
Parallel Texture Caching 

Homan lgehy Matthew Eldridge Pat Hanrahan 

Computer Science and Electrical Engineering Departments 

Stanford University 

Abstract 
The creation of high-quality images requires new functionality 
and higher performance in real-time graphics architectures. In 
terms of functionality, texture mapping has become an integral 
component of graphics systems, and in terms of performance, 
parallel techniques are used at all stages of the graphics pipeline. 
In rasterization, texture caching has become prevalent for reduc- 
ing texture bandwidth requirements. However, parallel rasteriza- 
tion architectures divide work across multiple functional units, 
thus potentially decreasing the locality of texture references. For 
such architectures to scale well, it is necessary to develop efficient 
parallel texture caching subsystems. 

We quantify the effects of parallel rasterization on texture lo- 
cality for a number of rasterization architectures, representing 
both current commercial products and proposed future architec- 
tures. A cycle-accurate simulation of the rasterization system 
demonstrates the parallel speedup obtained by these systems and 
quantities inefficiencies due to redundant work, inherent parallel 
load imbalance, insufftcient memory bandwidth, and resource 
contention. We find that parallel texture caching works well, and 
is general enough to work with a wide variety of rasterization 
architectures. 

CR Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture; 1.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism - color, shading, shad- 
owing, and texture. 

1 INTRODUCTION 
The problem of computer graphics is very challenging computa- 
tionally, particularly in the face of real-time constraints and real- 
istic image synthesis. On today’s computers, real-time interactive 
images can be created at several dozen frames per second, but the 
most realistic images take several hours to compute, a computa- 
tional gap that spans six orders of magnitude. In the quest for 
ever-higher performance, one basic direction of computer archi- 
tecture has been parallelism: the ability to use many lower per- 
formance components to build a higher performance system. 
Parallelism has been exploited in a variety of ways to accelerate 
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sections of the graphics pipeline, including geometry processing, 
rasterization, and the host interface. 

In recent years, texture mapping has become an integral part of 
real-time graphics hardware. Simultaneously, the burden has 
shifted t?om providing adequate computation for the available 
memory bandwidth to providing adequate bandwidth for abundant 
computation capability. Thus, it has become increasingly critical 
to be thrifty with memory bandwidth. Texture caching is one 
effective technique that minimizes bandwidth demands by lever- 
aging locality of reference [3, 5, 61. Unfortunately, however, 
parallel rasterization algorithms diminish locality because work is 
divided into smaller tasks. Consequently, the efficiency of a par- 
allel graphics architecture, as measured against a serial raster&, 
is in part determined by how well texture caching extends to par- 
allel rasterization. 

An architecture that employs parallel rasterization can be de- 
ployed in many ways. First, the architecture can divide work 
among the rasterization units according to either an object-space 
partitioning or an image-space partitioning. With regards to tex- 
ture, it is most straightforward to provide each rasterization unit 
with a dedicated texture memory that holds a replicated copy of 
the scene’s texture data. Another interesting option is to provide 
support for a shared texture memory system, obviating the need 
for texture replication in each memory and allowing the band- 
width load of each rasterizer to be distributed over the entire 
memory system. 

In this paper, we evaluate parallel texture caching architectures 
suitable for both dedicated and shared texture memories. We first 
present a specific set of rasterization algorithms and study the 
effects of parallel rasterization on texture locality and working set 
size. Using this information to configure the caches for each 
rasterization scheme, we then study the effects of load imbalance 
on bandwidth requirements. We find that parallel texture caching 
works well from low to high levels of parallelism, resulting in 
high parallel efficiency. Moreover, it is general enough to work 
with a wide variety of rasterization architectures. 

2 PREVIOUS WORK 

2.1 Parallel Texture Mapping 
Until recently, it had been difficult to provide the amount of com- 
putation required for texturing at high fragment rates within a 
single chip, so solutions were naturally parallel. Although tex- 
turing was used in the earlier dedicated flight simulators, one of 
the first real-time texture mapping workstations was the SGI Re- 
alityEngine [l]. This system parallelizes rasterization by inter- 
leaving vertical stripes of the framebuffer across 5, 10, or 20 
fragment generator units. Each fragment generator is coupled 
with an independent texture memory. Because texture access 
patterns are independent of framebuffer interleaving patterns, any 
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fragment generator needs to be able to access any texture data, so 
each fragment generator replicates the entire texture state. The 
successor to the RealityEngine, the InfiniteReality [lo], uses 1, 2, 
or 4 higher performance fragment generators, and thus replicates 
texture memory up to 4 times, instead of up to 20 times. The 
texture subsystems of these architectures made minimal use of 
texture locality. The stripe interleaving of rasterization used in 
aforementioned high-end machines has recently appeared as scan- 
line interleaving in consumer-level graphics accelerators such as 
the Voodoo2 SLI from 3Dfx. As with the SGI systems, texture 
memory is replicated across all the rasterizers. 

One other class of scalable graphics architectures in which 
texture mapping has been implemented is the image composition 
architecture, as exemplified by PixelFlow [9]. In such a system, 
multiple independent pipelines each generate a subset of the pix- 
els for a scene, and these pixels are merged for display through an 
image composition network. Because each of the independent 
pipelines has its own texturing unit and texture memory, the 
amount of texture memory available to an application could be 
scaled. However, the problem is not straightforward since there 
must be explicit software control to only send primitives to the 
particular pipeline holding its texture data. Such a scheme is 
greatly at odds with dynamically load balancing the amount of 
work in each pipeline, particularly given the irregularities of hu- 
man interaction. If shading (and thus, texturing) is deferred until 
after the pixel merge is completed, the problem of dynamically 
load balancing shading work according to texture accesses is 
equally, if not more, challenging. There have been no published 
works to date that address these challenges. As with other parallel 
hardware architectures, the PixelFlow replicates texture memory 
[8]; furthermore, the locality of texture access is not exploited. 

2.2 Texture Locality 
Several papers have analyzed cache locality in texture mapping. 
There is also evidence that all current consumer 3D graphics ac- 
celerators are using texture caches to exploit texture locality, but 
there have been no published studies on their effectiveness. 

Hakura and Gupta [5] analyzed the effects of varying cache 
parameters, texture memory layout, and rasterization order on the 
effectiveness of caches for a single rasterizer. The small on-chip 
cache sizes studied in that paper are able to take advantage of 
redundant accesses between adjacent pixels due to both filtering 
and repeated textures. One of the most important ideas presented 
was the importance of organizing texture data in a tiled fashion. 
Because texture data can appear at any angle with respect to the 
screen, it is important to store 2D texture data in a 4D tiled order 
so that each block in the cache holds a square or almost-square 
region of texture. Furthermore, it is important to use an additional 
level of tiling based on the number of cache sets to reduce conflict 
misses, thus leading to 6D texture tiling. This is explained in 
Section 4.3.1. Another important conclusion was that rasteriza- 
tion should also be done in a 4D tiled order rather than in a 2D 
scan line order to maximize locality. 

Cox et al. [3] examined the use of a large secondary cache as a 
mechanism to take advantage of frame-to-frame coherence in 
texture data, finding that the inter-came working set of texture 
data is on the order of several megabytes. 

Vartanian et al. [ 121 have evaluated the performance of texture 
caching with both image-space parallel and object-space parallel 
rasterizers. They find that while object-space parallelism provides 
good speedup in a caching environment, image-space parallelism 
generates poor speedup. We believe that these results can be 
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Figure 1: A Base Graphics Pipeline. The above diagram il- 
lustrates a typical graphics pipeline. A parallel rasterization 
architecture replicates the rasterization pipeline to achieve 
higher performance. 

attributed to focused architectural choices and benchmark scenes 
that favor object-space parallelism both in terms of caching and 
rasterizer load balancing. In contrast, we find it more insightful to 
separate rasterizer load imbalance from texture load imbalance, 
and by exploring a more complete set of architectural choices, we 
find efficient design points for texture caching with both types of 
parallelism. 

2.3 Unique Texel to Fragment Ratio 
Igehy et al. [6] described and analyzed a prefetching architecture 
designed for texture caching that is able to tolerate arbitrarily high 
and variable amounts of latency in the memory system. In that 
paper, they present a measure of a scene’s inherent intra-frame 
texture locality called the unique texel to fragment ratio. This 
ratio is the total number of unique texels that must be accessed in 
order to draw a frame divided by the total number of fragments 
generated for the frame, and it represents an upper bound on the 
effectiveness of a cache that cannot exploit inter-frame locality. 

Three factors affect the unique texel to fragment ratio of a 
scene. First, when a texture is viewed under magnification, each 
texel gets mapped to multiple screen pixels, and the ratio de- 
creases. Second, when a texture is repeated across a surface, the 
ratio also decreases. This temporal coherence can be exploited by 
a cache large enough to hold the repeated texture. Third, when a 
mip map texture is viewed under minification, the ratio becomes 
dependent on the relationship between texel area and pixel area 
characterized by the level-of-detail value. 

The level-of-detail value determines the two levels of the mip 
map from which samples are taken; the fractional portion is pro- 
portional to the distance from the lower, more detailed level. 
Given a texture mapped polygon that is parallel to the screen, a 
fractional portion close to zero implies a texel area to pixel area 
ratio of nearly one in the lower mip map level and a quarter in the 
upper mip map level, yielding a texel to fragment ratio near 1.25. 
Likewise, a fractional portion close to one implies a texel area to 
pixel area ratio of four in the lower mip map level and one in the 
upper mip map level, yielding a texel to fragment ratio near 5. 
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Figure 2: Dedicated Texture Memory. Multiple graphics 
pipelines simultaneously draw a scene by coordinating work 
over a graphics network. To apply texture, a &action of the 
untextumd tigments is distributed to each texture unit that 
holds a replicated version of the scene’s texture data in a 
dedicated texture memory. Texture is cached to reduce tex- 
tore memory bandwidth. 

The ratios are lower for polygons that are not parallel to the 
screen. Normally, we expect a wide variation in the texel to 
fragment ratio due to the fractional portion of the level-of-detail 
value across the objects in a scene. 

3 PARALLEL TEXTURE CACHING 
A serial graphics pipeline is illustrated in Figure 1; performance 
can be increased by deploying multiple copies of some or all of 
the stages. Parallel rasterization distributes rasterization work 
amongst multiple copies of the rasterization stages. Looking at 
the texturing stage specifically, the role of the texture mapping 
units in a system is to take as input tmtextured fragments with 
texture coordinate information, access the appropriate data in the 
texture memory based on these coordinates and filtering modes, 
filter the data, and combine this filtered texture value with the 
value of the untextured fragment. In order to scale the fragment 
rate (i.e., the rasterization performance), the number of texturing 
units must be increased to provide the necessary processing 
power. Additionally, the number of texture memories must also 
be scaled to provide the correspondingly increased bandwidth 
requirements. 

Figure 2 shows a dedicated texture memory scheme for scal- 
ing the texture subsystem of a graphics pipeline. Each additional 
rasterization pipeline brings with it a dedicated texturing unit and 
texture memory. As the system scales, the total amount of texture 
memory increases, but due to replication, the unique texture 
memory remains constant. Figure 3 diagrams a shared texture 
memory scheme for scaling the graphics pipeline. In this archi- 
tecture, an all-to-al1 texture sorting network is introduced between 
the texturing units and the texture memories. This allows any 
texturing unit to access the data in any texture memory, allowing 
a single shared image of the texture data to be present across all of 
the texture memories. Many topologies exist for such networks 
[4], and highly scalable networks can be built if the system bal- 
ances the data going in and out of the network. We will not be 
focusing on the network in this paper. 

Figure 3: Shared Texture Memory. Multiple graphics pipe- 
lines simultaneously draw a scene by coordinating work over 
a graphics network. A fraction of the untextured fragments 
is distributed to each texture unit, and each texturing unit can 
access the texture data of any texture memory, allowing for a 
single copy of the texture data system-wide. Texture caching 
reduces both network and memory bandwidth. 

With the architectures of Figure 2 and Figure 3, as with any 
parallel system, it is important to minimize the amount of redun- 
dant work introduced by parallelization and to balance the amount 
of work in each processing unit. Efftcient parallel rasterization 
algorithms deal with presenting each texturing unit with a bal- 
anced number of untextured fragments that minimizes redundant 
work, this problem has been extensively studied, and we make use 
of a few such algorithms, as described in Section 4.1. The main 
focus of this paper is to study the effects of parallel rasterization 
on texture locality. Assuming that the number of untextured 
fragments presented to each texturing units is balanced, one re- 
quirement for good parallel performance is that the redundant 
fetching of the same texture data across texturing units be mini- 
mized. Furthermore, it is important to load balance the texture 
bandwidth required by each texturing unit, and in the case of a 
shared texture memory, the texture bandwidth required from each 
texture memory. 

4 METHODOLOGY 
While it is clear that the parallel architectures of Figure 2 and 
Figure 3 do potentially increase performance, the actual perform- 
ance gains are still unclear. III this section, we lay out a frame- 
work that will allow us to evaluate the performance of a parallel 
texture caching architecture. 

4.1 Parallel Rasterization Algorithms 
The characteristics of parallel texture caching are highly depend- 
ent on the parallel rasterization algorithm because this algorithm 
determines which fragments are processed by which texturing 
units and in what order. There are a great number of different 
rasterization algorithms, and each algorithm has a number of pa- 
rameters that can be varied. Because of the large number of vari- 
ables, it is impractical to analyze every rasterization algorithm, 
and thus we choose a few representative algorithms. 

Parallel rasterization algorithms can be characterized along 
three axes with regard to texturing. The first distinction to be 

97 



workload name 9-k* qurkr2x 
screen resolution 1280 x 1024 1280 x 1024 
depth, complm&v 3.29 3.29 

percent trihheaf 30% 47% 
unique texelsfrag 0 . 0 3 3 0.092 

Table 1: The Scenes. 

made is whether work is partitioned according to image-space 
(each texturing unit is responsible for a subset of the pixels on the 
screen) or object-space (each texturing unit is responsible for a 
subset of the fragments generated by triangles). The second dis- 
tinction is whether the texturing unit processes fragments imme- 
diately in the order primitives are submitted or buffers fragments 
and processes them in a different order. The third distinction is 
whether fragments destined for the same location in the fiamebuf- 
fer are processed in the order presented by the application. For 
this paper, all of the algoritbrns we present preserve application 
order. 

n tiled In a tiled architecture, the screen is subdivided uni- 
formly into fixed-size square or near-square tiles 
and each texturing unit is responsible for a stati- 
cally interleaved fraction of tiles. We have empiri- 
cally found that 32 pixel by 32 pixel tiles work 
well up to moderate levels of parallelism, and for 
this paper, we will assume that tile size. In tiled- 
prim, fragments are processed in primitive order. 
This means that if a triangle overlaps several tiles 
belonging to the same rasterizer, the fragments of 
that triangle are completely processed before 
moving on to the fragments of the next triangle. In 
tiled-frame, the fragments of a frame are processed 
in tile order. This means that a texturing unit proc- 
esses all of the fragments for its first tile before 
moving on to any of the fragments that fall in its 
second tile. 

n osi Algorithms that subdivide work according to ob- 
ject-space usually distribute groups of primitives in 
a round-robin fashion amongst rasterizers, giving 
each rasterizer approximately the same amount of 
per-primitive work. Because the number of t?ag- 
ments generated by each primitive can vary 
greatly, it is important to also load balance fiag- 
ment work either by dynamically distributing 
primitives, by subdividing large primitives, or by 
combining the two techniques. In object-space 
ideal (osi), we idealize the load balancing of frag- 
ments. First, we serially rasterize all the primitives 
to form a fragment stream, and then we round- 
robin groups of 1024 fragments amongst the tex- 
turing units. 

* striped Similar to both the RealityEngine and the In- 
finiteReality, fragments are subdivided according 
to an image-space subdivision of 2 pixel-wide ver- 

38% 187% 0% 1100% 
3.706 Il.55 0.569 12.83 

tical stripes. Each texturing unit is responsible for 
an interleaved fraction of the stripes, and process- 
ing is done in primitive order, as in tiled-prim. 

4.2 Scenes 
In order to quantify the effectiveness of parallel texture caching, 
we need to choose a set of representative scenes that cover a wide 
range of texture locality. A good measure of texture locality is the 
scene’s unique texel to fragment ratio, and this ratio varies over 
nearly two orders of magnitude in our test scenes. The scenes we 
chose originated from three traces of OpenGL applications. In the 
future, we expect to see more texture for a given screen resolu- 
tion, increasing the unique texel to fragment ratio. To simulate 
this effect, each of the traces was captured twice, once with the 
textures at original size, and once with the textures at double 
resolution. Table 1 summarizes some key statistics corn our six 
scenes, described below: 

8 quake This is a frame from the OpenGL port of the 
video game Quake. This application is essen- 
tially an architectural walkthrough with visibility 
culling. Color mapping is performed on all sur- 
faces which are, for the most part, large poly- 
gons that make heavy use of repeated texture. A 
second texturing pass blends low-resolution light 
maps with the base textures to provide realistic 
lighting effects. Approximately 40% of the base 
textures are magnified, and 100% of the light 
maps are magnified. In quake2x, texture resolu- 
tion is doubled, and only the light maps are 
magnified. 

8 fright This scene from an SGI flight simulator demo 
shows a jet flying above a textured terrain map. 
The triangle size distribution centers around 
moderately sized triangles, and most textures are 
used only once. The order in which triangles are 
drawn is irregular: the terrain data is drawn in 
large tiles, but each tile of the terrain is drawn in 
sets of triangles that are not contiguous in 
screen-space. In flight, the majority of the tex- 
ture (62%) is magnified, while injlight2x, only 
13% is magnified, resulting in lower texture lo- 
cality. 

m qhv This scene comes from an OpenGL-based 
QuickTime VR [2] viewer looking at a pano- 
rama from Mars. This huge panorama, which 
measures 8K by 1 K, is mapped onto a polygonal 
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approximation of a cylinder made of tall, skinny 
triangles that are drawn in a regular order. Even 
though all of the texture is magnified, the lack of 
repeated texture keeps the number of unique 
texels per fragment high in qtvr. In qtvr2x, all of 
the texture data is minitied. Furthermore, be- 
cause the level-of-detail in most of the scene is 
just barely below a new mip map level, texture 
accesses incur a high bandwidth demand. 

All of the above scenes make use of mip mapping for texture 
filtering. Mip mapping is crucial for providing locality in texture 
access patterns under minification, a characteristic that all texture 
caching rasterization architectures depend upon to run at full 
speed. Scenes that lack mip mapping will experience significant 
performance degradations under texture minification. The scenes 
we use in this paper load balance hagment work relatively well 
with respect to the parallel rasterization algorithms of Section 4.1, 
as will be quantified in Section 5.3. Because these scenes load 
balance well under our parallel rasterization algorithm, texture 
bandwidth imbalance will not be hidden by fragment imbalance. 

4.3 Simulation Environment 
A cycle-accurate simulator of a parallel texturing subsystem was 
written in C++ to provide an environment for collecting the data 
presented in this paper. Our simulation infrastructure is based on 
a methodology developed by Mowry [ 1 l] for simulating hardware 
architectures. The simulator takes as input texture data and un- 
textured fragment data, and produces rendered images as well as 
trace data on the texture subsystem. The simulator is able to par- 
tition this Bagment data among multiple instances of texturing 
units in accordance with the parallel rasterization algorithms of 
Section 4.1. Each texturing unit and each texture memory is made 
up of multiple functional units that run as threads in the C++ envi- 
ronment. The forward progress of each functional unit and the 
communication between functional units adhere to a simulation 
clock by making clock-awaiting function calls within each thread 
at the appropriate points in the code. This allows us to simulate a 
graphics architecture with cycle-accuracy at varying levels of 
detail and collect data from the system in a non-intrusive fashion. 

4.3.1 Data Organization 
Given the high-level architecture of parallel texturing units that 
are connected to memories through a texture cache, we must de- 
cide how data is organized throughout the system. In accordance 
with previous work [5], we group 2D texture data into 4D tiles so 
that each cache block holds a square or near-square region of 
texture and use an additional level of tiling (6D tiling based on the 
number of cache sets) to reduce conflict misses. This is illustrated 
in Figure 4. The exact parameters of the tiling are dependent on 
the cache parameters entered into the simulator. 

Based on previous studies regarding rasterization order [5], we 
rasterize according to screen-aligned 8 by 8 tiles. We also add 
another level of tiling to rasterization (every 32 by 32 pixels), 
resulting in 6D tiled rasterization. To give a consistent rasteriza- 
tion order across the studies in this paper, a serial rasterizer gener- 
ates untextured fragments in this order and distributes them to the 
appropriate texturing unit according to the parallel rasterization 
algorithm. 

For the purposes of this paper, we assume that the texturing 
unit has enough computational power to perform a trilinear mip 
mapped texture filter for each fragment with no performance loss. 
According to Igehy et al. [6], a texture cache that is partitioned 
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Figure 4: Tiled Data Organization. The above diagram cor- 
relates a location in an image with an address, expressed in 
hexadecimal. An ‘x’ represents an arbitrary hexadecimal 
number. The letI block shows the layout of a 4x4 image in 
2D order. A 4x4 grid of these 2D blocks gives rise to a 
16x16 image laid out in 4D order, illustrated in the center. 
The first hexadecimal digit determines the block, and the 
second hexadecimal digit determines the pixel within that 
block. Similarly, a 4x4 grid of 4D blocks gives rise to a 
64x64 image laid out in 6D order. Note that our choice of 
4x4 blocking at each stage can be replaced with an arbitrary 
blocking factor. 

into two caches (one for even levels of the mip map, and one for 
odd levels of the mip map) allows conflict-free access to the eight 
texels of a trilinear interpolation. They demonstrate that in such a 
configuration, the miss rate does not significantly improve with 
increased associativity. We therefore use two direct-mapped 
caches for the studies in this paper. 

For a shared texture memory architecture, we must decide on 
the distribution of texture data across the multiple texture memo- 
ries. Texture data should be distributed in a finely interleaved 
fashion to prevent hot-spotting on any single memory for any 
significant period of time. In order to minimize the chance that 
nearby texture tiles fall onto the same texture memory, we distrib- 
ute each cache block of texture data across the texture memories 
in a 4D tiled fashion. The exact parameters for this tiling are 
dependent on the cache block size and the number of texture 
memories used for a particular simulation. For example, with 16 
texel cache blocks (organized in a 4 by 4 tile) and 4 texturing 
memories, each cache block in a 2 by 2 tile of cache blocks is 
given to a different texture memory. 

4.3.2 Performance Model 
While caching characteristics may be analyzed statically without a 
performance model, such a model must be introduced in order to 
analyze resource contention and parallel speedup. Our simulated 
texturing unit is capable of texturing a single fragment every cy- 
cle, and we provide 2 texels per cycle of bandwidth to each tex- 
ture memory, an amount large enough to cover most of the band- 
width demands of our scenes. This is a typical’bandwidth in 
modem systems - see, for example, a calculation by Kirk [7]. 
The latency of each texture memory is set to 20 fragment clocks, 
and a 64 fragment FIFO is used to hide the latency of the mem- 
ory, values we replicate from previous work based on modem 
memory devices [6]. Because arbitrary amounts of latency can be 
hidden through the use of prefetching and a fragment FIFO, our 
results are not dependent on these values. 

In a serial texturing unit, a fragment FIFO serves not only to 
hide the latency of the memory system, but also to smooth out 
variations in temporal bandwidth requirements. Even if a scene’s 
overall bandwidth requirement is low, temporal bandwidth re- 
quirements can get extremely high when several consecutive 
fragments miss in the texture cache. If this temporal imbalance is 
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microscopic (e.g., over tens of fragments), then a fragment FIFO 
can smooth out the contention for the memory system. However, 
this imbalance is often macroscopic (e.g., over tens of thousands 
of fragments): a fragment FIFO is unable to resolve the fragment- 
to-fragment contention for the texture memory and performance 
suffers. 

In a parallel texture caching system with shared texture memo- 
ries, contention can also occur between texturing units for the 
texture memories, and thus, the network. In order to reduce the 
number of free variables in this paper, we choose to model the 
network as perfect (no latency and infinite bandwidth) and there- 
fore focus on memory contention effects. Network contention is 
related to memory contention in a fully simulated system, and 
prefetching is able to successfully hide arbitrary amounts of net- 
work latency in texture caching. 

5 RESULTS 
Parallel texture caching can be analyzed according to common 
parallel algorithm idioms. First, parallel texture caching incurs 
redundant work in the form of repeated texture data fetching. 
This reduction in locality is quantified in Section 5.1. The effect 
of multiple caches on working set size is described in Section 5.2. 
Second, it is essential that parallel texture caching be load bal- 
anced, and we quantify this in Section 5.3. Finally, in Section 5.4, 
we use a cycle-accurate simulation to demonstrate that good par- 
allel speedup does in fact occur. 

Contrary to traditional microprocessor cache studies, we pres- 
ent cache efficiency data in terms of bandwidth per fragment 
rather than miss rate per access. In a microprocessor architecture, 
miss rate is of primary importance because only one or a few 
outstanding misses can be tolerated before the processor stalls. 
Because of the lack of write hazards, texture caching can tolerate 
arbitrary numbers of outstanding reads [6], and thus, performance 
is related more to its bandwidth demands. 

5.1 Locality 
As with most parallel algorithms, parallel texture caching induces 
inherent overhead beyond that found in a serial algorithm due to 
redundancies. For parallel texture caching, this is best character- 
ized by the redundant fetching of the same texture data by multi- 
ple texturing units - a reduction of locality. In a serial graphics 
system, an ideal texture cache would fetch each texel used in the 
scene only once (assuming the cache is sized to exploit only intra- 
frame locality). The bandwidth required for such a cache can be 
computed by counting the number of compulsory misses (i.e., 
cold misses) taken by the cache that employs a block size of a 
single texel. As we make the block size larger, fewer misses are 
taken, but the amount of data read by each miss increases. Over- 
all, we expect the total amount of data fetched due to compulsory 
misses to increase with the block size because of edge eficts: 
whenever a texture falls across the edge of a screen, the silhouette 
edge of an object, or the edge of a parallel work partitioning, 
larger block sizes force the cache to fetch larger portions of the 
texture data that are never used. By measuring the bandwidth 
attributable to compulsory cache misses, Figure 5 illustrates the 
reduction of locality caused by the various rasterization algo- 
rithms as the number of texturing units and block size are varied. 

The lightest portions of the bars in Figure 5 indicate the aver- 
age bandwidth required to satisfy the compulsory misses of a 

serial texture cache for the various rasterization algorithms. For a 
serial texturing unit, all of the algorithms perform equally because 
the number of compulsory misses is scene-dependent. We see 
that as block size is increased, the bandwidth requirement for a 
serial rasterizer increases slightly for the flight data set pair and 
negligibly for quake and qtvr data set pairs. In qtvr, the edge 
effects occur only near screen edges, which accounts for a negli- 
gible portion of the total work. In quake, the texture used at the 
edge of polygons is repeated from the middle of the polygons, 
thus negating edge effects from polygons. 

The bottom portion of each bar represents the optimal band- 
width requirements of a serial texture cache, and each successive 
portion of the bar represents the additional bandwidth required to 
satisfy additional texturing units. We simulate an infinite number 
of texturing units, the top-most portion of each bar, by assigning 
the smallest granularity of work for each rasterization algorithm to 
a unique texture unit. For a tiled architecture this quantum of 
work corresponds to a single tile, for object-space interleaving 
this corresponds to a single contiguous block of fragments. This 
defines the locality present in a rasterization algorithm’s minimal 
unit of work. Also note that because we are counting compulsory 
misses, the order in which fragments are processed has no effect, 
and thus the results for tiled-prim and tiled-j?ame are identical. 

As a detailed example, for a tiled architecture on theflight2x 
scene, we see that for a block size of 16 texels (arranged in a 4 by 
4 tile), a single texturing unit requires approximately 1.67 texels 
per fragment. If work is distributed amongst two texturing units, 
then the bandwidth required increases to approximately 2.17 tex- 
els per fragment. This occurs because edge effects are introduced 
at the boundaries of tiles, reducing the tile-to-tile locality. For 
four texturing units, the bandwidth requirement slightly increases 
to 2.26 texels per fragment, but as work is distributed amongst 
additional texturing units, the bandwidth requirements do not 
increase significantly. The reason for this is that most of the tex- 
ture in the scene is unique, and while the tiles of a two-way par- 
allel system touch at their comers and thus share some of the tex- 
ture data of an object (tile-to-tile locality), this adjacency goes 
away completely in four-way parallel and larger systems. We 
also see that as block size is increased from 1 to 16 to 64 texels, 
the bandwidth requirements increase significantly because the 
over-fetching of larger block sizes is multiplied by the large num- 
ber of tile edges. These aforementioned behaviors are all mir- 
rored inflight, qtvr, and qtvr2x. 

Although the effects of larger block sizes are the same, the 
bandwidth requirements of quake and quuke2x on the tiled archi- 
tecture are quite different as the number of rasterizers is increased. 
The first thing to notice about these scenes is the low bandwidth 
requirements of the serial case due to the heavy use of repeated 
textures. Furthermore, as opposed to the other scenes, as the 
number of texturing units is increased, the bandwidth require- 
ments always increase. The use of repeated textures causes this 
because the same texture data is used repeatedly across the image- 
space partitioning. However, even with an infinite number of 
texturing units, the total bandwidth requirement is still quite lim- 
ited. In effect, although parallel rasterization diminishes texture 
locality due to repeated texture, locality due to filtering remains. 
This means that texturing subsystems that are designed to perform 
well only in conjunction with repeated textures do not parallelize 
well. 
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Figure 5: Bandwidth Due to Compulsory Misses. This study shows the bandwidth requirements (measured in average number of tex- 
els fetched per fragment) associated with compulsory misses as a function of rasterization algorithm, scene, block size, and number of 
texturing units. The top row represents the data for the tiled rasterization architecture, the middle row for the osi architecture, and the 
bottom row for the striped architecture. Scenes are sorted left to right by their unique texel to fragment ratio, which indicates the 
minimum bandwidth required. Each bar chart shows the bandwidth requirements for a different block size, and the shades of gray 
show the bandwidth requirements for differing numbers of texturing units. The shades of gray increase in darkness as the number of 
texturing units is increased, and the bandwidth required for greater numbers of texturing units increases monotonically. Finally, note 
that for clarity, the bandwidth values for striped rasterization are shown with a split scale axis. 
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. . . Figure 6: The Effects of Cache Size. The total bandwidth (measured in average number of texels per tragment) requirea to render 
flight2x is plotted as a function of the cache size. Each chart shows a different rasterization architecture, and each curve represents a 
different number of texturing units. Block size is set to 16 texels for all the graphs except striped, which has a block size of 1 texel. 

The behavior of osi largely mirrors the performance of tiled, 
with the exception that bandwidth requirements continue to in- 
crease as additional texturing units are utilized. This is explained 
by the fact that osi is fragment-interleaved, and the chance that a 
texturing unit’s consecutive fragment groups utilize adjacent por- 
tions of a texture map decreases smoothly as the number of tex- 
turing units is increased. For both tiled and osi, we see that a 
block size of 16 texels provides reasonable locality given the 
granularity of access needed for efficient memory utilization and 
efficient network utilization. Thus, for the remainder of the paper, 
we assume a block size of 16 texels for tiled and osi. 

The behavior of the striped rasterization algorithm is markedly 
different from both tiled and osi. The most important thing to 
notice is that bandwidth requirements increase dramatically with 
increased block size. Because interleaving is done at every 2 
pixels in the horizontal direction, edge effects occur very fre- 
quently. As block size is increased, a drastically larger number of 
texels that fall beyond a stripe’s required set of texels are fetched. 
Thus, striped architectures reduce texture locality drastically. 
Even at a block size of 1 texel for striped, locality is much worse 
than at a block size of 16 for tiled or osi. We note that a single 
texel is a very small granularity of access for modem networks 
and memories, and that most modem devices perform highly sub- 
optimally at such granularities. Nonetheless, this is the only block 
size that preserves a modicum of locality for striped, and for the 
remainder of the paper, we assume a block size of 1 texel for the 
striped architecture. 

5.2 Working Sets 
Now that we have an understanding of the effects of cache block 
size on locality under parallel rasterization, we move onto the 
effects of parallel rasterization on working set sizes by using lim- 
ited-size caches that suffer misses beyond compulsory misses. As 

the number of texturing units is increased, the total amount of 
cache in the system increases, and thus we expect better perform- 
ance. Figure 6 quantities this notion by showing the bandwidth 
requirements of the various architectures with differing numbers 
of texturing units for theJighr2n data set as the total cache size is 
varied. In general, there is a correlation between an algorithm’s 
working set size and the point of diminishing returns in increasing 
cache size, illustrated as the “knee” in the curves of Figure 6. We 
see that as the number of texturing units increases, the working set 
size for each texturing unit decreases. 

These same characteristics were found for all of the data sets. 
Because we want to pay attention to low levels of parallelism and 
systems that scale a serial texturing unit, we focus on a single 
cache size that works well for a serial algorithm. Choosing such a 
parameter outside of hardware implementation constraints is a bit 
of a black art, and thus we use parameters from previous work [6] 
for consistency’s sake and allocate a cache size of 16 KB (config- 
ured as two direct-mapped 8 KB caches) for the remainder of this 
paper. Figure 7 shows the bandwidth requirements of the various 
algorithms on the various scenes with a 16 KB cache. The first 
trend we notice is that while there is an initial jump in bandwidth 
demand when going from one texture unit to two texture units, the 
bandwidth demands are largely flat with increasing numbers of 
texture units. Moreover, for some traces, particularly flight and 
flight2x, the bandwidth demands actually decrease after the initial 
increase. This is a well-known phenomenon from parallel sys- 
tems wherein the aggregate cache size increases more rapidly than 
the aggregate miss rate, resulting in improved cache behavior with 
increasing parallelism. 

One interesting result is that although tiled-frame performs 
better than tiled-prim for the jlight and qntr data set pairs, the 
opposite is true for the quake data set pair. In flight, and to a 
lesser extent qtur, the disjoint drawing of triangles in image-space 
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Figure 7: Bandwidth Requirements of a 16 KB Cache. In these graphs, bandwidth is displayed as a function of the number of raster- 
izers. Both the normal and the 2x resolution versions of each scene are shown on the same graph. Block sizes are the same as in 
Figure 6, and each curve shows the bandwidths for a different parallel rasterization algorithm. 

makes it advantageous to wait until all of the triangles of a tile are 
present before texturing due to increased temporal locality. In 
quake, however, it is more advantageous to texture large polygons 
that fall into multiple tiles immediately because the different re- 
gions of the polygon all use the same repeated texture data. 

5.3 Load Imbalance 
The performance of any parallel system is often limited by load 
imbalance: if one unit is given significantly more work than the 
other units, it will be the limiting factor, and performance will 
suffer. In parallel texture caching, load imbalance can occur in 
one of three ways. First, the number of untextured fragments 
presented to each texturing unit can differ. Second, the band- 
width required for texturing the fragments of a texturing unit may 
vary. Third, the bandwidth required from each texturing memory 
can differ. In a dedicated texture memory system, the last two 
sources of imbalance are identical because each texturing unit is 
paired with a single texture memory. 

Figure 8 shows the various types of load imbalance of the 
various scenes on the different architectures. The first trend to 
note is that all of the configurations load balance well in all re- 
spects when there are 16 or fewer texturing units (the worst im- 
balance is 9.7%). However, as the number of texturing units is 
increased to 32, and especially 64, there is a large imbalance in 
the bandwidth requirements of the texturing units. This imbal- 
ance is significantly larger than fragment imbalance, and the trend 
occurs in all of the rasterization algorithms except striped and on 
all of the data sets except the qtvr pair, which exhibits extreme 
regularity in texture access patterns. The striped algorithm is 
highly load balanced even at high numbers of texturing units be- 
cause of its fine interleaving pattern. However, this positive result 
is moderated by the fact that the baseline for the striped data in- 

cludes significantly more redundant bandwidth than the other 
rasterization algorithms. 

The second important trend in Figure 8 is the effect of shared 
texture memory on texture memory load imbalance. In a dedi- 
cated texture memory system, the load imbalance between texture 
memories is equal to the load imbalance between texturing units. 
In a shared texture memory architecture, the load imbalance be- 
tween texture memories is relatively small. Thus, we see that 
distributing blocks in a tiled fashion across the texture memories 
does in fact balance texture load well, usually to such an extent 
that shared texture memory imbalance is much lower than the 
dedicated texture memory imbalance 

5.4 Performance 
While the experiments of the previous sections illuminate many 
characteristics of parallel texture caching, they say nothing about 
realized performance. In particular, the temporal effects of erratic 
intra-frame bandwidth demands are ignored. Even though a 
scene’s memory bandwidth demands may be low when averaged 
over an entire frame, its memory bandwidth demands averaged 
over a few fragments can actually be quite high. Figure 9 divides 
the execution time of a serial texturing unit into three categories: 
time spent on fragment processing, time lost due to insufficient 
memory bandwidth, and time lost due to fragment-to-fragment 
contention for the memory. We see that only jlight2x and qtvr2x 
have average memory bandwidth requirements beyond 2 texels 
per fragment, and thus even perfect smoothing of fragment-to- 
fragment contention could not achieve a performance of one cycle 
per fragment. We also see that contention time is nearly uniform 
across all rasterization architectures with the exception of striped, 
which performs better due to smaller block sizes. In general, 
uncovered contention occurs in scenes that have large variations 
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Figure 8: Load Imbalance. Each graph shows load imbalance for different numbers of rasterizers. The y-axis of each graph shows 
the percent difference in the work performed by the busiest unit and the average unit. Each row shows a different scene, and each col- 
umn shows a different parallel rasterization algorithm. The rows and columns have been sorted so that the scenes and rasterization al- 
gorithms that perform best are at the upper left and the ones that perform worst are at the lower right. Three types of load imbalance 
are shown. Fragment load imbalance is the maximum number of fragments given to a texturing unit divided by the average number of 
fragments per texturing unit. Miss load imbalance is the worst rasterizer’s number of misses per fragment divided by the average 
number of misses per fragment. Bank load imbalance is the maximum number of access per texture memory in a shared memory ar- 
chitecture divided by the average number of accesses per memory. For these experiments, we use the same cache and block sizes as 
the experiments in Figure 7. 

in macroscopic bandwidth requirements. Whenever bandwidth 
requirements peak beyond 2 texels per fragment over large peri- 
ods of time, temporal memory contention cannot be resolved by 
the 64entry fragment FIFO. This occurs most in flight& and to 
a lesser extent, in flight and quake2x. In qtvr2x, temporal band- 
width requirements are always over 2 texels per fragment, and in 
quake and qtvr, bandwidth requirements are consistently under 2 
texels per fragment, resulting in little temporal contention that is 
not covered by the 64-entry fragment FIFO. 

The serial runs of Figure 9 serve as a baseline for computing 
speedup of parallel texture caching runs. In the first row of Figure 
10, we graph the speedup of a dedicated texture memory archi- 
tecture. Across all of the runs, excellent speedup is achieved 
through 16 texturing units. For the scenes whose bandwidth re- 
quirements are usually met by the 2 texel per cycle memory sys- 

tem - quake, quake2x, jlight (except in striped), and qtvr - the 
speedup is near-linear. For the scenes that exceed this bandwidth 
-jlight2x and qtvr2x - the speedup efficiency is dictated by the 
inefficiency of the cache with respect to a serial cache, as graphed 
in Figure 10. Beyond 16 texturing units, some of the speedup 
curves exhibit lower speedup efficiency. Referring back to the 
load imbalance graphs in Figure 8, we see that this occurs in the 
configurations that exhibited significant load imbalance in the 
amount of bandwidth requested by each texturing unit. As ex- 
pected intuitively, the fragment-to-fragment memory contention 
plays an insignificant role in speedup efiiciency. 

In the second row of Figure 10, we graph the speedup of a 
shared texture architecture. The speedup efficiencies realized are 
almost identical to a dedicated texture architecture at or below 16 
texturing units. At higher numbers of texturing units, however, 
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Figure 9: Breakdown of Serial Time. This graph breaks 
down the execution of a serial texturing unit across different 
scenes and rasterization algorithms. Execution time is nor- 
malized to cycles per fragment, and the light gray bar shows 
the ideal cost, assuming one fragment is processed per cycle. 
The dark gray bar shows the cost of insufficient memory 
bandwidth for a 2 texel per cycle memory system. If the ra- 
tio of a scene’s average memory bandwidth requirement to 
the memory system’s bandwidth supply is greater than one, 
then this cost is tallied. The black bar represents the cost of 
fragment-to-fragment memory contention incurred by the 64- 
entry fragment FIFO’s inability to smooth out temporal 
bandwidth variations. These experiments use the same cache 
parameters as used in Figure 7. 

these speedup efficiencies are generally better than a dedicated 
architecture for the configurations that exhibited large load imbal- 
ance. This can be explained by the fact that in a shared texture 
architecture, the texturing unit with the highest miss rate spreads 
its memory requests across many texture memories, and thus per- 
formance becomes dependent on load imbalance amongst the 
texture memories, which is much lower than texturing unit imbal- 
ance. In effect, the busiest texture unit is able to steal memory 
bandwidth that would go unused in a dedicated texture memory 
system. 

6 DISCUSSION 

6.1 Texture Updates 
One reason parallel texture caching is so’ straightforward to im- 
plement is that texture mapping is mostly a read operation. This 
allowed us to use multiple caches on the same data without the 
need for a complex coherence protocol to detect changes in the 
texture memory caused by another texturing unit. However, any 
real system with a shared texture memory will have to deal with 
such texture updates. There are two potential hazards when a 
texture is updated. First, a texture read for a fragment generated 
by a polygon submitted before the texture update could read the 
new contents of the texture rather than the old contents. The con- 
verse could also occur when a fragment generated by a polygon 
submitted after a texture update reads texture values that are stale. 
These problems arise both because texture updates are large 

events which do not necessarily occur atomically, and, more sim- 
ply, because the work being performed at any point in time by one 
texture unit (e.g., downloading a texture) is generally not tightly 
coupled with the work being performed by another texture unit 
(e.g., processing fragments). 

One solution to these hazards is to force texture updates to oc- 
cur atomically and to introduce a strict ordering of operations 
between the texturing units during texture update. This is most 
naturally expressed by performing a barrier operation across all of 
the graphics system at the start of the texture update to ensure that 
previous accesses to the old texture have completed, and a second 
barrier operation at the end of the texture update to ensure that the 
new texture is in memory before any new fragments access it. 
The barriers could be implemented either in hardware via a shared 
signal among the texturing units, thus allowing the rest of the 
pipeline to make progress, or in the software driver, forcing a 
flush of the graphics pipelines. Additionally, texturing units must 
flush stale data from their caches in conjunction with texture up- 
dates. 

6.2 Feasibility 
While we have deliberately avoided the consideration of what 
interconnection network to use in a system which implements a 
shared texture memory, this is not due to inherent difficulty. A 
number of well-known networks exist that provide scalable, pin- 
efficient point-to-point interconnections suitable for carrying the 
relatively high bandwidth demands of a shared memory system. 
Our ability to hide memory latency, and by extension network 
latency, for texture mapping makes it easy to incorporate such a 
network into a typical rasterization architecture. While architec- 
tures to date have focused on replicated memories, and thus nec- 
essarily try to minimize the number of rasterizers, this study 
shows that a high degree of rasterization parallelism can be effi- 
ciently supported on a shared texture memory system. 

7 CONCLUSION 
In this paper, we demonstrated that parallel texture caching works 
well across nearly two orders of magnitude of parallelism, from a 
serial texture unit up to 64 texture units. For example, tiled 
raster&&on using parallel texture caching exhibits over 84% 
utilization at 32 processors across all the scenes in our studies. 
Parallel texture caching is general enough to work with a variety 
of algorithms, including both image-space and object-space, as 
well as primitive order and tile order architectures. While tiled 
architectures typically exhibit significantly better cache behavior 
that striped -architectures, parallel texture caching remains quite 
effective with a sufficiently small block size for striped architec- 
tures. We confirmed that the working set size decreases with 
increasing parallelism, allowing the use of a serial architecture’s 
texture cache for a parallel architecture. We also demonstrated 
that a shared texture memory system not only has the obvious 
benefit of eliminating replicated textures, but it also further in- 
creases performance over a dedicated memory system by distrib- 
uting contention over multiple memories. 

Acknowledgements 
We would like to thank Kekoa Proudfoot, Gordon Stoll, Milton 
Chen, John Owens, and the rest of the Stanford Graphics Lab for 
their insights about this work. Financial support was provided by 
NVIDIA, Intel, the Fannie and John Hertz Foundation, and 
DARPA contract DABT63-95C-0085POOO06. 

105 



tiled-prim tiled-frame 

16 32 48 64 

texture units 
16 32 48 64 

texture units 

16 32 48 64 

texture units 

64 

2 48 

g 32 
$ 

16 

16 32 48 64 

texture units 

osi 

3 
48 

8 32 
& 
v1 16 

16 32 48 64 

texture units 

16 32 48 64 

texture units 

striped 

16 32 48 64 

texture units 

9 
48 

f 32 

v, 16 

Data Set 
--+- flight + quake + qtvr -n-- flight2x -x-- quake2x --+--- qtvdx - ideal 

Figure 10: Speedup Graphs. These speedup graphs show speedup as a function of the number of texturing units. The top set of 
graphs show speedup curves for dedicated texture cache architectures, and the bottom set of graphs show speedup curves for shared 
texture memory architectures. Each column holds a different parallel rasterization algorithm, and the curves on each graph show 
speedup for a different scene. 
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