
the X and Y dimensions), respectively. The next column (labeled
‘Client Time’) shows the total time spent in the client for construct-
ing and assigning tiles. The next column lists the ‘Render Time,’
required to render each model with a hypothetical system executing
with no overheads exactly eight times faster than a single PC. The
next column (labeled ‘Ovlp Time’) shows the overhead due to re-
dundant rendering of scene graph nodes overlapping multiple tiles
(Avg Render Time - Render Time). The column labeled ‘Imbal-
ance Time’ shows the time servers spent waiting for the last server
to finish rendering each frame (Max Rendering Time - Avg Render-
ing Time). The next column (‘Pixel Time’) shows the overhead due

STATIC ALGORITHM
Test Grid Client Render Ovlp Imbal Pixel Frame

Model Buckets Time Time Time Time Time Time
HORSE IX1 3 21 2 84 0 114

MOL 1x1 5 31 2 85 0 134
ASTRO IX1 9 88 9 355 0 452
BLDG 1x1 13 181 -8 426 0 670

l- GRID ALGORITHM

16x12
32x24

Client
Time

4
4
5
12
76
5
6
8
17

103
9
11
13
21
103
13
14
16
27
122

-II--==
J-

Time
21
21
21
21
21
31
31
31
31
31
88
88
88
88
88
181
181
181
181
181

Ovlp
Time
5

9
20
53
149
7
14
33
83

230
18

37
83

209
514

1
15
52
138
368

-ii&r
Ylme

56
31
IO
6
7

50
31
8
5
9

291
105
64
16
25
169
83
37
31
51

Pixel
lime
6

6
6
8
18
8
7
6
9
19

5
5
4
7
16

11
9
7
8
IS

Frame
Time
120
83
68
106
249
122
95
88
146
331
421
243
246
335
750

iti
286
375
654

UNION ALGORITHM
Test Grid Client Render Ovlp Imbal Pixel Frame

Model BllCketS Time Time Time Time Time Time
HORSE 2x2 9 21 4 59 4 118

4x3 11 21 8 34 5 89
8x6 26 21 14 12 4 64

16x12 215 21 18 22 3 234
32x24 3169 21 14 51 1 3220

MOL 2x2 12 31 7 51 7 128

ASTRO

BLDG

4x3 14
8x6 30

16x12 223
32x24 3191

2x2 17
4x3 19
8x6 34

16x12 234
32x24 3245

2x2 24
4x3 27
8x6 45

16x12 251
32x24

31
31
31
31
88
88
88
88
88
181
181
181
181

11 33 6
19 12 4
27 16 3
21 52 2
17 301 4
32 122 3
49 75 2
82 18 3
91

0
8

24
45

73
173

80
28
21

2
10

8
6
5

95
74
246

3246
430
255
221
234

3245
405
299
247
331

1

KD-SPLIT ALGORITHM
Test Grid Client Render Ovlp Imbal Pixel Frame

Model Buckets Time Time Time Time Time Time
HORSE - 19 21 6 3 15 62

MOL - 31 31 11 2 15 79
ASTRO - 20 88 36 14 6 152
BLDG - 95 181 9 16 16 236

Table 1: Timing statistics (in milliseconds).

112

to pixel redistribution, including reading pixels, writing them, and
transmitting them. Finally, the rightmost column, labeled ‘Frame
Time,’ lists the overall time required to complete each frame aver-
aged over all cameras in each test.

More detailed statistics are provided in Figures 5-10. In particu-
lar, Figures 5, 7, and 9 show times collected for each frame during
tests with the HORSE model (plots for the other models are simi-
lar). In these plots, the horizontal axis represents different camera
locations along the test path, while the vertical axis shows averages
of times measured in the eight servers. The meanings of the colored
bands match columns 4-7 of Table 1. Specifically, the lowest band
(medium gray) shows the ‘Render Time’; the second band (cross-
hatch) shows the average ‘Ovlp Time’ in each frame; the third band
(light gray) shows the ‘Imbalance Time’ in each frame; and, the top
band (black) shows the time spent on other overheads, primarily
‘Pixel Time.’ The overall server processing times are indicated by
the curve across the top of all bands in each plot.

6.1 Static Projector-Based Partition Results

In our first experiment, we measured the performance of the sys-
tem with a simple static screen-space partition in which a PC was
dedicated one-to-one for each projector. This approach, which we
call STATIC, forms the basis for most commercial multi-projector
display systems. It also sets a base-line for comparison of perfor-
mance with our bucket-based algorithms, as the STATIC algorithm
is equivalent to the GRID 1x1 algorithm, in which one grid bucket
is allocated per projector.

Scanning the imbalance time statistics for all models in the top-
most section of Table 1 (labeled STATIC) and for the horse model
in the plot of Figure 5, it is easy to see the how imbalanced the
rendering system is with a projector-aligned static partitioning ap-
proach. In this test, the camera starts at a viewpoint for which the
3D model fills the entire screen (the early frames of the plot in Fig-
ure 5), and it slowly “zooms out” until the model covers only one
projector at the end of the sequence. As the 3D model becomes
smaller and spans fewer projectors, the ‘Imbalance Time’ increases
as more of the rendering load is handled by fewer servers. This ef-
fect is indicated by the large light gray region in Figure 5. Finally,
at the end of the path, when the model resides entirely on one pro-
jector, almost exactly 7/8ths of the system’s resources are idle and
the ‘Frame Time’ exceeds 160ms.

Figure 5: Frame times (in milliseconds) measured during tests with
the HORSE model using STATIC projector-aligned tiles.

6.2 Grid Bucket Assignment Results

In our second experiment, we investigated the performance of the
system with partitions based on the GRID bucket assignment al-
gorithm described in Section 5.1. The second section in Table 1
contains results of tests with different 3D models and bucket sizes,

while detailed timing plots captured during tests with the HORSE
model appear for different bucket sizes in Figures 6 and 7(a-c).

Figure 6: Plots of the frame times (in milliseconds) achieved during
tests with the HORSE model using different GRID bucket sizes.

The results of this experiment indicate that it is very difficult to
choose an appropriate bucket size in a sort-first rendering system,
even if buckets are assigned to processors dynamically. On the one
hand, if the bucket size is sufficiently small (e.g., 16x12 buckets
on every projector), overlap factors are very large as indicated by
high server “Overlap Times.” In this case, the overheads of redun-
dant rendering dominate the frame time, as indicated by the large
cross-hatch area in Figure 7(c). On the other hand, if the buckets
are made large enough to avoid undue overlaps (e.g., 4x3), then it
becomes difficult to assign the few available rendering tasks evenly
among the servers, leading to load imbalances indicated by high
server ‘Imbalance Times.’ In many cases, the cost of rendering the
most loaded bucket alone on one server limits the frame rate, a sit-
uation causing the large light gray areas in the rightmost frames of
the plots in Figures 7(a) and 7(b).

This result regarding the effect of overlap factors on rendering
times is interesting when compared with recent results reported by
Chen et al. in their study of a sort-middle system [4]. Based on an-
alytical models and experimental evaluations, they concluded that
the processing overhead due to overlaps is generally less than the
raw overlap factor in a sort-middle system, since primitives much
smaller than the bucket size tend to overlap only one bucket, and
primitives much larger than the bucket size tend to be rasterization
bound. In contrast, we find that the effective overlap factor has
a very significant effect on our sort-first system. Since groups of
primitives are considered atomically for overlap computations, all
primitives in a group are processed if any primitive in the group
overlaps a tile, causing the effective overlap factors to be much
higher than in sort-middle. In a sort-first system, it is possible
(common) for objects to be both large and geometry-bound, and
thus minimizing the overlap factor is an important goal.

6.3 Grid Bucket Union Results

In our third experiment, we investigated the performance of the grid
bucket union algorithm (UNION) described in Section 5.2. The
results appear in the third section of Table 1 and in Figures 8 and
7(d-f).

We find the differences between the GRID and UNION algo-
rithms to be very interesting for small and medium bucket sizes.
First, the compute time in the client can be a bottleneck if there are
too many candidate grid buckets on each server (e.g., 16x12). Yet,
the UNION algorithm significantly reduces measured overlaps as
compared to the GRID algorithm. The reduction is almost wholly
due to avoiding redundant rendering for multiple buckets assigned
to the same local server. This effect is especially noticeable in cases
where the 3D model appears very large on the screen and scene

113

Ca) GRID 4x3
180 180 180

I60 160 160

140 140 140

120 120 120

g 100 8 1M) g 100
F 80 F 80 I= 80

60 60 60

40 40 40

20 20 PO

0 0 0
1 41 61 1 21 41 61 81 1 21 41 61 81

Frmles FranwS Frames

(d) UNION 4x3 (e) UNION 8x6 (t) UNION 16x12

Figure 7: Timing statistics (in milliseconds) measured during tests with the HORSE model using different bucket sizes.

graph leaf nodes are very large compared to the bucket size. For in-
stance, compare the cross-hatch bands representing ‘Overlap Time’
in the early frames of the plots for GRID 16x12 and UNION 16x12
in Figure 7(c,f).

Unfortunately, the way in which the UNION algorithm avoids
overlaps leads to a new problem, indicated by the large ‘Imbalance
Times” (light gray area) in the early frames of the UNION 16x12
plot in Figure 7(f). The imbalance occurs because a server can only
avoid rendering a scene graph node if all the tiles it overlaps are
assigned remotely. Or, similarly, it is easier for the algorithm to
distribute the load in situations where most scene graph nodes gen-
erally lie wholly inside buckets. In the situation depicted on the left
side of Figure 7(f), the scene graph nodes appear large because the
camera is zoomed in, and the buckets are relatively small. Con-
sequently, few scene graph nodes are found that can be assigned
remotely with positive benefit, and the assignment algorithm has
trouble balancing the load. We are currently investigating algo-
rithms that grow large tiles from adjacent buckets based on expected
future benefits. More experimentation is required to understand the
trade-offs of this new approach.

Figure 8: Plots of the frame times (in milliseconds) achieved during
tests with the HORSE model using different UNION bucket sizes.

6.4 KD-Split Results

In our fourth experiment, we investigated the performance of the
KD split algorithm (KD-SPLIT) described in Section 5.3. The re-
sults appear in the bottom section of Table 1 and in Figure 9.

The KD split optimization algorithm clearly achieves very uni-
form rendering times, with low overlap factors, and with few server
imbalances (e.g., the light gray area is thin and flat in Figure 9).
Moreover, these features are robust over a wide-variety of 3D model
sizes (both the left and right sides of the rendering time curve are
flat), which differentiates the KD split algorithm from the other
ones which are negatively impacted for either large or small 3D
models by their choice of bucket size.

Figure 9: Frame times (in milliseconds) measured during tests with
the HORSE model using KD-SPLIT partitions.

On the other hand, the pixel redistribution times are larger for
the KD split algorithm than the others (indicated by the large the
black area in Figure 9). As mentioned in Section 5.3, our current
algorithm does not incorporate penalties due to construction of tiles
covering many projectors and/or causing large pixel redistribution
costs. Instead, it only focuses on balancing the rendering load. We
expect that it will be possible to augment the KD-SPLIT algorithm
in future work to construct slightly more than P tiles which can
be balanced and incur less overheads, or to incorporate pixel re-
distribution costs into the optimization. In any case, we expect the

114

KD-SPLIT algorithm to perform well in systems with less resolu-
tion and/or lower image composition overheads.

6.5 Comparison of Frame Times

Table 2 shows a comparison of the average frame times measured
in tests with each of the partitioning algorithms (with the best ob-
served bucket sizes). The rightmost column, labeled ‘Efficiency,’
provides the ratio of the average measured frame time in each test
as compared to an “ideal render time” defined as the time required
by a single PC divided by eight.

Test I Part II

I GRIDSx6 60
II UNION 8x6 62

ame Time I

90 I 146 II 0.34
14 91 0.42

Table 2: Frame time statistics (in milliseconds).

It is impossible to declare that any one of our three partition algo-
rithms is superior to the others. Examining the plot of overall frame
times in Figure 10, we see that the KD-SPLIT algorithm achieves
the fastest frame times in situations when the 3D model is zoomed
in (the right side of the plot). Yet, others, such as the UNION algo-
rithm, do better when the 3D model covers many pixels. Perhaps,
in future work, it will be possible to combine these two approaches
into a hybrid top-down and bottom-up approach in which KD tree
tiles are iteratively split and merged during an optimization proce-
dure.

Figure 10: Overall frame times measured with the MOL test model
during experiments with different partition algorithms.

Another interesting result is shown by comparison of our system
to a single, more expensive, high-end graphics workstation. To in-
vestigate this question, we executed our tests on an SGI Onyx2 with
4 195MHz processors and one InfiniteReality graphics pipeline
(the only modification to our test application was to draw the scene

graph locally in a 1024x560 window on its screen). Comparing
the frame time statistics measured during these tests (rows labeled
‘SGI IR2’ in Table 10) with ones discussed previously, we see that
our prototype display wall system compares favorably with a far
more expensive and more tightly-coupled commercial parallel ren-
dering system. The range of polygon rendering rates measured with
our system was 700K - 1.2M polygons per second, as compared to
600K - 900K with the SGI IR2 (display list mode, independent
tris and quads, RGB, smooth shaded, two infinite lights, z-buffer
[161). Moreover, the difference in screen resolution is a factor of
ten. We conclude that building a parallel rendering system com-
prising a network of commodity PCs is an attractive alternative and
warrants further attention.

7 Discussion

Our investigation of PC-based parallel rendering systems is very
preliminary at this point. In particular, we have made several sim-
plifying assumptions to aid implementation and analysis of our pro-
totype system.

First, our system is integrated into a retained-mode graphics
package and utilizes scene graph data structures to sort graphics
primitives and to predict rendering times. It is unclear whether these
tasks can be performed effectively in an immediate-mode graphics
system. In particular, transforming, projecting, and sorting indi-
vidual primitives into partitioning data structures in real-time is a
significant challenge.

Second, we have only developed algorithms and executed experi-
ments for situations in which rendering is geometry-bound. Clearly,
rasterization-bound scenes are important. In these situations, the ra-
tios of fill rate to pixel I/O rates will determine the minimum depth
complexity for which remote rendering is useful, and it seems best
to search for tiles that balance depth complexity rather than primi-
tive overlaps. Further work is required to develop such algorithms
and to quantify the impact of higher overlaps in sort-first on the
relative loads of geometry and rasterization processing.

Third, our implementation is based on the notion that we can
predict processing times for several operations (e.g., rendering a
group of primitives, reading a block of pixels, etc.). Our current
prediction methods are very simple, based on estimates of the la-
tency and throughput of each operation, and thus they are accurate
only in “controlled” situations (e.g., rendering time predictions are
usually within 10% when the system is purely geometry-bound).
However, it is not clear how practical it will be to extend these
simple prediction methods to more general cases containing var-
ied work loads. We note that accurate predictions are more likely
with sort-first than sort-middle because the system can utilize pre-
computed data structures, frame-to-frame coherence, and averag-
ing over groups of primitives. Nonetheless, we are investigating
dynamic scheduling algorithms that use a work queue approach to
assign tiles to remote servers dynamically as others are rendered.
A difficulty with this approach in our system is sequencing the tile
rendering and pixel redistribution operations so that a server must
not write over pixels to be projected locally in order to render a tile
for a remote frame buffer.

There are many extensions that can be made to our current sys-
tem. Some topics for future work include partitioning the scene
graph and client processing among the servers, investigating better
assignment and scheduling algorithms, developing bottom-up al-
gorithms, and experimenting with different classes of tile arrange-
ments (e.g., BSP, irregular mesh, etc.). We plan to investigate sev-
eral alternative system designs. For instance, object-based parti-
tions based on tiled sort-last seem interesting. In this case, the scene
graph is partitioned into objects which are rendered into separate
tiles, and overlapping tiles are composited with depth comparisons
to form the final image. This approach [35] avoids overheads due

115

to overlaps, as each primitive is rendered exactly once. But, it in-
curs extra pixel read, transmit, and write overheads. For instance,
with our current hardware, reading the z-buffer into memory takes
around 5 times longer than reading the color buffer, and these over-
heads make implementation of a high-performance sort-last system
almost impossible. Hardware and software enhancements that im-
prove pixel transfer performance would greatly increase the space
of practical parallel rendering system designs.

8 Conclusion

In this paper, we have investigated research issues in constructing a
low-cost parallel rendering system using a network of PCs to drive
a multi-projector display. Our initial study is a first step towards
understanding how to use the coarse-g&red, sort-first approach to
build a parallel rendering system for a PC cluster architecture.

We have developed and experimented with several sort-first algo-
rithms to balance the rendering load across a network of PCs. Our
findings are: 1) all of the proposed algorithms do better than no
load balancing, 2) the GRID algorithm works well in some cases,
but it is sensitive to bucket sizes. The impact of overlap factors
is important, which is different from a result recently reported for
sort-middle, 3) the UNION algorithm can avoid the impact of over-
lapping factors, at the expense of a more costly partition computa-
tion and poor imbalances when few scene graph nodes fit wholly
inside buckets, and 4) the KD-SPLIT algorithm leads to the least
overlaps in our tests, but it requires significant pixel redistribution
when the tiles are large and irregularly shaped.

With the last two load balancing algorithms, we have been able
to achieve modest efficiencies in our experiments (30-70%). The
result is a prototype system that is able to leverage the aggregate
performance of multiple PC graphics accelerators to deliver perfor-
mance comparable to high-end graphics machines, at a fraction of
the cost.

References

[II

121

[31

[41

151

PI

[71

181

[91

t1o1

[III

Bentley, J.L. Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Communications of the ACM, 18 (1975). 509-517.
Boden, Nanette, J., Danny Cohen, Robert E. Felderman, Alan E.
Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su,
Myrinet: A Gigabit-per-Second Local Area Network, IEEE MICRO.
15(l), February, 1995,29-36.
Chen. Yuaun. Aneelos BilasStefanos N. Damianakis. Czarek Dub-
nicki,’ and -Kai Li, fiTLB: A Mechanism for Translations on Network
Interface. ASPLOS8. Oct. 1998. 193-204.
Milton Chen, Gordon St&, Homan Igehy, Kekoa Proudfoot, and Pat
Hanrahan, Simple Models of the Impact of Overlap in Bucket Ren-
dering, I998 EurographicsASIGGRAPH Workshop on Graphics Hurd-
ware, Lisbon, Portugal, 1998, 105-l 12.
T.W. Crockett and T. Orloff, A MIMD Rendering Algorithm for
Distributed Memory Architectures, Proc. Parallel Rendering Sympo-
sium, ACM Press, New York, Oct. 1993, 35-42.
T.W. Crockett, Parallel Rendering, In Encyclopedia ($ Compuier Sci-
ence and Technology, Vol. 34, Supp. 19, A. Kent and J. G. Williams,
eds., Marcel Dekker, 1996, pp. 335-371. Also available as ICASE
Report No. 95-31 (NASA CR-195080), April 1995.
Michael Cox, Algorithms for Parallel Rendering, Ph.D. thesis, De-
partment of Computer Science, Princeton University, May, 1995.
Michael Cox, Architectural Implications of Hardware-Accelerated
Bucket Rendering on the PC, 1997 SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, Los Angeles, CA, 1997,25-34.
Cruz-Neira, C., D.J. Sandin and T.A. DeFanti, Surround-screen
Projection-based Virtual Reality: The Design and Implementation of
the CAVE, Computer Graphics (SIGGRAPH 93), 1993, 135-142.
D. Ellsworth, A New Algorithm for Interactive Graphics on Multi-
computers, IEEE Computer Graphics and Applications, Vol 14, No.
4, July 1994.33-40.
J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and L.
Westover, PixelFlow: The Realization, Proceedings of the I997 Sig-
grapWEurographics Workshop on Graphics Hardware, Los Angeles,
CA, Aug. 3-4, 1997. Pages 57-68.

1121

1131

t141

1151

1161
[171

1181

1191

r201

1211

1221

[231

1241

1251

1261

[271

1301

1311

[321

[331

[341

[351

[361

t371

[381

[391

r401

H. Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebss, and Laura Is-
rael, Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics Sys-
tem Using Processor-Enhanced Memories, Computer Gruphics (SIG-
GRAPH 89), 23, 3, July 1989, 79-88.
Funkhouser, Thomas A., and Carlo H. S&ptin. Adaptive Display Al-
gorithm for Interactive Frame Rates During Visualization of Complex
Virtual Environments. Computer Graphics (SIGGRAPH ‘93), 1993.
T. Funkhouser, Coarse-Grained Parallelism for Hierarchical Radios-
ity Using Group Iterative Methods, Computer Graphics (SIGGRAPH
96). August 1996.
Peter N. Glaskowsky, Advanced 3D chips show promise, Micropro-
cessor Report, 11, 8, June, 1997, 5-9.
Green, Simon, GLperfResults, www.specbench.org, 1999.
C. Grietsen and J. Petersen, Parallel Volume Rendering on a Network
of Workstations, IEEE Computer Graphics and Applications, 13, 6,
November 1993, 16-23.
Jeremy Hubbell, Network Rendering, Autodesk University Source-
book, Vol. 2, Miller Freeman, 1996,443- 453.
M. Kaplan and D.P. Gteenburg, Parallel Processing Techniques for
Hidden Surface Removal, Computer Graphics (SIGGRAPH 79). 13.
2, July, 1979, 300-307.
K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, Parallel Volume
Rendering Using Binary-Swap Compositing, IEEE Computer Graph-
ics und Applications, 14,4, July 1994,59-68.
S. Molnar, Image-Composition Architectures for Real-Time Image
Generation. Ph.D. thesis. UNC at Chaoel Hill. October. 1991.
S. Molnar, J. Eyles, andJ. Poulton. PixelFlow: High-Speed Render-
ing Using Image Composition, Computer Graphics (SIGGRAPH 92).
Juiy 1992,23i-240.
S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A Sorting Classification
of Parallel Rendering, IEEE Computer Graphics and Applications,
Vol 14, No. 4, July 1994,23-32.
J.S. Montrym, D.R. Baum, D.L. Dignam, and C.J. Migdal, Infinite-
Reality: A Real-Time Graphics System, Computer Graphics (SIG-
GRAPH 97), August 1997.293-303.
Carl Mueller, The Sort-First Rendering Architecture for High-
Performance Graphics, Computer Graphics, ACM SIGGRAPH Spe-
cial Issue on 1995 Symposium on Interactive 3-D Graphics, 1995.
Carl Mueller, Hierarchical Graphics Databases in Sort-First, Proceed-
ings of the IEEESymposium on Parallel Rendering, 1997.49-57
F. I. Parke, Simulation and Expected Performance Analysis of Mul-
tiple Processor Z-Buffer Systems, Computer Graphics (SIGGRAPH
80), 14,3, July 1980.48-56.
Pixar, PhotoRealistic RenderMan Toolkit, 1998.
Raskar, Ramesh, Greg Welch, Matt Cut&, Adam Lake, Lev Stesin,
and Henry Fuchs, The Office of the Future: A Unified Approach to
Image-Based Modeling and Spatially Immersive Displays, Computer
Graphics (SIGGRAPH 98), 1998.
Raskar, Ramesh, Matt Cutts, Greg Welch, and Wolfgang Sturzlinger,
Efficient Image Generation for Multiprojector and Multisurface Dis-
plays, Proc. 9th Eurographics Workshop on Rendering, June, 1998.
R.J. Reeker, D.W. George, and D.P. Greenberg, Acceleration Tech-
niques of Progressive Refinement Radiosity, Computer Graphics
(Proceedings of the 1990 Symposium on Interactive 3D Graphics),
24,2, March 1990, 59-66.
Regan, Matthew, and Ronald Post, Priority Rendering with a Virtual
Reality Address Recalculation Pipeline, Computer Graphics (SIG-
GRAPH ‘93), 27, 155-162.
D.R. Roble, A Load Balanced Parallel Scanline Z-Buffer Algorithm
for the iPSC Hvoercube. Proc. Pixim 88. Hermes. Paris. France. Oc-
tober, 1988, 1751192.
Bengt-Olaf Schneider, Parallel Rendering on PC Workstations, In-
ternational Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDTA98), Las Vegas, NV, 1998.
Silicon Graohics. Inc.. Monster Mode.
www.sgi.com/develope&marketing/forums/realmonster/, 1999.
S. Upstill, The Renderman Companion, Addison-Wesley, Reading,
MA;1989.
Wet, Bin, Douglas Clark, Ed Felten, Kai Li, and Gordon Stoll, Perfor-
mance Issues of a Distributed Frame Buffer on a Multicomouter, The
1998 EurographicsNGGRAPH Workshop on Graphics i?ardware,
Lisbon. Portueal. 1998.
D.S. Whelan, Animac: A Multiprocessor Architecture for Reul-time
Computer Animation, Ph.D. dissertation, California Institute of Tech-
nology, Pasadena, CA, 1985.
S. Whitman, Multiprocessor Methods for Computer Graphics Ren-
dering, A.K. Peters, Wellesley, MA, 1992.
S. Whitman, Dynamic Load Balancing for Parallel Polygon Render-
ing, IEEE Computer Graphics and Applications, Vol 14, No. 4, July,
1994.41-48.

116

ORSE: Tess&
(730 nodes, 48,688 polygons)

(b) MOL: Molecule with spheres aud cylinders.
(I, 1 I8 nodes, 89,900 polygons)

(c) ASTRO: Hydrogen density iso-surface. (d) BLDG: Architectural model with furniture.
(569 nodes, 164,922 p’lygons) (2,Y81 nodes, 265,032 ~~lygolls)

Color Plate: Test models used in exlwriments with difkrent load balancing algorithms.

Load Balancing for Multi-Projector Rendering Systems
Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, Jaswinder Pal Singh

Figure 6: Separable approximations of reff ectances for a single light
source: anisotropic brushed metal [32], HTSG copper [14], velvet
[6], vinyl [41], Ward’s anisotropic model [40], and varnished wood
[6]. The last two also use a texture mapped diffuse component.

Figure 7: Variable glossiness reflections simulated with superposi-
tion of filtered environment maps. Left: sharp reflection. Middle:
uniformly blurred reff &ion (Gaussian lobe). Right: blend between
blurry normal reff ections and sharp glancing angle reflection.

Texture Shaders
Michael D. McCool, Wolfgang Heidrich

144

