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Abstract 

In this paper we present an algorithm for low-cost hardware 
antialiasing and transparency. This technique keeps a central Z 
value along with compact floating-point Z gradients in the X and 
Y dimensions for each fragment within a pixel (hence the name 
Z3). It uses a small fixed amount of storage per pixel. If the 
visible complexity of the pixel exceeds the storage space available 
for the pixel, the minimum number of fragments having the closest 
Z values are merged. This combines different fragments from the 
same surface, resulting in both storage and processing efficiency. 

When operating with opaque surfaces, Z3 can provide superior 
image quality over sparse supersampling methods that use eight 
samples per pixel while using storage for only three fragments. Z3 
also makes the use of large numbers of samples (e.g., 16) feasible in 
inexpensive hardware, enabling higher quality images. It is simple 
to implement because it uses a small fixed number of fragments per 
pixel. 

Z3 can also provide order-independent transparency even if 
many transparent surfaces are present. Moreover, unlike the 
original A-buffer algorithm it correctly antialiases interpenetrating 
transparent surfaces because it has three-dimensional Z information 
within each pixel. 
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1 Introduction 

Aliasing is caused by insufficient sampling [Z, 71. To attenuate 
aliasing problems, the scene must be sampled at many positions 
within each pixel when it is rendered. Sampling can be done either 
uniformly or nonuniformly [9]. Nonuniform sampling methods, 
such as the stochastic sampling [6], are mostly implemented, in 
software. Uniform sampling is also known as supersampling, and is 
implemented in most of the high-end graphics architectures today 
[11[201. 

A problem with supersampling is the enormous amount of 
memory it requires. For example, a conventional 1280x1024 
frame buffer with 32-bit color and 32-bit depth takes 10 Megabytes 
(MB) of memory. But with 4x4 supersampling, it requires more 
than 160 MB of memory. Worse than the memory capacity, 4x4 
supersampling would require 16 times the memory bandwidth, or 
for a given memory bandwidth would slow down rendering by a 
factor of around 16. 

In many cases, supersampled pixels with large numbers of 
sample points have sample color and depth values that are similar 
to values at other sample points. For some pixels partially covered 
by foreground objects and background objects, the color and Z 
values are clustered into groups with similar values. For pixels 
covered by objects steeply receeding from the viewer, although 
the subsample Z values may vary significantly, they still can be 
represented mote compactly than many discrete values since they 
are a planar surface. If we had a way of taking advantage of these 
redundancies to compress the color and Z information into a smaller 
memory footprint, it would result in reduced cost, lower bandwidth 
requirements, and potentially higher system performance. We 
would also like these algorithms to require only a single pass and to 
be compatible with conventional rendering systems. 

In software implementations of antialiasing, the use of dynamic 
memory allocation can be used to vary the amount of storage used 
by each pixel. However dynamic storage allocation is quite difficult 
and expensive to implement in hardware, so instead we would like 
a compression technique that uses the same amount of storage 
for every pixel. Given these requirements, such a compression 
technique would be expected to result in modest errors for more 
complex pixels (those with multiple surfaces of different colors) 
as compared to simple pixels which should be rendered exactly. 
This paper investigates techniques to make the resulting errors as 
small as possible (when judged by the human eye) while using the 
smallest amount of per-pixel memory. 

1.1 Accurate Subpixel 2 Values 

Accurate treatment of subpixel Z values is in some ways more 
important than the accuracy of subpixel color values because 
small errors in Z values can lead to dramatically different pixel 
colors due to errors in occlusion calculations. Moreover, most 
real-world models have interpenetrating objects and fragments with 
overlapping Z ranges. Any technique that tries to reduce the storage 
requited by Z entries has to pay special attention to various cases of 
interpenetrating and adjacent objects. 
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There are several possiblities for a more compact subpixel Z 
representation: 

1. Single Z at pixel center - This has the advantage of 
simplicity, but provides the least information. Like other 
approaches that rely on one value, it is impossible to antialias 
interpenetrating surfaces based on a single value. Even worse, 
for fragments that do not cover the pixel center, the Z value 
associated with the fragment can be totally outside of its Z 
range. In the upper left example of Figure 1, this will lead 
to fragment B being visible and fragment A not being visible, 
even though the reverse is true. 

2. Zmlu and Zmax - In the original A-buffer paper [4] a Zmax 
and a Zmin are used. These are used to estimate blending 
assuming the surfaces’ slopes have opposite signs and the 
surfaces are interpenetrating. However, this case cannot be 
distinguished from the upper right case of Figure 1, since no 
information about the slopes are known. In this example, 
A and B should not be blended roughly equally, but instead 
fragment A completely obscures fragment B. 

3. Fragment subpixel Z average, or Centroid adjust - One 
way to improve the accuracy in cases like the upper left of 
Figure 1 is to define each fragment’s Z value to be the average 
Z value (or centroid) of the sample points covered by the 
fragment. This works in cases like the upper left example, 
but it fails in others. Also, because it does not have any slope 
information, cases like the bottom left in Figure 1 will still not 
antialias. Instead the pixel will snap from fragment A’s color 
to fragment B’s color as B moves toward the viewer. 

4. Zdx and Zdy slopes - As can be seen by the previous 
approaches, having complete subpixel Z information is 
crucial to proper rendering of many subpixel situations [14]. 
X and Y slope information in combination with Z specified at 
the pixel center can be used to regenerate individual subpixel 
Z values accurately[l7]. Alternately, the EXACT method 
[19] computes the line of intersection between two fragment 
planes with Z slopes for both fragments using tables. This 
is input to methods which compute the pixel color based on 
area weighting [18]. In this paper we propose slope-based 
subpixel sampling techniques which we believe lead to easy 
implementation in VLSI designs. 

1.2 Order-Independent Transparency 

Traditional implementations of supersampling do not support 
transparency unless objects are sorted before rendering. Even 
with triangle sorting, interpenetrating transparent fragments are not 
handled correctly. The A-buffer algorithm can provide the benefits 
of antialiasing and order-independent transparency at the same 
time, but it does not handle interpentrating opaque or transparent 
surfaces correctly. It also requires that all polygon fragments that 
can affect a pixel’s color be kept until the drawing of the frame is 
complete. Only polygon fragments that are completely occluded 
by an opaque fragment may be deleted. Thus, in the worst case 
with many transparent objects, the A-buffer algorithm may require 
a potentially unboundedamount of memory for each pixel. 

Two high-end graphics systems, the Megatek Discovery sys- 
tem[l3] and the Sogitec Aztec system[5], both implement versions 
of the A-buffer algorithm. Neither of these systems use Z gradients. 
The Megatek Discovery system maintains fragment lists of up to 23 
fragments per pixel[l6]. In practice the Megatek implementation 
never merges fragments. Fragments can fall off fragment lists 
if they exceed the maximum list length. The Sogitec AZtec 
system always merges fragments if they have the same object tag, 
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Figure 1: Difficult cases for non-complete Z information. 

their Z values differ by at most a predetermined value, they are 
non-overlapping, and they have colors that differ by at most a 
predetermined value. It also merges the last two fragments in a 
list if it runs out of per-pixel storage. 

1.3 Our Algorithm 

In this paper, we present the Z3 algorithm for low-cost hardware 
antialiasing and order-independent transparency. It groups 
subpixels into fragments containing X and Y Z slopes plus center 
referenced Z values. Each slope is a one byte floating-point 
value, so this method has smaller memory requirements than sparse 
supersampling. It uses a small fixed amount of memory per pixel 
but a large number of sample points stored in a coverage mask. 
If the visible complexity of the pixel exceeds the storage space 
available for the pixel, the minimum number of fragments having 
the closest Z values are merged. This combines fragments from the 
same surface without leading to artifacts. 

Z3 can provide superior image quality to sparse supersampling 
methods that use eight samples per pixel while using storage 
for only three fragments. This technique also makes the use 
of large numbers of samples (e.g., 16) feasible in inexpensive 
hardware. It is simple to implement because it uses a small 
fixed number of samples per pixel. Like traditional supersampling 
techniques it properly antialiases opaque interpenetrating objects. 
However, it also provides order-independent transparency and 
antialiasing of interpenetrating transparent objects. Z can provide 
order-independent transparency even if many transparent surfaces 
are present, albeit at a cost of slightly more memory. 

2 Related Work 

In the traditional graphics pipeline [8], the polygons which describe 
the surface of objects to be rendered are raster&d into a frame 
buffer and a depth buffer. 

2.1 Supersampling and A-buffer Techniques 

Both supersampling and the A-buffer consume too much memory 
in their original forms for low-cost implementations. Several 
multi-pass rendering algorithms have been proposed to reduce the 
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memory requirements of supersampling and the A-buffer. The 
Accumulation buffer [lo] can produce the quality of supersampling 
without increasing the size of frame buffer. The Virtual Pixel Maps 
technique proposed by Mammen [ 1 I] and its variation proposed by 
Winner et. al. [21] replace A-buffer’s unbounded list of visible 
objects by a moving depth buffer, in addition to the Z buffer used 
by opaque surfaces. However, the performance of these algorithms 
suffer due to their multi-pass nature. 

2.2 Subpixel Sampling Methods 

There are several different ways to sample points within a pixel. 
Software methods[6] may use many sample points (e.g., 100) with 
near random distributions, but hardware is typically limited to a 
modest number of sample points (16 or less) on a regular grid. 
Early hardware approaches such as the Silicon Graphics (SGI) 
RealityEngine [l] used a 4x4 array of sample points. A simple 
4x4 array of points has the disadvantage of producing only a few 
intensity steps for moving edges that are near vertical or horizontal. 
We call this approachfull supersampling. 

To address this limitation, &chilling [18] proposed an area 
weighting method which can give a full range of intensities as a near 
vertical or horizontal edge is moved across a pixel. Near vertical or 
horizontal edges are important because they can produce “jaggies” 
that turn into distracting “crawlies” when animated. However, this 
method has the disadvantage of lighting subsamples which are not 
actually covered by the primitive, and so can lead to artifacts. A 
variant of this technique was implemented in SGI’s RealityEngine. 

More recently, a technique we call sparse supersampling has 
appeared in SGI’s Infinite Reality [15]. Here the number of actual 
sample points is less than the number of potential sample points in 
the grid. By chasing at most one sample point on each row and 
column, it is possible to get n intensity steps from n sample points 
distributed on a n x n grid for moving near vertical or horizontal 
edges. It is also possible to choose the sample points so that each 
quadrant of the pixel has similar weighting. This is important to 
prevent flashing of sub-pixel sized moving objects. 

Sparse supersampling can give more accuracy than full 
supersampling for a given number of sample points without 
introducing artifacts. Therefore in most of our work we use sparse 
supersampling. 

3 Test Datasets 

For testing our algorithms with opaque surfaces, we use a model 
of an x-wing fighter (see Figure 9). Each of the 6084 triangles 
in the model is a random flat-shaded color. A realistically shaded 
fighter would have noticeable aliasing mainly at its silhouette. By 
assigning each triangle in the model a random color we create 
noticeable aliasing artifacts at each triangle edge. Furthermore, 
we disabled backface culling to increase the depth complexity of 
the image, and hence the number of fragments processed in each 
pixel. Figure 2 shows the maximum number of opaque surfaces 
that appear within each pixel during the rendering of a typical 
scene when there are 16 samples per pixel. Note that on the gun 
turrets and some areas of the engines and fuselage there are pixels 
that require almost as many fragments as sample points for fully 
accurate rendering. Finally, we render the image at a small scale to 
create many subpixel-sized features. 

The x-wing fighter model has too great a depth complexity to 
make a practical test of transparency. For testing transparency 
algorithms, we render a Cessna seaplane consisting of 2239 
transparent triangles. Figure 11 shows an image of the Cessna. The 
maximum number of transparent surfaces that appear within each 
pixel during the rendering of the Cessna when there are 16 samples 
per pixel is given in Figure 3. Even though this image assumes 

Figure 2: The color represents the maximum number of fragments 
that are visible in each pixel of one frame of the x-wing test case 
when using 16 samples per pixel. The color code at the bottom 
shows the colors representing 1 (white) to 16 (red). (Also in the 
color section.) 

Figure 3: The color represents the maximum number of fragments 
that are visible in each pixel of one frame of the transparent Cessna 
test case when using 16 samples per pixel. The color code at the 
bottom shows the colors representing 1 (white) to 16 or more (red). 
Some pixels have as many as 30 fragments. (Also in the color 
section.) 

16 sample points, some pixels require as many as 30 fragments 
because of the depth complexity of the transparent fragments. 

To test interpenetrating surfaces we also have a model of a beach 
ball with transparent and opaque stripes penetrating a checkerboard. 
This test case only appears in the video accompanying this paper. 

The test images in this paper are all at a resolution of 128x96 
pixels. This resolution provides a resolution similar to a 19” 
640x480 monitor so that individual pixels can be distinguished on 
the paper. The video consists of two side by side 180x240 images 
or a single 360x240 image, unless stated otherwise. This uses the 
maximum vertical resolution available in one field of NTSC video. 

Supersampling objects containing subpixel-resolution lines 
using small numbers of sample points can lead to “Marquee light” 

87 



artifacts, similar to a line of moving theater lights. To test the 
performance of the algorithms in these conditions the x-wing fighter 
and Cessna test cases both have subpixel width lines. The x-wing 
fighter has a yellow line down the port side of its fuselage, and the 
Cessna has a green line between its wings and its ailerons and flaps. 
Please note these during the video. 

The error metric we use throughout the paper is the sum of the 
squares of the per pixel color difference: 

error = C C ((Pijc - Sijc)“) 

Vi,j c=R,G,B 

where pij and qij are pixels from the same location of a test 
image and a reference image. The RGB components of the pixel 
color are within the range of 0 to 255. The square of the error is 
chosen because a small number of pixels with large errors are more 
noticeable than a large number of pixels with small errors. We have 
also evaluated the maximum error. This behaves similarly to the 
sum of the squared per pixel errors, but is less representative of the 
image as a whole. - 

4 The Z3 Algorithm 

Figure 4 describes the pixel data structure that is used in our 
algorithm. Rather than providing a separate color, Z, and stencil 
(fragment collectively) for each sample point, we only provide a 
few fragment entries per pixel. Each fragment entry has a m-bit 
coverage mask that indicates which of the m sample points in the 
pixel are covered by the fragment. Fragment color values are the 
average of the color values at the covered sample points. Z values 
are specified at the center of the pixel, but compact floating-point X 
and Y Z gradients are also kept. When a pixel is updated and while 
the DRAM page is still open, the final pixel color is computed and 
stored in a conventional front or back buffer in memory. 

There are several parameters that determine the size of this data 
structure: 

1. m: m sample points are used per pixel. 

2. k: k fragments per pixel are kept. 

3. c, z, zdx, zdy, a: a c-bit color, z-bit depth, two g-bit z slopes, 
and s-bit stencil are used. 

The total size of each pixel is then: 

k x (m + c + z + 2g + s)bits. 

The floating-point Z gradients do not need to use many bits to 
span the possible range of slope values. An 8-bit floating-point Z 
gradient can consist of a sign bit, 5 bit exponent, and 3 bit mantissa. 
These 9 bits are stored in 8 bits utilizing a hidden msb mantissa bit 
as in the IEEE floating point standard, since the msb of a floating 
mantissa is always 1 unless the whole number is zero, which is 
denoted by a zero exponent. The mantissa is a fraction of the form 
O.lnn, where n is a stored mantissa bit. A 5 bit exponent (ranging 
from 231 to 2l plus zero) can span the entire range of the 24bit 
fixed point Z values, plus support additional larger or fractional 
values if desired. 

Table 1 shows the values representable by the l/5/3 &bit 
floating-point slope format assuming the exponent is unbiased. 
Slope values other than these are rounded to the nearest 
representable slope value. This creates errors in slopes. The largest 
possible error increasing the slope occurs for the slope lOOlOO..O, 
which is rounded up to a mantissa 101. The rounded value in 
this case is 1/9tb more. than the true value. The largest possible 
error decreasing the slope occurs for the slope lOOOll..l, which is 

Figure 4: The Z3 data structure, which is used to provide 
antialiasing and order-independent transparency. In this example 
each of the three fragments has an associated coverage mask, which 
contains 8 samples on an 8x8 grid. Implementations vary in the 
number of sample points and fragments. This data structure is used 
in addition to conventional storage of per-pixel final color and Z 
information in front and back buffers. 

rounded down to a mantissa 100. The rounded value in this case is 
1/9th less than the true value. Thus, in the worst case with this 8-bit 
format, the slopes may be overstated by up to 11.1% or understated 
byupto 11.1%. 

Exponent 
0 +/-ooooooooooooooooooooooo 
1 +/- ~~~0f)~~o~l.M 

2 +/- 000 0000 0000 0000 0000 OO1n.n 
3 +/- 000000000000000000001nn 
4 +/- ~~~ot)c@~ lM0 

5 +/- 0000000000000000001 nnO0 

23 +/- 1nn00000000000000000000 

Table 1: Slope values representable with the l/5/3 8-bit floating- 
point format with unbiased exponent. n is a stored mantissa bit. An 
exponent of zero denotes the number zero. 

Three bits of slope mantissa provide more than enough precision 
for the majority of pixels. However there are some circumstances 
where the lack of precision in the mantissa can cause small errors 
in antialiasing. Consider the case shown in Figure 5, which shows 
a surface with high slope abutting another object. An example of 
this could be looking at a table top close to edge-on, with the table 
having a box on it. If the table top is drawn before the box, the 
table top will be stored in the frame buffer with a reduced precision 
slope when the box is drawn. In this case, if the table top slope is 
too small by up to 1 1.1%, the table top may erroneously occlude 
part of the box and cover one more sample point than it should. 
(Note however, if the slope is too large by 11.1% it could still be 
correct, unless the box interpenetrated the table top.) Due to slope 
inaccuracies, the Z3 technique could render the pixel 15116 covered 
by the table and l/16 covered by the box, instead of correctly 
rendering it 14/ 16 covered by the table and 2/ 16 covered by the box. 
Errors of this type are not too objectionable. Moreover, this could 
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still be better than a traditional supersampling technique using the 
same amount of storage (e.g., with 4 sample points). Four-sample 
supersampling could only render the pixel lU16 covered by the 
table or 16116 covered by the table, both of which result in more 
error than that present in the Z3 error example above. 

Abutting 
surface 

ll.l%hax 
slope error 

Figure 5: Implications of inaccurate slopes. 

In terms of pixel areas, the maximum pixel error occurs for the 
case in Figure 5 when the steeply sloped surface is drawn first and 
it covers 90% of the upper half of the pixel. If the maximum slope 
understatement occurs, the upper half of the pixel could erroneously 
be completely covered by the steeply sloped surface. This results 
in a maximum whole pixel error of 5% in area terms due to 
inaccuracies in one slope. For inaccuracies in both slopes, the 
maximum error is fi x 590, or about 7%. Note that this error can 
easily be halved by adding another bit to the mantissa. However, 
in our experience this is not worth doing, since the maximum error 
due to slope inaccuracies is similar to the error that occurs when 
supersampling pixels with 13 instead of 14 sample points. Note 
too that the average slope error is zero and the slope errors are 
uniformly distributed. 

If the per fragment Z-value is also stored as a floating point 
format, it is usually done to represent a Z value with a slightly larger 
range in a more compact format. In this case the slope exponents 
may need to be expanded by one or two bits so they can still span 
the complete range of Z-values. This would require increasing the 
size of the slopes to a total of 9 or 10 bits each. 

Because the floating-point slopes have such small mantissas, 
they can easily be converted to fixed point Z slopes by small 3-bit 
wide shifters. Since there are a small number of sample points (e.g., 
16 or less) on a small regular grid which is a power of two (e.g., 
16x16), the calculation of the actual sample point Z values from the 
slopes involves multiplication of each Z gradient by a small offset 
that specifies the distance from the center (e.g., a fraction less than 
l/2 such as 5116 or 2/ 16). The division by a power of two (e.g., 16) 
is a shift, while the multiplication by a small constant (e.g., 5 or 
2) can be performed by at most a few levels of carry-save adders. 
The result of these for X and Y go into carry-save adders along 
with the center-referenced Z value and then on to a carry-lookahead 
adder to calculate the actual Z value at that sample point. The total 
complexity of this is similar to multiplying the center-referenced 
Z values by a small number at each sample point. This requires 
much less hardware than storing the color and Z value of each 
sample point and providing adequate read/write bandwidth for tens 
of millions of sample points on a screen. 

4.1 Overview of Fragment Processing 

Unfortunately, there are not always a small fixed number of 
visible fragments per pixel, and in some cases we will need more 
fragment entries than we have storage locations. This is particularly 
true when we have a relatively large number of sample points 
in comparison to the number of available fragments, or when 

transparent objects are being rendered. In the worst opaque case 
each of the eight sample points in Figure 4 might be on a different 
fragment. If we only had storage for three fragments, we would 
have almost three times more information than we had space for. In 
the worst transparent case, the visible transparent depth complexity 
is virtually unbounded. Each transparent surface could also be 
fractured into many subpixel-sized fragments. 

In general, if we have more fragments than we have locations for 
fragment storage, some information will be lost and this can lead to 
artifacts. The algorithms we have developed attempt to minimize 
the information lost as well as the possible artifacts produced. 
The algorithms are complicated by the fact that they must make 
decisions as the scene is being rendered without any information 
about what future rendering operations may do. 

The basis of our algorithms involves merging fragments that are 
very close in their Z values. This combines fragments that are part 
of the same surface, but have been broken into multiple fragments 
by tessellation. We can also combine two transparent surfaces that 
are very close in Z value. This reduces the visible transparent depth 
complexity and in most cases results in no difference in pixel color. 

homing 
iragment 

New fragment 
insertion , J , J , Frame buffer memory 1 

Pixel color 
computation 

Fragment 
compression 

Figure 6: The Z3 fragment processing pipeline. 

There are four main steps that are taken when a new fragment 
arrives at a pixel. The steps form a fragment processing pipeline 
(see Figure 6). Existing fragments are stored in frame buffer 
memory sorted based on their center Z value. When a new fragment 
arrives, the existing fragments are read in starting with the closest 
fragment. The four new fragment processing steps are: 

1. Occlusion Check - the sample points that are covered by 
the new fragment are checked whether they occlude or are 
occluded by any stored fragments. This is done by comparing 
the incoming depth values with the depth values recomputed 
for each sample point from the center Z value and the X and 
Y Z slopes. If a stored fragment is completely occluded by 
the new fragment, its storage can be freed for later use. 

2. Fragment Insertion - If any sample points of the new 
fragment pass the occlusion test, the new fragment is inserted 
in the pipeline of existing fragments in the proper place 
based on its center weighted Z value. This can be done 
by comparing the new fragment’s center referenced Z value 
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with two adjacent stages in the fragment pipeline. If the 
new fragment’s Z value is larger than the first stage but less 
than the second stage, when the pipeline is shifted next the 
new fragment is loaded into the first stage while the second 
fragment and those behind it do not advance. 

3. Pixel Color Computation - The pixel color is computed 
before any compression required by the addition of the new 
fragment. Thus the pixel color is based on all the information 
in the existing fragments and the new fragment. Details of 
the pixel color computation including computation of a swap 
veCtor are described below in Section 4.2. 

4. Fragment Compression - If there are more fragments than 
storage locations, one fragment will need to be merged with 
another. This is described in more detail below in Section 4.3. 

4.2 Pixel Color Computation 

Because the fragments within a pixel are sorted in depth order, 
we can usually compute the color of each pixel by alpha blending 
whole fmgments. A box filter is then applied to produce the final 
pixel color, although our algorithm is extendible to more complex 
filters [3]. 

Unfortunately when transparent fragments overlap in their Z 
ranges with other fragments (which may or may not be transparent), 
computing the final pixel color based on the sorting implied by the 
center-referenced Z values can create erroneous results. Consider 
the lower-right case in Figure 1. The transparent fragment A is 
actually partially in front of opaque fragment B, even though its 
center-referenced Z value is behind it. If A is processed first, the 
opaque fragment B will completely obscure fragment A instead of 
blending with the portion of A in front of fragment B. 

Before computing the color at each sample point we compare the 
per-sample point Z values in adjacent stages of the pipeline. If their 
front-to-back order is wrong, we set a bit in a swap vector between 
the pipestages. The swap vector tells us which sample points have 
their order reversed between pairs of fragments. After the swap 
vector has been computed on both sides of a fragment we can throw 
away the per sample-point Z information to save circuitry. Later if 
a swap bit is set when we process the fragments to produce the 
pixel color or merge fragments, instead of using the color from 
the cmrent pipestage for a sample point, we use the color from the 
pipestage above or below it (depending on which swap bit is set). 

In this way, we are guaranteed that we can correctly reorder 
all sample points where one fragment interpenetrates an adjacent 
fragment at that sample point. We do not correctly handle 
arbitrary interpenetration, such as one perpendicular fragment 
interpenetrating many parallel fragments. However, such cases are 
rare, and moreover the error in such cases is not large because of 
the many surfaces viewed in series and the small coverage of the 
perpendicular fragment. 

After the swap vectors are computed, we can compute the pixel 
color and alpha on a per-sample point basis. We sum the colors 
from all the sample points and divide by the number of samples per 
pixel (i.e., right shift). 

4.3 Fragment Compression Algorithm 

Fragment compression only takes place when the number of 
fragments exceeds the preset limit k. Because the fragments are 
sorted in order of increasing center Z values, we know that the two 
closest fragments (in terms of their center Z values) are adjacent 
to each other in the pipeline. Although differences between 
center Z values and per sample point Z values are significant for 
occlusion and color calculations, we have found that center Z values 
are adequate for merging of fragments. As the fragments pass 

through the pipeline, they pass by a subtractor which computes the 
difference in center Z values between the adjacent stages. Based 
on these results, one of the k adjacent pairs of fragments out of the 
k + 1 fragments are merged. 

Because merging may introduce errors, we would like to 
minimize the extent of these errors. In general, changes to 
fragments covering a small number of sample points result in 
smaller pixel errors than changes to fragments covering a large 
number of sample points. Also, the information content (in terms 
of the final pixel color) of a fragment entry covering many sample 
points is higher than that of an entry covering just one or a few 
sample points. For this reason we also weight the Z difference 
calculations by the minimum of the sample coverage counts of the 
two fragments. What this does is bias the selection towards the 
combining of small fragments that may be a little further apart 
rather than larger fragments that may be a little closer. We have 
found that this improves the final image quality. 

In our algorithm, the center Z values of the two merging 
fragments are averaged with weights equal to the number of sample 
points that they cover. Weighted averaging of gradients works in 
many situations, but does not work in situations where one of the 
fragments is being viewed edge-on such as the side of a cylinder. 
These fragments may have extremely large gradients (approaching 
the maximum Z value) that will still be extremely large after 
averaging but cover much more of the pixel. Instead for each of 
the incoming fragments, we compute the absolute value of the X 
and Y gradients (by setting the sign bit to zero). We set the merged 
fragment’s X and Y gradients to those X and Y gradients with the 
smallest magnitude. The stencil of the fragment covering the most 
samples is copied to the combined fragment. 

The merging of the adjacent fragment pair is complicated by 
transparency. If both fragments are opaque, their color contents are 
simply combined with weighted averaging based on the number of 
sample points each one covers. If one or both of the fragments arc 
transparent, the calculation of pixel color must be done similarly to 
the final pixel color computation in section 4.2. However, in this 
case the merged fragment may not cover all the sample points in 
the pixel. To handle this properly, after the per sample colors have 
been computed and summed (including use of the swap vector to 
get the per sample point ordering correct), the result is multiplied 
by a fraction that is the percent of the pixel covered by the merged 
fragment. 

The following equations describe the color computations 
performed at each sample point when merging two fragments, 
assuming 8-bit alpha and color channels. Sample points uncovered 
by either fragment return zero. Sample points covered by only 
one fragment return the alpha and each color channel multiplied 
by the alpha of that fragment. For sample points covered by both 
fragments, the following computations are made independently 
for each sample point using the swap vector to determine which 
fragment is in front and which is in back. 

a*ampJe = afront + 
(1 - afrrmt) *‘ahe 

255 

C - Cfmn, 
c brci * aback * (1 - afrrnt) 

mmph - * af,,: + 
255 

where C is each of the color channels R, G, and B. This 
computes the transparency and reflected light for each of the colors 
(multiplied by 255) for each sample point. Then the alphas and 
color channels from each sample point are summed. The number of 
sample points covered by the merged fragment ent, is computed 
by OR’ing together the two coverage masks and counting the 
population of 1’s. Then the final merged fragment color and alpha 
is computed as follows: 
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c merged = 
amcrgcd * cntm 

for each of the color channels R, G, and B. 

4.4 Performance on the Opaque Test Case 

We use the terminology Nx sparse supersampling to denote N x N 
sparse supersampling with N samples. Figure 7 shows the errors 
introduced by 3x3 and 4x4 full supersampling, 4x, 8x, and 
16x sparse supersampling, and 4x, 8x, 16x and 32x sparse 
supersampled Z3 with various numbers of fragments for the x-wing 
test case. The reference image for this figure is rendered by 16x 16 
full supersampling. 

ZOE+07 , \ 7 

0 5 10 15 
number of fraaments stored at each Mel 

Figure 7: The errors introduced by 3x3 and 4x 4 full super- 
sampling, 4x, 8x and 16x sparse su rsampling, and 4x, 8x, 
16x and 32x sparse supersampled 2 P with various numbers of 
fragments for the x-wing test case. The reference image is rendered 
by 16x 16 supersampling. 

Figure 7 shows two things. First, it is obvious that full 
supersampling consumes too many fragments to reduce antialiasing 
errors cost-effectively. For example, 4x4 supersampling takes 
16 fragments and does not even perform as well as 8x sparse 
supersampling which takes only 8 fragments. Second, we can 
improve upon the performance of sparse supersampling by using 
sparse supersampled Z3 with more samples and fewer fragments. 
For example, 16x sparse supersampled 2 3 with 3 fragments results 
in less than half the pixel error as 8 x sparse supersampling with 8 
fragments, while using only about half the storage. 

Figure 8 is an image of the x-wing fighter rendered with sparse 
supersampling with 4 samples on an 4x4 grid. It is lower fidelity 
than Figure 9 which has storage for only 3 fragments but uses 16 
samples on a 16x 16 grid. 

4.5 Performance on the Transparent Test Case 

Figure 10 shows the error from 4x, 8x, and 16x sparsely 
supersampled Z3 with various numbers of fragments for the 

Figure 8: The x-wing fighter with traditional 4X sparse super- 
sampling (using 4 samples on a 4x4 grid). The lower figure gives 
the per-pixel difference from a 16X sparse supersampled reference 
image. 

transparent Cessna in comparison to 32x sparse supersampling 
with an unbounded number of fragments. Figure 11 shows the 
Cessna seaplane model rendered with storage for 4 fragments per 
pixel. Each pixel has 16 samples taken from a 16x 16 grid. The 
lower part of the figure shows the difference between it and an 
image rendered with an unlimited number of fragments per pixel. 
Note that although some pixels have a depth complexity of 16 or 
more (as shown in Figure 3), using 4 fragments per pixel produces 
acceptable results. Most of the error is confined to areas that have 
16 or more visible fragments per pixel, and this results in a small 
amount of “visible noise” in the image. Since the noise is relatively 
small but varies from frame to frame it is more visible in the video. 

4.6 implementation 

The use of a small fixed number of fragment storage locations 
per pixel has the advantage of having low overhead and design 
simplicity. Although fragments in some pixels will be unused 
while other pixels could use additional fragment storage, the fixed 
allocation policy is easy to implement and verify. In practice, the 
errors introduced by having a modest fixed number of fragments 
per pixel appear small compared to losses in pixel information due 
to a limited number of sample points. For example, according 
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Figure 9: The x-wing fighter using Z3 with 16 samples on a 16x 16 
grid and storage for 3 fragments. The lower figure gives the per- 
pixel difference from a 16X sparse supersampled reference image. 
(Also in the color section.) 

to Figure 7, the error introduced by having storage for only 3 
fragments per pixel is much smaller than the error from having 
only 8 or 16 sparse samples instead of the full 256 samples of the 
reference image. 

Since 2’ uses less memory per pixel than sparse supersampling 
with the same number of sample points, when a pixel is accessed 
less memory bandwidth will be necessary. This can either enable 
higher performance for a given system memory bandwidth, or 
lower the bandwidth requirements (and hence lower the cost) for 
a given level of performance. 

To provide 16X sparse supersampled Z3 with storage for 4 
fragments per pixel requires about 50 bytes per pixel. Hence a 
1280x 1024 resolution screen would require about 64MB of frame 
buffer memory (not including textures), which at recent prices 
would cost about 50 dollars. Based on historical long-term DRAM 
price trends, this should reduce to about 12 dollars of additional 
memory expense in three years. After consultation with some of 
the designers of the Neon graphics accelerator[l2], it appears that 
support for our algorithms will be well within the capabilities of 
next-generation ASIC fabrication processes. 
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1.6E+07 
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Figure 10: The errors introduced by 4x, 8x, and 16x Z3 with 
various numbers of fragments for the transparent Cessna test case. 
The reference image is rendered by 32x sparse supersampling with 
an unbounded number of fragments. 

5 Conclusions 

The Z3 algorithm can provide economical high-quality hardware 
antialiasing and order-independent transparency. It uses a small 
fixed amount of storage per pixel. If the visible complexity of the 
pixel exceeds the storage space available for the pixel, the minimum 
number of fragments having the closest Z values are merged. This. 
combines different fragments from the same surface, resulting in 
both storage and processing efficiency. 

When operating with opaque surfaces, Z3 can provide superior 
image quality over sparse supersampling methods that use eight 
samples per pixel while using storage for only three fragments. Z3 
also makes the use of large numbers of samples (e.g., 16) feasible in 
inexpensive hardware, enabling higher quality images. It is simple 
to implement because it uses a small fixed number of fragments per 
pixel. 

Z3 can also provide order-independent transparency even if 
many transparent surfaces are present. Moreover, unlike the 
original A-buffer algorithm it correctly antialiases interpenetrating 
transparent surfaces because it has three-dimensional Z information 
within each pixel. 

As memory prices continue to drop and VLSI integration 
increases, these techniques could enable high-quality antialiasing 
and transparency on all but the cheapest computer platforms. 
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Figure 2: The color represents the maximum number of fragments 
that arc visible in each pixel of one frame of the x-wing test case 
when using 16 samples per pixel. The color code at the bottom 
shows the colors representing 1 (white) to 16 (red). 

Figure 9: The x-wing fighter with 16 samples on a 16x 16 grid 
and storage for 3 fragments. The lower figure gives the per-pixel 
difference from a 16X sparse supersampled reference image. 

Figure 3: The color represents the maximum number of fragments 
that are visible in each pixel of one frame of the transparent Cessna 
test case when using 16 samples per pixel. The color code at the 
bottom shows the colors representing 1 (white) to 16 or more (red). 
Some pixels have as many as 30 fragments. 

Figure 11: The transparent Cessna seaplane with 16 samples on a 
16 x 16 grid and storage for 4 fragments per pixel. The lower figure 
gives the per-pixel difference from a 16X sparse supersampled 
reference image with an unboundednumber of fragments. 
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