
Parallel Texture Caching

Homan lgehy Matthew Eldridge Pat Hanrahan

Computer Science and Electrical Engineering Departments

Stanford University

Abstract
The creation of high-quality images requires new functionality
and higher performance in real-time graphics architectures. In
terms of functionality, texture mapping has become an integral
component of graphics systems, and in terms of performance,
parallel techniques are used at all stages of the graphics pipeline.
In rasterization, texture caching has become prevalent for reduc-
ing texture bandwidth requirements. However, parallel rasteriza-
tion architectures divide work across multiple functional units,
thus potentially decreasing the locality of texture references. For
such architectures to scale well, it is necessary to develop efficient
parallel texture caching subsystems.

We quantify the effects of parallel rasterization on texture lo-
cality for a number of rasterization architectures, representing
both current commercial products and proposed future architec-
tures. A cycle-accurate simulation of the rasterization system
demonstrates the parallel speedup obtained by these systems and
quantities inefficiencies due to redundant work, inherent parallel
load imbalance, insufftcient memory bandwidth, and resource
contention. We find that parallel texture caching works well, and
is general enough to work with a wide variety of rasterization
architectures.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - color, shading, shad-
owing, and texture.

1 INTRODUCTION
The problem of computer graphics is very challenging computa-
tionally, particularly in the face of real-time constraints and real-
istic image synthesis. On today’s computers, real-time interactive
images can be created at several dozen frames per second, but the
most realistic images take several hours to compute, a computa-
tional gap that spans six orders of magnitude. In the quest for
ever-higher performance, one basic direction of computer archi-
tecture has been parallelism: the ability to use many lower per-
formance components to build a higher performance system.
Parallelism has been exploited in a variety of ways to accelerate

{homan,eldridge,hanrahan}@graphics.stanford.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on servers or to redistrihutc to lists,
rcquircs prior specific permission andior a fee.
1999 Eurographics LosAngeles CA USA
Copyright ACM 1999 l-581 13-170-4/99/08...$5.00

sections of the graphics pipeline, including geometry processing,
rasterization, and the host interface.

In recent years, texture mapping has become an integral part of
real-time graphics hardware. Simultaneously, the burden has
shifted t?om providing adequate computation for the available
memory bandwidth to providing adequate bandwidth for abundant
computation capability. Thus, it has become increasingly critical
to be thrifty with memory bandwidth. Texture caching is one
effective technique that minimizes bandwidth demands by lever-
aging locality of reference [3, 5, 61. Unfortunately, however,
parallel rasterization algorithms diminish locality because work is
divided into smaller tasks. Consequently, the efficiency of a par-
allel graphics architecture, as measured against a serial raster&,
is in part determined by how well texture caching extends to par-
allel rasterization.

An architecture that employs parallel rasterization can be de-
ployed in many ways. First, the architecture can divide work
among the rasterization units according to either an object-space
partitioning or an image-space partitioning. With regards to tex-
ture, it is most straightforward to provide each rasterization unit
with a dedicated texture memory that holds a replicated copy of
the scene’s texture data. Another interesting option is to provide
support for a shared texture memory system, obviating the need
for texture replication in each memory and allowing the band-
width load of each rasterizer to be distributed over the entire
memory system.

In this paper, we evaluate parallel texture caching architectures
suitable for both dedicated and shared texture memories. We first
present a specific set of rasterization algorithms and study the
effects of parallel rasterization on texture locality and working set
size. Using this information to configure the caches for each
rasterization scheme, we then study the effects of load imbalance
on bandwidth requirements. We find that parallel texture caching
works well from low to high levels of parallelism, resulting in
high parallel efficiency. Moreover, it is general enough to work
with a wide variety of rasterization architectures.

2 PREVIOUS WORK

2.1 Parallel Texture Mapping
Until recently, it had been difficult to provide the amount of com-
putation required for texturing at high fragment rates within a
single chip, so solutions were naturally parallel. Although tex-
turing was used in the earlier dedicated flight simulators, one of
the first real-time texture mapping workstations was the SGI Re-
alityEngine [l]. This system parallelizes rasterization by inter-
leaving vertical stripes of the framebuffer across 5, 10, or 20
fragment generator units. Each fragment generator is coupled
with an independent texture memory. Because texture access
patterns are independent of framebuffer interleaving patterns, any

95

fragment generator needs to be able to access any texture data, so
each fragment generator replicates the entire texture state. The
successor to the RealityEngine, the InfiniteReality [lo], uses 1, 2,
or 4 higher performance fragment generators, and thus replicates
texture memory up to 4 times, instead of up to 20 times. The
texture subsystems of these architectures made minimal use of
texture locality. The stripe interleaving of rasterization used in
aforementioned high-end machines has recently appeared as scan-
line interleaving in consumer-level graphics accelerators such as
the Voodoo2 SLI from 3Dfx. As with the SGI systems, texture
memory is replicated across all the rasterizers.

One other class of scalable graphics architectures in which
texture mapping has been implemented is the image composition
architecture, as exemplified by PixelFlow [9]. In such a system,
multiple independent pipelines each generate a subset of the pix-
els for a scene, and these pixels are merged for display through an
image composition network. Because each of the independent
pipelines has its own texturing unit and texture memory, the
amount of texture memory available to an application could be
scaled. However, the problem is not straightforward since there
must be explicit software control to only send primitives to the
particular pipeline holding its texture data. Such a scheme is
greatly at odds with dynamically load balancing the amount of
work in each pipeline, particularly given the irregularities of hu-
man interaction. If shading (and thus, texturing) is deferred until
after the pixel merge is completed, the problem of dynamically
load balancing shading work according to texture accesses is
equally, if not more, challenging. There have been no published
works to date that address these challenges. As with other parallel
hardware architectures, the PixelFlow replicates texture memory
[8]; furthermore, the locality of texture access is not exploited.

2.2 Texture Locality
Several papers have analyzed cache locality in texture mapping.
There is also evidence that all current consumer 3D graphics ac-
celerators are using texture caches to exploit texture locality, but
there have been no published studies on their effectiveness.

Hakura and Gupta [5] analyzed the effects of varying cache
parameters, texture memory layout, and rasterization order on the
effectiveness of caches for a single rasterizer. The small on-chip
cache sizes studied in that paper are able to take advantage of
redundant accesses between adjacent pixels due to both filtering
and repeated textures. One of the most important ideas presented
was the importance of organizing texture data in a tiled fashion.
Because texture data can appear at any angle with respect to the
screen, it is important to store 2D texture data in a 4D tiled order
so that each block in the cache holds a square or almost-square
region of texture. Furthermore, it is important to use an additional
level of tiling based on the number of cache sets to reduce conflict
misses, thus leading to 6D texture tiling. This is explained in
Section 4.3.1. Another important conclusion was that rasteriza-
tion should also be done in a 4D tiled order rather than in a 2D
scan line order to maximize locality.

Cox et al. [3] examined the use of a large secondary cache as a
mechanism to take advantage of frame-to-frame coherence in
texture data, finding that the inter-came working set of texture
data is on the order of several megabytes.

Vartanian et al. [121 have evaluated the performance of texture
caching with both image-space parallel and object-space parallel
rasterizers. They find that while object-space parallelism provides
good speedup in a caching environment, image-space parallelism
generates poor speedup. We believe that these results can be

2D triangles 1

untexturedfiagments

Texture Memory

Framebuffer

Figure 1: A Base Graphics Pipeline. The above diagram il-
lustrates a typical graphics pipeline. A parallel rasterization
architecture replicates the rasterization pipeline to achieve
higher performance.

attributed to focused architectural choices and benchmark scenes
that favor object-space parallelism both in terms of caching and
rasterizer load balancing. In contrast, we find it more insightful to
separate rasterizer load imbalance from texture load imbalance,
and by exploring a more complete set of architectural choices, we
find efficient design points for texture caching with both types of
parallelism.

2.3 Unique Texel to Fragment Ratio
Igehy et al. [6] described and analyzed a prefetching architecture
designed for texture caching that is able to tolerate arbitrarily high
and variable amounts of latency in the memory system. In that
paper, they present a measure of a scene’s inherent intra-frame
texture locality called the unique texel to fragment ratio. This
ratio is the total number of unique texels that must be accessed in
order to draw a frame divided by the total number of fragments
generated for the frame, and it represents an upper bound on the
effectiveness of a cache that cannot exploit inter-frame locality.

Three factors affect the unique texel to fragment ratio of a
scene. First, when a texture is viewed under magnification, each
texel gets mapped to multiple screen pixels, and the ratio de-
creases. Second, when a texture is repeated across a surface, the
ratio also decreases. This temporal coherence can be exploited by
a cache large enough to hold the repeated texture. Third, when a
mip map texture is viewed under minification, the ratio becomes
dependent on the relationship between texel area and pixel area
characterized by the level-of-detail value.

The level-of-detail value determines the two levels of the mip
map from which samples are taken; the fractional portion is pro-
portional to the distance from the lower, more detailed level.
Given a texture mapped polygon that is parallel to the screen, a
fractional portion close to zero implies a texel area to pixel area
ratio of nearly one in the lower mip map level and a quarter in the
upper mip map level, yielding a texel to fragment ratio near 1.25.
Likewise, a fractional portion close to one implies a texel area to
pixel area ratio of four in the lower mip map level and one in the
upper mip map level, yielding a texel to fragment ratio near 5.

96

I

I
(

Graphics Pi

i
. . .

7
\ - - -- - --
zz

J J

Figure 2: Dedicated Texture Memory. Multiple graphics
pipelines simultaneously draw a scene by coordinating work
over a graphics network. To apply texture, a &action of the
untextumd tigments is distributed to each texture unit that
holds a replicated version of the scene’s texture data in a
dedicated texture memory. Texture is cached to reduce tex-
tore memory bandwidth.

The ratios are lower for polygons that are not parallel to the
screen. Normally, we expect a wide variation in the texel to
fragment ratio due to the fractional portion of the level-of-detail
value across the objects in a scene.

3 PARALLEL TEXTURE CACHING
A serial graphics pipeline is illustrated in Figure 1; performance
can be increased by deploying multiple copies of some or all of
the stages. Parallel rasterization distributes rasterization work
amongst multiple copies of the rasterization stages. Looking at
the texturing stage specifically, the role of the texture mapping
units in a system is to take as input tmtextured fragments with
texture coordinate information, access the appropriate data in the
texture memory based on these coordinates and filtering modes,
filter the data, and combine this filtered texture value with the
value of the untextured fragment. In order to scale the fragment
rate (i.e., the rasterization performance), the number of texturing
units must be increased to provide the necessary processing
power. Additionally, the number of texture memories must also
be scaled to provide the correspondingly increased bandwidth
requirements.

Figure 2 shows a dedicated texture memory scheme for scal-
ing the texture subsystem of a graphics pipeline. Each additional
rasterization pipeline brings with it a dedicated texturing unit and
texture memory. As the system scales, the total amount of texture
memory increases, but due to replication, the unique texture
memory remains constant. Figure 3 diagrams a shared texture
memory scheme for scaling the graphics pipeline. In this archi-
tecture, an all-to-al1 texture sorting network is introduced between
the texturing units and the texture memories. This allows any
texturing unit to access the data in any texture memory, allowing
a single shared image of the texture data to be present across all of
the texture memories. Many topologies exist for such networks
[4], and highly scalable networks can be built if the system bal-
ances the data going in and out of the network. We will not be
focusing on the network in this paper.

Figure 3: Shared Texture Memory. Multiple graphics pipe-
lines simultaneously draw a scene by coordinating work over
a graphics network. A fraction of the untextured fragments
is distributed to each texture unit, and each texturing unit can
access the texture data of any texture memory, allowing for a
single copy of the texture data system-wide. Texture caching
reduces both network and memory bandwidth.

With the architectures of Figure 2 and Figure 3, as with any
parallel system, it is important to minimize the amount of redun-
dant work introduced by parallelization and to balance the amount
of work in each processing unit. Efftcient parallel rasterization
algorithms deal with presenting each texturing unit with a bal-
anced number of untextured fragments that minimizes redundant
work, this problem has been extensively studied, and we make use
of a few such algorithms, as described in Section 4.1. The main
focus of this paper is to study the effects of parallel rasterization
on texture locality. Assuming that the number of untextured
fragments presented to each texturing units is balanced, one re-
quirement for good parallel performance is that the redundant
fetching of the same texture data across texturing units be mini-
mized. Furthermore, it is important to load balance the texture
bandwidth required by each texturing unit, and in the case of a
shared texture memory, the texture bandwidth required from each
texture memory.

4 METHODOLOGY
While it is clear that the parallel architectures of Figure 2 and
Figure 3 do potentially increase performance, the actual perform-
ance gains are still unclear. III this section, we lay out a frame-
work that will allow us to evaluate the performance of a parallel
texture caching architecture.

4.1 Parallel Rasterization Algorithms
The characteristics of parallel texture caching are highly depend-
ent on the parallel rasterization algorithm because this algorithm
determines which fragments are processed by which texturing
units and in what order. There are a great number of different
rasterization algorithms, and each algorithm has a number of pa-
rameters that can be varied. Because of the large number of vari-
ables, it is impractical to analyze every rasterization algorithm,
and thus we choose a few representative algorithms.

Parallel rasterization algorithms can be characterized along
three axes with regard to texturing. The first distinction to be

97

workload name 9-k* qurkr2x
screen resolution 1280 x 1024 1280 x 1024
depth, complm&v 3.29 3.29

percent trihheaf 30% 47%
unique texelsfrag 0 . 0 3 3 0.092

Table 1: The Scenes.

made is whether work is partitioned according to image-space
(each texturing unit is responsible for a subset of the pixels on the
screen) or object-space (each texturing unit is responsible for a
subset of the fragments generated by triangles). The second dis-
tinction is whether the texturing unit processes fragments imme-
diately in the order primitives are submitted or buffers fragments
and processes them in a different order. The third distinction is
whether fragments destined for the same location in the fiamebuf-
fer are processed in the order presented by the application. For
this paper, all of the algoritbrns we present preserve application
order.

n tiled In a tiled architecture, the screen is subdivided uni-
formly into fixed-size square or near-square tiles
and each texturing unit is responsible for a stati-
cally interleaved fraction of tiles. We have empiri-
cally found that 32 pixel by 32 pixel tiles work
well up to moderate levels of parallelism, and for
this paper, we will assume that tile size. In tiled-
prim, fragments are processed in primitive order.
This means that if a triangle overlaps several tiles
belonging to the same rasterizer, the fragments of
that triangle are completely processed before
moving on to the fragments of the next triangle. In
tiled-frame, the fragments of a frame are processed
in tile order. This means that a texturing unit proc-
esses all of the fragments for its first tile before
moving on to any of the fragments that fall in its
second tile.

n osi Algorithms that subdivide work according to ob-
ject-space usually distribute groups of primitives in
a round-robin fashion amongst rasterizers, giving
each rasterizer approximately the same amount of
per-primitive work. Because the number of t?ag-
ments generated by each primitive can vary
greatly, it is important to also load balance fiag-
ment work either by dynamically distributing
primitives, by subdividing large primitives, or by
combining the two techniques. In object-space
ideal (osi), we idealize the load balancing of frag-
ments. First, we serially rasterize all the primitives
to form a fragment stream, and then we round-
robin groups of 1024 fragments amongst the tex-
turing units.

* striped Similar to both the RealityEngine and the In-
finiteReality, fragments are subdivided according
to an image-space subdivision of 2 pixel-wide ver-

38% 187% 0% 1100%
3.706 Il.55 0.569 12.83

tical stripes. Each texturing unit is responsible for
an interleaved fraction of the stripes, and process-
ing is done in primitive order, as in tiled-prim.

4.2 Scenes
In order to quantify the effectiveness of parallel texture caching,
we need to choose a set of representative scenes that cover a wide
range of texture locality. A good measure of texture locality is the
scene’s unique texel to fragment ratio, and this ratio varies over
nearly two orders of magnitude in our test scenes. The scenes we
chose originated from three traces of OpenGL applications. In the
future, we expect to see more texture for a given screen resolu-
tion, increasing the unique texel to fragment ratio. To simulate
this effect, each of the traces was captured twice, once with the
textures at original size, and once with the textures at double
resolution. Table 1 summarizes some key statistics corn our six
scenes, described below:

8 quake This is a frame from the OpenGL port of the
video game Quake. This application is essen-
tially an architectural walkthrough with visibility
culling. Color mapping is performed on all sur-
faces which are, for the most part, large poly-
gons that make heavy use of repeated texture. A
second texturing pass blends low-resolution light
maps with the base textures to provide realistic
lighting effects. Approximately 40% of the base
textures are magnified, and 100% of the light
maps are magnified. In quake2x, texture resolu-
tion is doubled, and only the light maps are
magnified.

8 fright This scene from an SGI flight simulator demo
shows a jet flying above a textured terrain map.
The triangle size distribution centers around
moderately sized triangles, and most textures are
used only once. The order in which triangles are
drawn is irregular: the terrain data is drawn in
large tiles, but each tile of the terrain is drawn in
sets of triangles that are not contiguous in
screen-space. In flight, the majority of the tex-
ture (62%) is magnified, while injlight2x, only
13% is magnified, resulting in lower texture lo-
cality.

m qhv This scene comes from an OpenGL-based
QuickTime VR [2] viewer looking at a pano-
rama from Mars. This huge panorama, which
measures 8K by 1 K, is mapped onto a polygonal

98

approximation of a cylinder made of tall, skinny
triangles that are drawn in a regular order. Even
though all of the texture is magnified, the lack of
repeated texture keeps the number of unique
texels per fragment high in qtvr. In qtvr2x, all of
the texture data is minitied. Furthermore, be-
cause the level-of-detail in most of the scene is
just barely below a new mip map level, texture
accesses incur a high bandwidth demand.

All of the above scenes make use of mip mapping for texture
filtering. Mip mapping is crucial for providing locality in texture
access patterns under minification, a characteristic that all texture
caching rasterization architectures depend upon to run at full
speed. Scenes that lack mip mapping will experience significant
performance degradations under texture minification. The scenes
we use in this paper load balance hagment work relatively well
with respect to the parallel rasterization algorithms of Section 4.1,
as will be quantified in Section 5.3. Because these scenes load
balance well under our parallel rasterization algorithm, texture
bandwidth imbalance will not be hidden by fragment imbalance.

4.3 Simulation Environment
A cycle-accurate simulator of a parallel texturing subsystem was
written in C++ to provide an environment for collecting the data
presented in this paper. Our simulation infrastructure is based on
a methodology developed by Mowry [1 l] for simulating hardware
architectures. The simulator takes as input texture data and un-
textured fragment data, and produces rendered images as well as
trace data on the texture subsystem. The simulator is able to par-
tition this Bagment data among multiple instances of texturing
units in accordance with the parallel rasterization algorithms of
Section 4.1. Each texturing unit and each texture memory is made
up of multiple functional units that run as threads in the C++ envi-
ronment. The forward progress of each functional unit and the
communication between functional units adhere to a simulation
clock by making clock-awaiting function calls within each thread
at the appropriate points in the code. This allows us to simulate a
graphics architecture with cycle-accuracy at varying levels of
detail and collect data from the system in a non-intrusive fashion.

4.3.1 Data Organization
Given the high-level architecture of parallel texturing units that
are connected to memories through a texture cache, we must de-
cide how data is organized throughout the system. In accordance
with previous work [5], we group 2D texture data into 4D tiles so
that each cache block holds a square or near-square region of
texture and use an additional level of tiling (6D tiling based on the
number of cache sets) to reduce conflict misses. This is illustrated
in Figure 4. The exact parameters of the tiling are dependent on
the cache parameters entered into the simulator.

Based on previous studies regarding rasterization order [5], we
rasterize according to screen-aligned 8 by 8 tiles. We also add
another level of tiling to rasterization (every 32 by 32 pixels),
resulting in 6D tiled rasterization. To give a consistent rasteriza-
tion order across the studies in this paper, a serial rasterizer gener-
ates untextured fragments in this order and distributes them to the
appropriate texturing unit according to the parallel rasterization
algorithm.

For the purposes of this paper, we assume that the texturing
unit has enough computational power to perform a trilinear mip
mapped texture filter for each fragment with no performance loss.
According to Igehy et al. [6], a texture cache that is partitioned

I ,

Figure 4: Tiled Data Organization. The above diagram cor-
relates a location in an image with an address, expressed in
hexadecimal. An ‘x’ represents an arbitrary hexadecimal
number. The letI block shows the layout of a 4x4 image in
2D order. A 4x4 grid of these 2D blocks gives rise to a
16x16 image laid out in 4D order, illustrated in the center.
The first hexadecimal digit determines the block, and the
second hexadecimal digit determines the pixel within that
block. Similarly, a 4x4 grid of 4D blocks gives rise to a
64x64 image laid out in 6D order. Note that our choice of
4x4 blocking at each stage can be replaced with an arbitrary
blocking factor.

into two caches (one for even levels of the mip map, and one for
odd levels of the mip map) allows conflict-free access to the eight
texels of a trilinear interpolation. They demonstrate that in such a
configuration, the miss rate does not significantly improve with
increased associativity. We therefore use two direct-mapped
caches for the studies in this paper.

For a shared texture memory architecture, we must decide on
the distribution of texture data across the multiple texture memo-
ries. Texture data should be distributed in a finely interleaved
fashion to prevent hot-spotting on any single memory for any
significant period of time. In order to minimize the chance that
nearby texture tiles fall onto the same texture memory, we distrib-
ute each cache block of texture data across the texture memories
in a 4D tiled fashion. The exact parameters for this tiling are
dependent on the cache block size and the number of texture
memories used for a particular simulation. For example, with 16
texel cache blocks (organized in a 4 by 4 tile) and 4 texturing
memories, each cache block in a 2 by 2 tile of cache blocks is
given to a different texture memory.

4.3.2 Performance Model
While caching characteristics may be analyzed statically without a
performance model, such a model must be introduced in order to
analyze resource contention and parallel speedup. Our simulated
texturing unit is capable of texturing a single fragment every cy-
cle, and we provide 2 texels per cycle of bandwidth to each tex-
ture memory, an amount large enough to cover most of the band-
width demands of our scenes. This is a typical’bandwidth in
modem systems - see, for example, a calculation by Kirk [7].
The latency of each texture memory is set to 20 fragment clocks,
and a 64 fragment FIFO is used to hide the latency of the mem-
ory, values we replicate from previous work based on modem
memory devices [6]. Because arbitrary amounts of latency can be
hidden through the use of prefetching and a fragment FIFO, our
results are not dependent on these values.

In a serial texturing unit, a fragment FIFO serves not only to
hide the latency of the memory system, but also to smooth out
variations in temporal bandwidth requirements. Even if a scene’s
overall bandwidth requirement is low, temporal bandwidth re-
quirements can get extremely high when several consecutive
fragments miss in the texture cache. If this temporal imbalance is

99

microscopic (e.g., over tens of fragments), then a fragment FIFO
can smooth out the contention for the memory system. However,
this imbalance is often macroscopic (e.g., over tens of thousands
of fragments): a fragment FIFO is unable to resolve the fragment-
to-fragment contention for the texture memory and performance
suffers.

In a parallel texture caching system with shared texture memo-
ries, contention can also occur between texturing units for the
texture memories, and thus, the network. In order to reduce the
number of free variables in this paper, we choose to model the
network as perfect (no latency and infinite bandwidth) and there-
fore focus on memory contention effects. Network contention is
related to memory contention in a fully simulated system, and
prefetching is able to successfully hide arbitrary amounts of net-
work latency in texture caching.

5 RESULTS
Parallel texture caching can be analyzed according to common
parallel algorithm idioms. First, parallel texture caching incurs
redundant work in the form of repeated texture data fetching.
This reduction in locality is quantified in Section 5.1. The effect
of multiple caches on working set size is described in Section 5.2.
Second, it is essential that parallel texture caching be load bal-
anced, and we quantify this in Section 5.3. Finally, in Section 5.4,
we use a cycle-accurate simulation to demonstrate that good par-
allel speedup does in fact occur.

Contrary to traditional microprocessor cache studies, we pres-
ent cache efficiency data in terms of bandwidth per fragment
rather than miss rate per access. In a microprocessor architecture,
miss rate is of primary importance because only one or a few
outstanding misses can be tolerated before the processor stalls.
Because of the lack of write hazards, texture caching can tolerate
arbitrary numbers of outstanding reads [6], and thus, performance
is related more to its bandwidth demands.

5.1 Locality
As with most parallel algorithms, parallel texture caching induces
inherent overhead beyond that found in a serial algorithm due to
redundancies. For parallel texture caching, this is best character-
ized by the redundant fetching of the same texture data by multi-
ple texturing units - a reduction of locality. In a serial graphics
system, an ideal texture cache would fetch each texel used in the
scene only once (assuming the cache is sized to exploit only intra-
frame locality). The bandwidth required for such a cache can be
computed by counting the number of compulsory misses (i.e.,
cold misses) taken by the cache that employs a block size of a
single texel. As we make the block size larger, fewer misses are
taken, but the amount of data read by each miss increases. Over-
all, we expect the total amount of data fetched due to compulsory
misses to increase with the block size because of edge eficts:
whenever a texture falls across the edge of a screen, the silhouette
edge of an object, or the edge of a parallel work partitioning,
larger block sizes force the cache to fetch larger portions of the
texture data that are never used. By measuring the bandwidth
attributable to compulsory cache misses, Figure 5 illustrates the
reduction of locality caused by the various rasterization algo-
rithms as the number of texturing units and block size are varied.

The lightest portions of the bars in Figure 5 indicate the aver-
age bandwidth required to satisfy the compulsory misses of a

serial texture cache for the various rasterization algorithms. For a
serial texturing unit, all of the algorithms perform equally because
the number of compulsory misses is scene-dependent. We see
that as block size is increased, the bandwidth requirement for a
serial rasterizer increases slightly for the flight data set pair and
negligibly for quake and qtvr data set pairs. In qtvr, the edge
effects occur only near screen edges, which accounts for a negli-
gible portion of the total work. In quake, the texture used at the
edge of polygons is repeated from the middle of the polygons,
thus negating edge effects from polygons.

The bottom portion of each bar represents the optimal band-
width requirements of a serial texture cache, and each successive
portion of the bar represents the additional bandwidth required to
satisfy additional texturing units. We simulate an infinite number
of texturing units, the top-most portion of each bar, by assigning
the smallest granularity of work for each rasterization algorithm to
a unique texture unit. For a tiled architecture this quantum of
work corresponds to a single tile, for object-space interleaving
this corresponds to a single contiguous block of fragments. This
defines the locality present in a rasterization algorithm’s minimal
unit of work. Also note that because we are counting compulsory
misses, the order in which fragments are processed has no effect,
and thus the results for tiled-prim and tiled-j?ame are identical.

As a detailed example, for a tiled architecture on theflight2x
scene, we see that for a block size of 16 texels (arranged in a 4 by
4 tile), a single texturing unit requires approximately 1.67 texels
per fragment. If work is distributed amongst two texturing units,
then the bandwidth required increases to approximately 2.17 tex-
els per fragment. This occurs because edge effects are introduced
at the boundaries of tiles, reducing the tile-to-tile locality. For
four texturing units, the bandwidth requirement slightly increases
to 2.26 texels per fragment, but as work is distributed amongst
additional texturing units, the bandwidth requirements do not
increase significantly. The reason for this is that most of the tex-
ture in the scene is unique, and while the tiles of a two-way par-
allel system touch at their comers and thus share some of the tex-
ture data of an object (tile-to-tile locality), this adjacency goes
away completely in four-way parallel and larger systems. We
also see that as block size is increased from 1 to 16 to 64 texels,
the bandwidth requirements increase significantly because the
over-fetching of larger block sizes is multiplied by the large num-
ber of tile edges. These aforementioned behaviors are all mir-
rored inflight, qtvr, and qtvr2x.

Although the effects of larger block sizes are the same, the
bandwidth requirements of quake and quuke2x on the tiled archi-
tecture are quite different as the number of rasterizers is increased.
The first thing to notice about these scenes is the low bandwidth
requirements of the serial case due to the heavy use of repeated
textures. Furthermore, as opposed to the other scenes, as the
number of texturing units is increased, the bandwidth require-
ments always increase. The use of repeated textures causes this
because the same texture data is used repeatedly across the image-
space partitioning. However, even with an infinite number of
texturing units, the total bandwidth requirement is still quite lim-
ited. In effect, although parallel rasterization diminishes texture
locality due to repeated texture, locality due to filtering remains.
This means that texturing subsystems that are designed to perform
well only in conjunction with repeated textures do not parallelize
well.

100

5 ._“____._ .-
quake quake2x qti flight fllght2X wf2x

0
1 4 16 64 I 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

block size

1 4 16 64 1 4 16 64 I 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

block size

15

1. -

_ .___- _._. - ._.. _.__

quake quake2x w tlight
10“____ .

S

0
1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 I 4 16 64 1 4 16 64

block she

Textuhg Units

01 2 r4 = 16 164 I iuf

Figure 5: Bandwidth Due to Compulsory Misses. This study shows the bandwidth requirements (measured in average number of tex-
els fetched per fragment) associated with compulsory misses as a function of rasterization algorithm, scene, block size, and number of
texturing units. The top row represents the data for the tiled rasterization architecture, the middle row for the osi architecture, and the
bottom row for the striped architecture. Scenes are sorted left to right by their unique texel to fragment ratio, which indicates the
minimum bandwidth required. Each bar chart shows the bandwidth requirements for a different block size, and the shades of gray
show the bandwidth requirements for differing numbers of texturing units. The shades of gray increase in darkness as the number of
texturing units is increased, and the bandwidth required for greater numbers of texturing units increases monotonically. Finally, note
that for clarity, the bandwidth values for striped rasterization are shown with a split scale axis.

101

o III Ill 0 III Ill 0 I I I I I I 0 I I I I I 1
12 4 8 163264 12 4 8 163264 12 4 8 163264 12 4 8 163264

cache size [KB] cache size [KBI cache size [KBI cache size [KB]

Texturing Units
41 ->t 2 -0-4 -m- 16 -A- 64 + inf

. . . Figure 6: The Effects of Cache Size. The total bandwidth (measured in average number of texels per tragment) requirea to render
flight2x is plotted as a function of the cache size. Each chart shows a different rasterization architecture, and each curve represents a
different number of texturing units. Block size is set to 16 texels for all the graphs except striped, which has a block size of 1 texel.

The behavior of osi largely mirrors the performance of tiled,
with the exception that bandwidth requirements continue to in-
crease as additional texturing units are utilized. This is explained
by the fact that osi is fragment-interleaved, and the chance that a
texturing unit’s consecutive fragment groups utilize adjacent por-
tions of a texture map decreases smoothly as the number of tex-
turing units is increased. For both tiled and osi, we see that a
block size of 16 texels provides reasonable locality given the
granularity of access needed for efficient memory utilization and
efficient network utilization. Thus, for the remainder of the paper,
we assume a block size of 16 texels for tiled and osi.

The behavior of the striped rasterization algorithm is markedly
different from both tiled and osi. The most important thing to
notice is that bandwidth requirements increase dramatically with
increased block size. Because interleaving is done at every 2
pixels in the horizontal direction, edge effects occur very fre-
quently. As block size is increased, a drastically larger number of
texels that fall beyond a stripe’s required set of texels are fetched.
Thus, striped architectures reduce texture locality drastically.
Even at a block size of 1 texel for striped, locality is much worse
than at a block size of 16 for tiled or osi. We note that a single
texel is a very small granularity of access for modem networks
and memories, and that most modem devices perform highly sub-
optimally at such granularities. Nonetheless, this is the only block
size that preserves a modicum of locality for striped, and for the
remainder of the paper, we assume a block size of 1 texel for the
striped architecture.

5.2 Working Sets
Now that we have an understanding of the effects of cache block
size on locality under parallel rasterization, we move onto the
effects of parallel rasterization on working set sizes by using lim-
ited-size caches that suffer misses beyond compulsory misses. As

the number of texturing units is increased, the total amount of
cache in the system increases, and thus we expect better perform-
ance. Figure 6 quantities this notion by showing the bandwidth
requirements of the various architectures with differing numbers
of texturing units for theJighr2n data set as the total cache size is
varied. In general, there is a correlation between an algorithm’s
working set size and the point of diminishing returns in increasing
cache size, illustrated as the “knee” in the curves of Figure 6. We
see that as the number of texturing units increases, the working set
size for each texturing unit decreases.

These same characteristics were found for all of the data sets.
Because we want to pay attention to low levels of parallelism and
systems that scale a serial texturing unit, we focus on a single
cache size that works well for a serial algorithm. Choosing such a
parameter outside of hardware implementation constraints is a bit
of a black art, and thus we use parameters from previous work [6]
for consistency’s sake and allocate a cache size of 16 KB (config-
ured as two direct-mapped 8 KB caches) for the remainder of this
paper. Figure 7 shows the bandwidth requirements of the various
algorithms on the various scenes with a 16 KB cache. The first
trend we notice is that while there is an initial jump in bandwidth
demand when going from one texture unit to two texture units, the
bandwidth demands are largely flat with increasing numbers of
texture units. Moreover, for some traces, particularly flight and
flight2x, the bandwidth demands actually decrease after the initial
increase. This is a well-known phenomenon from parallel sys-
tems wherein the aggregate cache size increases more rapidly than
the aggregate miss rate, resulting in improved cache behavior with
increasing parallelism.

One interesting result is that although tiled-frame performs
better than tiled-prim for the jlight and qntr data set pairs, the
opposite is true for the quake data set pair. In flight, and to a
lesser extent qtur, the disjoint drawing of triangles in image-space

102

quake jlight qtvr

0 I I I I I I 0 I I I I I I 0 I I I I I I
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

texture units texture units texture units

Parallel Rasterization Algorithm Texture Resolution

- tiled-prim - - striped _. _. osi - - - tiled-frame 0 lx texture A 2x texture

Figure 7: Bandwidth Requirements of a 16 KB Cache. In these graphs, bandwidth is displayed as a function of the number of raster-
izers. Both the normal and the 2x resolution versions of each scene are shown on the same graph. Block sizes are the same as in
Figure 6, and each curve shows the bandwidths for a different parallel rasterization algorithm.

makes it advantageous to wait until all of the triangles of a tile are
present before texturing due to increased temporal locality. In
quake, however, it is more advantageous to texture large polygons
that fall into multiple tiles immediately because the different re-
gions of the polygon all use the same repeated texture data.

5.3 Load Imbalance
The performance of any parallel system is often limited by load
imbalance: if one unit is given significantly more work than the
other units, it will be the limiting factor, and performance will
suffer. In parallel texture caching, load imbalance can occur in
one of three ways. First, the number of untextured fragments
presented to each texturing unit can differ. Second, the band-
width required for texturing the fragments of a texturing unit may
vary. Third, the bandwidth required from each texturing memory
can differ. In a dedicated texture memory system, the last two
sources of imbalance are identical because each texturing unit is
paired with a single texture memory.

Figure 8 shows the various types of load imbalance of the
various scenes on the different architectures. The first trend to
note is that all of the configurations load balance well in all re-
spects when there are 16 or fewer texturing units (the worst im-
balance is 9.7%). However, as the number of texturing units is
increased to 32, and especially 64, there is a large imbalance in
the bandwidth requirements of the texturing units. This imbal-
ance is significantly larger than fragment imbalance, and the trend
occurs in all of the rasterization algorithms except striped and on
all of the data sets except the qtvr pair, which exhibits extreme
regularity in texture access patterns. The striped algorithm is
highly load balanced even at high numbers of texturing units be-
cause of its fine interleaving pattern. However, this positive result
is moderated by the fact that the baseline for the striped data in-

cludes significantly more redundant bandwidth than the other
rasterization algorithms.

The second important trend in Figure 8 is the effect of shared
texture memory on texture memory load imbalance. In a dedi-
cated texture memory system, the load imbalance between texture
memories is equal to the load imbalance between texturing units.
In a shared texture memory architecture, the load imbalance be-
tween texture memories is relatively small. Thus, we see that
distributing blocks in a tiled fashion across the texture memories
does in fact balance texture load well, usually to such an extent
that shared texture memory imbalance is much lower than the
dedicated texture memory imbalance

5.4 Performance
While the experiments of the previous sections illuminate many
characteristics of parallel texture caching, they say nothing about
realized performance. In particular, the temporal effects of erratic
intra-frame bandwidth demands are ignored. Even though a
scene’s memory bandwidth demands may be low when averaged
over an entire frame, its memory bandwidth demands averaged
over a few fragments can actually be quite high. Figure 9 divides
the execution time of a serial texturing unit into three categories:
time spent on fragment processing, time lost due to insufficient
memory bandwidth, and time lost due to fragment-to-fragment
contention for the memory. We see that only jlight2x and qtvr2x
have average memory bandwidth requirements beyond 2 texels
per fragment, and thus even perfect smoothing of fragment-to-
fragment contention could not achieve a performance of one cycle
per fragment. We also see that contention time is nearly uniform
across all rasterization architectures with the exception of striped,
which performs better due to smaller block sizes. In general,
uncovered contention occurs in scenes that have large variations

103

slriped I osi tiled-prim I d&d-he

4 8 16 32 64

ii...
2 4 8 16 32 64

2 4 8 16 32 64

2 4 8 16 32 64

ii;I.,
2 4 8 16 32 64 33

1

2 4 8 16 32 64
50

25 0 i
2 4 8 16 32 64

4 8 16 32 64
L,,

4 8 16 32 64
Hl....
“1’ 4 8 16 32 64

2 4 8 16 32 64

2 4 8 16 32 64 2 4 8 16 32 64

4 8 16 32 64

!ll+++?~
4 8 16 32 64

it,
4 8 16 32 64

~i’-~
2 4 8 16 32 64

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

-frag D miss -bank

Figure 8: Load Imbalance. Each graph shows load imbalance for different numbers of rasterizers. The y-axis of each graph shows
the percent difference in the work performed by the busiest unit and the average unit. Each row shows a different scene, and each col-
umn shows a different parallel rasterization algorithm. The rows and columns have been sorted so that the scenes and rasterization al-
gorithms that perform best are at the upper left and the ones that perform worst are at the lower right. Three types of load imbalance
are shown. Fragment load imbalance is the maximum number of fragments given to a texturing unit divided by the average number of
fragments per texturing unit. Miss load imbalance is the worst rasterizer’s number of misses per fragment divided by the average
number of misses per fragment. Bank load imbalance is the maximum number of access per texture memory in a shared memory ar-
chitecture divided by the average number of accesses per memory. For these experiments, we use the same cache and block sizes as
the experiments in Figure 7.

in macroscopic bandwidth requirements. Whenever bandwidth
requirements peak beyond 2 texels per fragment over large peri-
ods of time, temporal memory contention cannot be resolved by
the 64entry fragment FIFO. This occurs most in flight& and to
a lesser extent, in flight and quake2x. In qtvr2x, temporal band-
width requirements are always over 2 texels per fragment, and in
quake and qtvr, bandwidth requirements are consistently under 2
texels per fragment, resulting in little temporal contention that is
not covered by the 64-entry fragment FIFO.

The serial runs of Figure 9 serve as a baseline for computing
speedup of parallel texture caching runs. In the first row of Figure
10, we graph the speedup of a dedicated texture memory archi-
tecture. Across all of the runs, excellent speedup is achieved
through 16 texturing units. For the scenes whose bandwidth re-
quirements are usually met by the 2 texel per cycle memory sys-

tem - quake, quake2x, jlight (except in striped), and qtvr - the
speedup is near-linear. For the scenes that exceed this bandwidth
-jlight2x and qtvr2x - the speedup efficiency is dictated by the
inefficiency of the cache with respect to a serial cache, as graphed
in Figure 10. Beyond 16 texturing units, some of the speedup
curves exhibit lower speedup efficiency. Referring back to the
load imbalance graphs in Figure 8, we see that this occurs in the
configurations that exhibited significant load imbalance in the
amount of bandwidth requested by each texturing unit. As ex-
pected intuitively, the fragment-to-fragment memory contention
plays an insignificant role in speedup efiiciency.

In the second row of Figure 10, we graph the speedup of a
shared texture architecture. The speedup efficiencies realized are
almost identical to a dedicated texture architecture at or below 16
texturing units. At higher numbers of texturing units, however,

104

2.0
tiled-p&n tiled-jiwtte osi St+?d

7

ideal I bandwidth m contention

Figure 9: Breakdown of Serial Time. This graph breaks
down the execution of a serial texturing unit across different
scenes and rasterization algorithms. Execution time is nor-
malized to cycles per fragment, and the light gray bar shows
the ideal cost, assuming one fragment is processed per cycle.
The dark gray bar shows the cost of insufficient memory
bandwidth for a 2 texel per cycle memory system. If the ra-
tio of a scene’s average memory bandwidth requirement to
the memory system’s bandwidth supply is greater than one,
then this cost is tallied. The black bar represents the cost of
fragment-to-fragment memory contention incurred by the 64-
entry fragment FIFO’s inability to smooth out temporal
bandwidth variations. These experiments use the same cache
parameters as used in Figure 7.

these speedup efficiencies are generally better than a dedicated
architecture for the configurations that exhibited large load imbal-
ance. This can be explained by the fact that in a shared texture
architecture, the texturing unit with the highest miss rate spreads
its memory requests across many texture memories, and thus per-
formance becomes dependent on load imbalance amongst the
texture memories, which is much lower than texturing unit imbal-
ance. In effect, the busiest texture unit is able to steal memory
bandwidth that would go unused in a dedicated texture memory
system.

6 DISCUSSION

6.1 Texture Updates
One reason parallel texture caching is so’ straightforward to im-
plement is that texture mapping is mostly a read operation. This
allowed us to use multiple caches on the same data without the
need for a complex coherence protocol to detect changes in the
texture memory caused by another texturing unit. However, any
real system with a shared texture memory will have to deal with
such texture updates. There are two potential hazards when a
texture is updated. First, a texture read for a fragment generated
by a polygon submitted before the texture update could read the
new contents of the texture rather than the old contents. The con-
verse could also occur when a fragment generated by a polygon
submitted after a texture update reads texture values that are stale.
These problems arise both because texture updates are large

events which do not necessarily occur atomically, and, more sim-
ply, because the work being performed at any point in time by one
texture unit (e.g., downloading a texture) is generally not tightly
coupled with the work being performed by another texture unit
(e.g., processing fragments).

One solution to these hazards is to force texture updates to oc-
cur atomically and to introduce a strict ordering of operations
between the texturing units during texture update. This is most
naturally expressed by performing a barrier operation across all of
the graphics system at the start of the texture update to ensure that
previous accesses to the old texture have completed, and a second
barrier operation at the end of the texture update to ensure that the
new texture is in memory before any new fragments access it.
The barriers could be implemented either in hardware via a shared
signal among the texturing units, thus allowing the rest of the
pipeline to make progress, or in the software driver, forcing a
flush of the graphics pipelines. Additionally, texturing units must
flush stale data from their caches in conjunction with texture up-
dates.

6.2 Feasibility
While we have deliberately avoided the consideration of what
interconnection network to use in a system which implements a
shared texture memory, this is not due to inherent difficulty. A
number of well-known networks exist that provide scalable, pin-
efficient point-to-point interconnections suitable for carrying the
relatively high bandwidth demands of a shared memory system.
Our ability to hide memory latency, and by extension network
latency, for texture mapping makes it easy to incorporate such a
network into a typical rasterization architecture. While architec-
tures to date have focused on replicated memories, and thus nec-
essarily try to minimize the number of rasterizers, this study
shows that a high degree of rasterization parallelism can be effi-
ciently supported on a shared texture memory system.

7 CONCLUSION
In this paper, we demonstrated that parallel texture caching works
well across nearly two orders of magnitude of parallelism, from a
serial texture unit up to 64 texture units. For example, tiled
raster&&on using parallel texture caching exhibits over 84%
utilization at 32 processors across all the scenes in our studies.
Parallel texture caching is general enough to work with a variety
of algorithms, including both image-space and object-space, as
well as primitive order and tile order architectures. While tiled
architectures typically exhibit significantly better cache behavior
that striped -architectures, parallel texture caching remains quite
effective with a sufficiently small block size for striped architec-
tures. We confirmed that the working set size decreases with
increasing parallelism, allowing the use of a serial architecture’s
texture cache for a parallel architecture. We also demonstrated
that a shared texture memory system not only has the obvious
benefit of eliminating replicated textures, but it also further in-
creases performance over a dedicated memory system by distrib-
uting contention over multiple memories.

Acknowledgements
We would like to thank Kekoa Proudfoot, Gordon Stoll, Milton
Chen, John Owens, and the rest of the Stanford Graphics Lab for
their insights about this work. Financial support was provided by
NVIDIA, Intel, the Fannie and John Hertz Foundation, and
DARPA contract DABT63-95C-0085POOO06.

105

tiled-prim tiled-frame

16 32 48 64

texture units
16 32 48 64

texture units

16 32 48 64

texture units

64

2 48

g 32
$

16

16 32 48 64

texture units

osi

3
48

8 32
&
v1 16

16 32 48 64

texture units

16 32 48 64

texture units

striped

16 32 48 64

texture units

9
48

f 32

v, 16

Data Set
--+- flight + quake + qtvr -n-- flight2x -x-- quake2x --+--- qtvdx - ideal

Figure 10: Speedup Graphs. These speedup graphs show speedup as a function of the number of texturing units. The top set of
graphs show speedup curves for dedicated texture cache architectures, and the bottom set of graphs show speedup curves for shared
texture memory architectures. Each column holds a different parallel rasterization algorithm, and the curves on each graph show
speedup for a different scene.

References
K. Akeley. RealityEngine Graphics. Computer Graphics
(SIGGRAPH 93 Proceedings), 27, 109-116, 1993.

Hl

RI

t31

r41

PI

WI

S. E. Chen. QuickTime VR: An Image-Based Approach to Virtual
Environment Navigation. Computer Graphics (SIGGRAPH 95
Proceedings), 29,29-38, 1995.

M. Cox, N. Bhandari, and M. Shantz. Multi-Level Texture Cach-
ing for 3D Graphics Hardware. Proceedings of the 2.5’ Intema-
ttbnal Symposium on Computer Architecture, 1998.

J. Duato, S. Yalmanchili, and L. Ni. Interconnection Networks.
IEEE Computer Society Press, 1997.

2. Hakura and A. Gupta. The Design and Analysis of a Cache Ar-
chitecture for Texture Mapping. Proceedings of the 2& Interna-
tional Symposium on Computer Architecture, 1997.

H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching in a Texture
Cache Architecture. Proceedings of the 1998 SIGGRAPH / Eu-
rographics Workshop on Graphics Hardware, 133-142, 1998.

[7] D. Kirk. Unsolved Problems and Opportunities for High-quality,
High-performance 3D Graphics on a PC Platfotm. Proceedings of
the 1998 SIGGRAPH / Eurographics Workshop on Graphics
Hardware, 11-13, 1998.

[8] S. Molnar. The PixelFlow Texture and Image Subsystem. Pro-
ceedings of the I@’ Eurographics Workshop on Graphics Hard-
ware, 3-13, 1995.

[9] S. Mohnu, J. Eyles, and J. Poulton. PixelFlow: High-Speed Ren-
dering Using Image Composition. Computer Graphics
(SIGGRAPH 92 Proceedings), 26,231-240, 1992.

[lo] J. Montrym, D. Baum, D. Dignam, and C. Migdal. InfiniteReality:
A Real-Time Graphics System. Computer Graphics (SIGGRAPH
97 Proceedings), 31,293-302, 1997.

[l I] T. Mowry. Personal Communication. Carnegie Mellon Univer-
sity, 1999.

[12] A. Vartanian, J. Bechennec, and N. Drach-Temam. Evaluation of
High Performance Multicache Parallel Texture Mapping. Pro-
ceedings of the 12’h ACM International Conference on
Supercomputing, 289-296,1998.

106

