
Z3: An Economical Hardware Technique for
High-Quality Antialiasing and Transparency

Norman F? Jouppi* - Compaq

Abstract

In this paper we present an algorithm for low-cost hardware
antialiasing and transparency. This technique keeps a central Z
value along with compact floating-point Z gradients in the X and
Y dimensions for each fragment within a pixel (hence the name
Z3). It uses a small fixed amount of storage per pixel. If the
visible complexity of the pixel exceeds the storage space available
for the pixel, the minimum number of fragments having the closest
Z values are merged. This combines different fragments from the
same surface, resulting in both storage and processing efficiency.

When operating with opaque surfaces, Z3 can provide superior
image quality over sparse supersampling methods that use eight
samples per pixel while using storage for only three fragments. Z3
also makes the use of large numbers of samples (e.g., 16) feasible in
inexpensive hardware, enabling higher quality images. It is simple
to implement because it uses a small fixed number of fragments per
pixel.

Z3 can also provide order-independent transparency even if
many transparent surfaces are present. Moreover, unlike the
original A-buffer algorithm it correctly antialiases interpenetrating
transparent surfaces because it has three-dimensional Z information
within each pixel.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture - Graphics Processors. 1.3.3
[Computer Graphics]: Picture/Image Generation - Antialiasing,
Bitmap and Framebuffer Operations, Display Algorithms.

Additional Keywords: Anti-aliasing, supersampling, transpar-
ency, A-buffer

*Western Research Laboratory, Compaq Computer Corporation, 250
University Ave, Palo Alto, CA 94301 USA. jouppi@pa.dec.com,
http://www.research.digital.com/wrYpeople/joupp~bio.ht~

‘Department of Computer Science, University of North Carolina at
Chapel Hill, CB #B175, Sitterson Hall, Chapel Hill, NC 27599-3175USA.
chang@cs.unc.edu, http://www.cs.unc.edu/ N chang

Permission to make digital or hard copies of all or part of this work lbr
personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on servers or to rcdisttibute to lists.
requires prior specific permission andior a fee.
1999 Eurographics LosAngcles CA USA
Copyright ACM 1999 l-581 13-170-4/99/08...$5.00

Chun-Fa Changt - UNC Chapel Hill

1 Introduction

Aliasing is caused by insufficient sampling [Z, 71. To attenuate
aliasing problems, the scene must be sampled at many positions
within each pixel when it is rendered. Sampling can be done either
uniformly or nonuniformly [9]. Nonuniform sampling methods,
such as the stochastic sampling [6], are mostly implemented, in
software. Uniform sampling is also known as supersampling, and is
implemented in most of the high-end graphics architectures today
[11[201.

A problem with supersampling is the enormous amount of
memory it requires. For example, a conventional 1280x1024
frame buffer with 32-bit color and 32-bit depth takes 10 Megabytes
(MB) of memory. But with 4x4 supersampling, it requires more
than 160 MB of memory. Worse than the memory capacity, 4x4
supersampling would require 16 times the memory bandwidth, or
for a given memory bandwidth would slow down rendering by a
factor of around 16.

In many cases, supersampled pixels with large numbers of
sample points have sample color and depth values that are similar
to values at other sample points. For some pixels partially covered
by foreground objects and background objects, the color and Z
values are clustered into groups with similar values. For pixels
covered by objects steeply receeding from the viewer, although
the subsample Z values may vary significantly, they still can be
represented mote compactly than many discrete values since they
are a planar surface. If we had a way of taking advantage of these
redundancies to compress the color and Z information into a smaller
memory footprint, it would result in reduced cost, lower bandwidth
requirements, and potentially higher system performance. We
would also like these algorithms to require only a single pass and to
be compatible with conventional rendering systems.

In software implementations of antialiasing, the use of dynamic
memory allocation can be used to vary the amount of storage used
by each pixel. However dynamic storage allocation is quite difficult
and expensive to implement in hardware, so instead we would like
a compression technique that uses the same amount of storage
for every pixel. Given these requirements, such a compression
technique would be expected to result in modest errors for more
complex pixels (those with multiple surfaces of different colors)
as compared to simple pixels which should be rendered exactly.
This paper investigates techniques to make the resulting errors as
small as possible (when judged by the human eye) while using the
smallest amount of per-pixel memory.

1.1 Accurate Subpixel 2 Values

Accurate treatment of subpixel Z values is in some ways more
important than the accuracy of subpixel color values because
small errors in Z values can lead to dramatically different pixel
colors due to errors in occlusion calculations. Moreover, most
real-world models have interpenetrating objects and fragments with
overlapping Z ranges. Any technique that tries to reduce the storage
requited by Z entries has to pay special attention to various cases of
interpenetrating and adjacent objects.

85

gg

DP

There are several possiblities for a more compact subpixel Z
representation:

1. Single Z at pixel center - This has the advantage of
simplicity, but provides the least information. Like other
approaches that rely on one value, it is impossible to antialias
interpenetrating surfaces based on a single value. Even worse,
for fragments that do not cover the pixel center, the Z value
associated with the fragment can be totally outside of its Z
range. In the upper left example of Figure 1, this will lead
to fragment B being visible and fragment A not being visible,
even though the reverse is true.

2. Zmlu and Zmax - In the original A-buffer paper [4] a Zmax
and a Zmin are used. These are used to estimate blending
assuming the surfaces’ slopes have opposite signs and the
surfaces are interpenetrating. However, this case cannot be
distinguished from the upper right case of Figure 1, since no
information about the slopes are known. In this example,
A and B should not be blended roughly equally, but instead
fragment A completely obscures fragment B.

3. Fragment subpixel Z average, or Centroid adjust - One
way to improve the accuracy in cases like the upper left of
Figure 1 is to define each fragment’s Z value to be the average
Z value (or centroid) of the sample points covered by the
fragment. This works in cases like the upper left example,
but it fails in others. Also, because it does not have any slope
information, cases like the bottom left in Figure 1 will still not
antialias. Instead the pixel will snap from fragment A’s color
to fragment B’s color as B moves toward the viewer.

4. Zdx and Zdy slopes - As can be seen by the previous
approaches, having complete subpixel Z information is
crucial to proper rendering of many subpixel situations [14].
X and Y slope information in combination with Z specified at
the pixel center can be used to regenerate individual subpixel
Z values accurately[l7]. Alternately, the EXACT method
[19] computes the line of intersection between two fragment
planes with Z slopes for both fragments using tables. This
is input to methods which compute the pixel color based on
area weighting [18]. In this paper we propose slope-based
subpixel sampling techniques which we believe lead to easy
implementation in VLSI designs.

1.2 Order-Independent Transparency

Traditional implementations of supersampling do not support
transparency unless objects are sorted before rendering. Even
with triangle sorting, interpenetrating transparent fragments are not
handled correctly. The A-buffer algorithm can provide the benefits
of antialiasing and order-independent transparency at the same
time, but it does not handle interpentrating opaque or transparent
surfaces correctly. It also requires that all polygon fragments that
can affect a pixel’s color be kept until the drawing of the frame is
complete. Only polygon fragments that are completely occluded
by an opaque fragment may be deleted. Thus, in the worst case
with many transparent objects, the A-buffer algorithm may require
a potentially unboundedamount of memory for each pixel.

Two high-end graphics systems, the Megatek Discovery sys-
tem[l3] and the Sogitec Aztec system[5], both implement versions
of the A-buffer algorithm. Neither of these systems use Z gradients.
The Megatek Discovery system maintains fragment lists of up to 23
fragments per pixel[l6]. In practice the Megatek implementation
never merges fragments. Fragments can fall off fragment lists
if they exceed the maximum list length. The Sogitec AZtec
system always merges fragments if they have the same object tag,

) pixel T A
Eye ---+-+\--

Eye B
Center /

/ \
/ \

/ \
)A

Eye) sx Eye) 3
Figure 1: Difficult cases for non-complete Z information.

their Z values differ by at most a predetermined value, they are
non-overlapping, and they have colors that differ by at most a
predetermined value. It also merges the last two fragments in a
list if it runs out of per-pixel storage.

1.3 Our Algorithm

In this paper, we present the Z3 algorithm for low-cost hardware
antialiasing and order-independent transparency. It groups
subpixels into fragments containing X and Y Z slopes plus center
referenced Z values. Each slope is a one byte floating-point
value, so this method has smaller memory requirements than sparse
supersampling. It uses a small fixed amount of memory per pixel
but a large number of sample points stored in a coverage mask.
If the visible complexity of the pixel exceeds the storage space
available for the pixel, the minimum number of fragments having
the closest Z values are merged. This combines fragments from the
same surface without leading to artifacts.

Z3 can provide superior image quality to sparse supersampling
methods that use eight samples per pixel while using storage
for only three fragments. This technique also makes the use
of large numbers of samples (e.g., 16) feasible in inexpensive
hardware. It is simple to implement because it uses a small
fixed number of samples per pixel. Like traditional supersampling
techniques it properly antialiases opaque interpenetrating objects.
However, it also provides order-independent transparency and
antialiasing of interpenetrating transparent objects. Z can provide
order-independent transparency even if many transparent surfaces
are present, albeit at a cost of slightly more memory.

2 Related Work

In the traditional graphics pipeline [8], the polygons which describe
the surface of objects to be rendered are raster&d into a frame
buffer and a depth buffer.

2.1 Supersampling and A-buffer Techniques

Both supersampling and the A-buffer consume too much memory
in their original forms for low-cost implementations. Several
multi-pass rendering algorithms have been proposed to reduce the

86

memory requirements of supersampling and the A-buffer. The
Accumulation buffer [lo] can produce the quality of supersampling
without increasing the size of frame buffer. The Virtual Pixel Maps
technique proposed by Mammen [1 I] and its variation proposed by
Winner et. al. [21] replace A-buffer’s unbounded list of visible
objects by a moving depth buffer, in addition to the Z buffer used
by opaque surfaces. However, the performance of these algorithms
suffer due to their multi-pass nature.

2.2 Subpixel Sampling Methods

There are several different ways to sample points within a pixel.
Software methods[6] may use many sample points (e.g., 100) with
near random distributions, but hardware is typically limited to a
modest number of sample points (16 or less) on a regular grid.
Early hardware approaches such as the Silicon Graphics (SGI)
RealityEngine [l] used a 4x4 array of sample points. A simple
4x4 array of points has the disadvantage of producing only a few
intensity steps for moving edges that are near vertical or horizontal.
We call this approachfull supersampling.

To address this limitation, &chilling [18] proposed an area
weighting method which can give a full range of intensities as a near
vertical or horizontal edge is moved across a pixel. Near vertical or
horizontal edges are important because they can produce “jaggies”
that turn into distracting “crawlies” when animated. However, this
method has the disadvantage of lighting subsamples which are not
actually covered by the primitive, and so can lead to artifacts. A
variant of this technique was implemented in SGI’s RealityEngine.

More recently, a technique we call sparse supersampling has
appeared in SGI’s Infinite Reality [15]. Here the number of actual
sample points is less than the number of potential sample points in
the grid. By chasing at most one sample point on each row and
column, it is possible to get n intensity steps from n sample points
distributed on a n x n grid for moving near vertical or horizontal
edges. It is also possible to choose the sample points so that each
quadrant of the pixel has similar weighting. This is important to
prevent flashing of sub-pixel sized moving objects.

Sparse supersampling can give more accuracy than full
supersampling for a given number of sample points without
introducing artifacts. Therefore in most of our work we use sparse
supersampling.

3 Test Datasets

For testing our algorithms with opaque surfaces, we use a model
of an x-wing fighter (see Figure 9). Each of the 6084 triangles
in the model is a random flat-shaded color. A realistically shaded
fighter would have noticeable aliasing mainly at its silhouette. By
assigning each triangle in the model a random color we create
noticeable aliasing artifacts at each triangle edge. Furthermore,
we disabled backface culling to increase the depth complexity of
the image, and hence the number of fragments processed in each
pixel. Figure 2 shows the maximum number of opaque surfaces
that appear within each pixel during the rendering of a typical
scene when there are 16 samples per pixel. Note that on the gun
turrets and some areas of the engines and fuselage there are pixels
that require almost as many fragments as sample points for fully
accurate rendering. Finally, we render the image at a small scale to
create many subpixel-sized features.

The x-wing fighter model has too great a depth complexity to
make a practical test of transparency. For testing transparency
algorithms, we render a Cessna seaplane consisting of 2239
transparent triangles. Figure 11 shows an image of the Cessna. The
maximum number of transparent surfaces that appear within each
pixel during the rendering of the Cessna when there are 16 samples
per pixel is given in Figure 3. Even though this image assumes

Figure 2: The color represents the maximum number of fragments
that are visible in each pixel of one frame of the x-wing test case
when using 16 samples per pixel. The color code at the bottom
shows the colors representing 1 (white) to 16 (red). (Also in the
color section.)

Figure 3: The color represents the maximum number of fragments
that are visible in each pixel of one frame of the transparent Cessna
test case when using 16 samples per pixel. The color code at the
bottom shows the colors representing 1 (white) to 16 or more (red).
Some pixels have as many as 30 fragments. (Also in the color
section.)

16 sample points, some pixels require as many as 30 fragments
because of the depth complexity of the transparent fragments.

To test interpenetrating surfaces we also have a model of a beach
ball with transparent and opaque stripes penetrating a checkerboard.
This test case only appears in the video accompanying this paper.

The test images in this paper are all at a resolution of 128x96
pixels. This resolution provides a resolution similar to a 19”
640x480 monitor so that individual pixels can be distinguished on
the paper. The video consists of two side by side 180x240 images
or a single 360x240 image, unless stated otherwise. This uses the
maximum vertical resolution available in one field of NTSC video.

Supersampling objects containing subpixel-resolution lines
using small numbers of sample points can lead to “Marquee light”

87

artifacts, similar to a line of moving theater lights. To test the
performance of the algorithms in these conditions the x-wing fighter
and Cessna test cases both have subpixel width lines. The x-wing
fighter has a yellow line down the port side of its fuselage, and the
Cessna has a green line between its wings and its ailerons and flaps.
Please note these during the video.

The error metric we use throughout the paper is the sum of the
squares of the per pixel color difference:

error = C C ((Pijc - Sijc)“)

Vi,j c=R,G,B

where pij and qij are pixels from the same location of a test
image and a reference image. The RGB components of the pixel
color are within the range of 0 to 255. The square of the error is
chosen because a small number of pixels with large errors are more
noticeable than a large number of pixels with small errors. We have
also evaluated the maximum error. This behaves similarly to the
sum of the squared per pixel errors, but is less representative of the
image as a whole. -

4 The Z3 Algorithm

Figure 4 describes the pixel data structure that is used in our
algorithm. Rather than providing a separate color, Z, and stencil
(fragment collectively) for each sample point, we only provide a
few fragment entries per pixel. Each fragment entry has a m-bit
coverage mask that indicates which of the m sample points in the
pixel are covered by the fragment. Fragment color values are the
average of the color values at the covered sample points. Z values
are specified at the center of the pixel, but compact floating-point X
and Y Z gradients are also kept. When a pixel is updated and while
the DRAM page is still open, the final pixel color is computed and
stored in a conventional front or back buffer in memory.

There are several parameters that determine the size of this data
structure:

1. m: m sample points are used per pixel.

2. k: k fragments per pixel are kept.

3. c, z, zdx, zdy, a: a c-bit color, z-bit depth, two g-bit z slopes,
and s-bit stencil are used.

The total size of each pixel is then:

k x (m + c + z + 2g + s)bits.

The floating-point Z gradients do not need to use many bits to
span the possible range of slope values. An 8-bit floating-point Z
gradient can consist of a sign bit, 5 bit exponent, and 3 bit mantissa.
These 9 bits are stored in 8 bits utilizing a hidden msb mantissa bit
as in the IEEE floating point standard, since the msb of a floating
mantissa is always 1 unless the whole number is zero, which is
denoted by a zero exponent. The mantissa is a fraction of the form
O.lnn, where n is a stored mantissa bit. A 5 bit exponent (ranging
from 231 to 2l plus zero) can span the entire range of the 24bit
fixed point Z values, plus support additional larger or fractional
values if desired.

Table 1 shows the values representable by the l/5/3 &bit
floating-point slope format assuming the exponent is unbiased.
Slope values other than these are rounded to the nearest
representable slope value. This creates errors in slopes. The largest
possible error increasing the slope occurs for the slope lOOlOO..O,
which is rounded up to a mantissa 101. The rounded value in
this case is 1/9tb more. than the true value. The largest possible
error decreasing the slope occurs for the slope lOOOll..l, which is

Figure 4: The Z3 data structure, which is used to provide
antialiasing and order-independent transparency. In this example
each of the three fragments has an associated coverage mask, which
contains 8 samples on an 8x8 grid. Implementations vary in the
number of sample points and fragments. This data structure is used
in addition to conventional storage of per-pixel final color and Z
information in front and back buffers.

rounded down to a mantissa 100. The rounded value in this case is
1/9th less than the true value. Thus, in the worst case with this 8-bit
format, the slopes may be overstated by up to 11.1% or understated
byupto 11.1%.

Exponent
0 +/-ooooooooooooooooooooooo
1 +/- ~~~0f)~~o~l.M

2 +/- 000 0000 0000 0000 0000 OO1n.n
3 +/- 000000000000000000001nn
4 +/- ~~~ot)c@~ lM0

5 +/- 0000000000000000001 nnO0

23 +/- 1nn00000000000000000000

Table 1: Slope values representable with the l/5/3 8-bit floating-
point format with unbiased exponent. n is a stored mantissa bit. An
exponent of zero denotes the number zero.

Three bits of slope mantissa provide more than enough precision
for the majority of pixels. However there are some circumstances
where the lack of precision in the mantissa can cause small errors
in antialiasing. Consider the case shown in Figure 5, which shows
a surface with high slope abutting another object. An example of
this could be looking at a table top close to edge-on, with the table
having a box on it. If the table top is drawn before the box, the
table top will be stored in the frame buffer with a reduced precision
slope when the box is drawn. In this case, if the table top slope is
too small by up to 1 1.1%, the table top may erroneously occlude
part of the box and cover one more sample point than it should.
(Note however, if the slope is too large by 11.1% it could still be
correct, unless the box interpenetrated the table top.) Due to slope
inaccuracies, the Z3 technique could render the pixel 15116 covered
by the table and l/16 covered by the box, instead of correctly
rendering it 14/ 16 covered by the table and 2/ 16 covered by the box.
Errors of this type are not too objectionable. Moreover, this could

88

still be better than a traditional supersampling technique using the
same amount of storage (e.g., with 4 sample points). Four-sample
supersampling could only render the pixel lU16 covered by the
table or 16116 covered by the table, both of which result in more
error than that present in the Z3 error example above.

Abutting
surface

ll.l%hax
slope error

Figure 5: Implications of inaccurate slopes.

In terms of pixel areas, the maximum pixel error occurs for the
case in Figure 5 when the steeply sloped surface is drawn first and
it covers 90% of the upper half of the pixel. If the maximum slope
understatement occurs, the upper half of the pixel could erroneously
be completely covered by the steeply sloped surface. This results
in a maximum whole pixel error of 5% in area terms due to
inaccuracies in one slope. For inaccuracies in both slopes, the
maximum error is fi x 590, or about 7%. Note that this error can
easily be halved by adding another bit to the mantissa. However,
in our experience this is not worth doing, since the maximum error
due to slope inaccuracies is similar to the error that occurs when
supersampling pixels with 13 instead of 14 sample points. Note
too that the average slope error is zero and the slope errors are
uniformly distributed.

If the per fragment Z-value is also stored as a floating point
format, it is usually done to represent a Z value with a slightly larger
range in a more compact format. In this case the slope exponents
may need to be expanded by one or two bits so they can still span
the complete range of Z-values. This would require increasing the
size of the slopes to a total of 9 or 10 bits each.

Because the floating-point slopes have such small mantissas,
they can easily be converted to fixed point Z slopes by small 3-bit
wide shifters. Since there are a small number of sample points (e.g.,
16 or less) on a small regular grid which is a power of two (e.g.,
16x16), the calculation of the actual sample point Z values from the
slopes involves multiplication of each Z gradient by a small offset
that specifies the distance from the center (e.g., a fraction less than
l/2 such as 5116 or 2/ 16). The division by a power of two (e.g., 16)
is a shift, while the multiplication by a small constant (e.g., 5 or
2) can be performed by at most a few levels of carry-save adders.
The result of these for X and Y go into carry-save adders along
with the center-referenced Z value and then on to a carry-lookahead
adder to calculate the actual Z value at that sample point. The total
complexity of this is similar to multiplying the center-referenced
Z values by a small number at each sample point. This requires
much less hardware than storing the color and Z value of each
sample point and providing adequate read/write bandwidth for tens
of millions of sample points on a screen.

4.1 Overview of Fragment Processing

Unfortunately, there are not always a small fixed number of
visible fragments per pixel, and in some cases we will need more
fragment entries than we have storage locations. This is particularly
true when we have a relatively large number of sample points
in comparison to the number of available fragments, or when

transparent objects are being rendered. In the worst opaque case
each of the eight sample points in Figure 4 might be on a different
fragment. If we only had storage for three fragments, we would
have almost three times more information than we had space for. In
the worst transparent case, the visible transparent depth complexity
is virtually unbounded. Each transparent surface could also be
fractured into many subpixel-sized fragments.

In general, if we have more fragments than we have locations for
fragment storage, some information will be lost and this can lead to
artifacts. The algorithms we have developed attempt to minimize
the information lost as well as the possible artifacts produced.
The algorithms are complicated by the fact that they must make
decisions as the scene is being rendered without any information
about what future rendering operations may do.

The basis of our algorithms involves merging fragments that are
very close in their Z values. This combines fragments that are part
of the same surface, but have been broken into multiple fragments
by tessellation. We can also combine two transparent surfaces that
are very close in Z value. This reduces the visible transparent depth
complexity and in most cases results in no difference in pixel color.

homing
iragment

New fragment
insertion , J , J , Frame buffer memory 1

Pixel color
computation

Fragment
compression

Figure 6: The Z3 fragment processing pipeline.

There are four main steps that are taken when a new fragment
arrives at a pixel. The steps form a fragment processing pipeline
(see Figure 6). Existing fragments are stored in frame buffer
memory sorted based on their center Z value. When a new fragment
arrives, the existing fragments are read in starting with the closest
fragment. The four new fragment processing steps are:

1. Occlusion Check - the sample points that are covered by
the new fragment are checked whether they occlude or are
occluded by any stored fragments. This is done by comparing
the incoming depth values with the depth values recomputed
for each sample point from the center Z value and the X and
Y Z slopes. If a stored fragment is completely occluded by
the new fragment, its storage can be freed for later use.

2. Fragment Insertion - If any sample points of the new
fragment pass the occlusion test, the new fragment is inserted
in the pipeline of existing fragments in the proper place
based on its center weighted Z value. This can be done
by comparing the new fragment’s center referenced Z value

89

with two adjacent stages in the fragment pipeline. If the
new fragment’s Z value is larger than the first stage but less
than the second stage, when the pipeline is shifted next the
new fragment is loaded into the first stage while the second
fragment and those behind it do not advance.

3. Pixel Color Computation - The pixel color is computed
before any compression required by the addition of the new
fragment. Thus the pixel color is based on all the information
in the existing fragments and the new fragment. Details of
the pixel color computation including computation of a swap
veCtor are described below in Section 4.2.

4. Fragment Compression - If there are more fragments than
storage locations, one fragment will need to be merged with
another. This is described in more detail below in Section 4.3.

4.2 Pixel Color Computation

Because the fragments within a pixel are sorted in depth order,
we can usually compute the color of each pixel by alpha blending
whole fmgments. A box filter is then applied to produce the final
pixel color, although our algorithm is extendible to more complex
filters [3].

Unfortunately when transparent fragments overlap in their Z
ranges with other fragments (which may or may not be transparent),
computing the final pixel color based on the sorting implied by the
center-referenced Z values can create erroneous results. Consider
the lower-right case in Figure 1. The transparent fragment A is
actually partially in front of opaque fragment B, even though its
center-referenced Z value is behind it. If A is processed first, the
opaque fragment B will completely obscure fragment A instead of
blending with the portion of A in front of fragment B.

Before computing the color at each sample point we compare the
per-sample point Z values in adjacent stages of the pipeline. If their
front-to-back order is wrong, we set a bit in a swap vector between
the pipestages. The swap vector tells us which sample points have
their order reversed between pairs of fragments. After the swap
vector has been computed on both sides of a fragment we can throw
away the per sample-point Z information to save circuitry. Later if
a swap bit is set when we process the fragments to produce the
pixel color or merge fragments, instead of using the color from
the cmrent pipestage for a sample point, we use the color from the
pipestage above or below it (depending on which swap bit is set).

In this way, we are guaranteed that we can correctly reorder
all sample points where one fragment interpenetrates an adjacent
fragment at that sample point. We do not correctly handle
arbitrary interpenetration, such as one perpendicular fragment
interpenetrating many parallel fragments. However, such cases are
rare, and moreover the error in such cases is not large because of
the many surfaces viewed in series and the small coverage of the
perpendicular fragment.

After the swap vectors are computed, we can compute the pixel
color and alpha on a per-sample point basis. We sum the colors
from all the sample points and divide by the number of samples per
pixel (i.e., right shift).

4.3 Fragment Compression Algorithm

Fragment compression only takes place when the number of
fragments exceeds the preset limit k. Because the fragments are
sorted in order of increasing center Z values, we know that the two
closest fragments (in terms of their center Z values) are adjacent
to each other in the pipeline. Although differences between
center Z values and per sample point Z values are significant for
occlusion and color calculations, we have found that center Z values
are adequate for merging of fragments. As the fragments pass

through the pipeline, they pass by a subtractor which computes the
difference in center Z values between the adjacent stages. Based
on these results, one of the k adjacent pairs of fragments out of the
k + 1 fragments are merged.

Because merging may introduce errors, we would like to
minimize the extent of these errors. In general, changes to
fragments covering a small number of sample points result in
smaller pixel errors than changes to fragments covering a large
number of sample points. Also, the information content (in terms
of the final pixel color) of a fragment entry covering many sample
points is higher than that of an entry covering just one or a few
sample points. For this reason we also weight the Z difference
calculations by the minimum of the sample coverage counts of the
two fragments. What this does is bias the selection towards the
combining of small fragments that may be a little further apart
rather than larger fragments that may be a little closer. We have
found that this improves the final image quality.

In our algorithm, the center Z values of the two merging
fragments are averaged with weights equal to the number of sample
points that they cover. Weighted averaging of gradients works in
many situations, but does not work in situations where one of the
fragments is being viewed edge-on such as the side of a cylinder.
These fragments may have extremely large gradients (approaching
the maximum Z value) that will still be extremely large after
averaging but cover much more of the pixel. Instead for each of
the incoming fragments, we compute the absolute value of the X
and Y gradients (by setting the sign bit to zero). We set the merged
fragment’s X and Y gradients to those X and Y gradients with the
smallest magnitude. The stencil of the fragment covering the most
samples is copied to the combined fragment.

The merging of the adjacent fragment pair is complicated by
transparency. If both fragments are opaque, their color contents are
simply combined with weighted averaging based on the number of
sample points each one covers. If one or both of the fragments arc
transparent, the calculation of pixel color must be done similarly to
the final pixel color computation in section 4.2. However, in this
case the merged fragment may not cover all the sample points in
the pixel. To handle this properly, after the per sample colors have
been computed and summed (including use of the swap vector to
get the per sample point ordering correct), the result is multiplied
by a fraction that is the percent of the pixel covered by the merged
fragment.

The following equations describe the color computations
performed at each sample point when merging two fragments,
assuming 8-bit alpha and color channels. Sample points uncovered
by either fragment return zero. Sample points covered by only
one fragment return the alpha and each color channel multiplied
by the alpha of that fragment. For sample points covered by both
fragments, the following computations are made independently
for each sample point using the swap vector to determine which
fragment is in front and which is in back.

a*ampJe = afront +
(1 - afrrmt) *‘ahe

255

C - Cfmn,
c brci * aback * (1 - afrrnt)

mmph - * af,,: +
255

where C is each of the color channels R, G, and B. This
computes the transparency and reflected light for each of the colors
(multiplied by 255) for each sample point. Then the alphas and
color channels from each sample point are summed. The number of
sample points covered by the merged fragment ent, is computed
by OR’ing together the two coverage masks and counting the
population of 1’s. Then the final merged fragment color and alpha
is computed as follows:

90

c merged =
amcrgcd * cntm

for each of the color channels R, G, and B.

4.4 Performance on the Opaque Test Case

We use the terminology Nx sparse supersampling to denote N x N
sparse supersampling with N samples. Figure 7 shows the errors
introduced by 3x3 and 4x4 full supersampling, 4x, 8x, and
16x sparse supersampling, and 4x, 8x, 16x and 32x sparse
supersampled Z3 with various numbers of fragments for the x-wing
test case. The reference image for this figure is rendered by 16x 16
full supersampling.

ZOE+07 , \ 7

0 5 10 15
number of fraaments stored at each Mel

Figure 7: The errors introduced by 3x3 and 4x 4 full super-
sampling, 4x, 8x and 16x sparse su rsampling, and 4x, 8x,
16x and 32x sparse supersampled 2 P with various numbers of
fragments for the x-wing test case. The reference image is rendered
by 16x 16 supersampling.

Figure 7 shows two things. First, it is obvious that full
supersampling consumes too many fragments to reduce antialiasing
errors cost-effectively. For example, 4x4 supersampling takes
16 fragments and does not even perform as well as 8x sparse
supersampling which takes only 8 fragments. Second, we can
improve upon the performance of sparse supersampling by using
sparse supersampled Z3 with more samples and fewer fragments.
For example, 16x sparse supersampled 2 3 with 3 fragments results
in less than half the pixel error as 8 x sparse supersampling with 8
fragments, while using only about half the storage.

Figure 8 is an image of the x-wing fighter rendered with sparse
supersampling with 4 samples on an 4x4 grid. It is lower fidelity
than Figure 9 which has storage for only 3 fragments but uses 16
samples on a 16x 16 grid.

4.5 Performance on the Transparent Test Case

Figure 10 shows the error from 4x, 8x, and 16x sparsely
supersampled Z3 with various numbers of fragments for the

Figure 8: The x-wing fighter with traditional 4X sparse super-
sampling (using 4 samples on a 4x4 grid). The lower figure gives
the per-pixel difference from a 16X sparse supersampled reference
image.

transparent Cessna in comparison to 32x sparse supersampling
with an unbounded number of fragments. Figure 11 shows the
Cessna seaplane model rendered with storage for 4 fragments per
pixel. Each pixel has 16 samples taken from a 16x 16 grid. The
lower part of the figure shows the difference between it and an
image rendered with an unlimited number of fragments per pixel.
Note that although some pixels have a depth complexity of 16 or
more (as shown in Figure 3), using 4 fragments per pixel produces
acceptable results. Most of the error is confined to areas that have
16 or more visible fragments per pixel, and this results in a small
amount of “visible noise” in the image. Since the noise is relatively
small but varies from frame to frame it is more visible in the video.

4.6 implementation

The use of a small fixed number of fragment storage locations
per pixel has the advantage of having low overhead and design
simplicity. Although fragments in some pixels will be unused
while other pixels could use additional fragment storage, the fixed
allocation policy is easy to implement and verify. In practice, the
errors introduced by having a modest fixed number of fragments
per pixel appear small compared to losses in pixel information due
to a limited number of sample points. For example, according

91

Figure 9: The x-wing fighter using Z3 with 16 samples on a 16x 16
grid and storage for 3 fragments. The lower figure gives the per-
pixel difference from a 16X sparse supersampled reference image.
(Also in the color section.)

to Figure 7, the error introduced by having storage for only 3
fragments per pixel is much smaller than the error from having
only 8 or 16 sparse samples instead of the full 256 samples of the
reference image.

Since 2’ uses less memory per pixel than sparse supersampling
with the same number of sample points, when a pixel is accessed
less memory bandwidth will be necessary. This can either enable
higher performance for a given system memory bandwidth, or
lower the bandwidth requirements (and hence lower the cost) for
a given level of performance.

To provide 16X sparse supersampled Z3 with storage for 4
fragments per pixel requires about 50 bytes per pixel. Hence a
1280x 1024 resolution screen would require about 64MB of frame
buffer memory (not including textures), which at recent prices
would cost about 50 dollars. Based on historical long-term DRAM
price trends, this should reduce to about 12 dollars of additional
memory expense in three years. After consultation with some of
the designers of the Neon graphics accelerator[l2], it appears that
support for our algorithms will be well within the capabilities of
next-generation ASIC fabrication processes.

2.OE+07

1.6E+07

1.6E+07

1.4E+07

l.ZE+07

&.OE+07
B

&OE+06

6.OE+06

4.OE+06

Z.OE+06

O.OE+OO

0
numbezof fragmed”stored at ez& pixel

20

Figure 10: The errors introduced by 4x, 8x, and 16x Z3 with
various numbers of fragments for the transparent Cessna test case.
The reference image is rendered by 32x sparse supersampling with
an unbounded number of fragments.

5 Conclusions

The Z3 algorithm can provide economical high-quality hardware
antialiasing and order-independent transparency. It uses a small
fixed amount of storage per pixel. If the visible complexity of the
pixel exceeds the storage space available for the pixel, the minimum
number of fragments having the closest Z values are merged. This.
combines different fragments from the same surface, resulting in
both storage and processing efficiency.

When operating with opaque surfaces, Z3 can provide superior
image quality over sparse supersampling methods that use eight
samples per pixel while using storage for only three fragments. Z3
also makes the use of large numbers of samples (e.g., 16) feasible in
inexpensive hardware, enabling higher quality images. It is simple
to implement because it uses a small fixed number of fragments per
pixel.

Z3 can also provide order-independent transparency even if
many transparent surfaces are present. Moreover, unlike the
original A-buffer algorithm it correctly antialiases interpenetrating
transparent surfaces because it has three-dimensional Z information
within each pixel.

As memory prices continue to drop and VLSI integration
increases, these techniques could enable high-quality antialiasing
and transparency on all but the cheapest computer platforms.

6 Acknowledgements

Joel McCormack inspired the original work on this topic. Brian
Pinz introduced the authors to A-buffer methods. Joel McCormack,
Keith Farkas, Ron Perry, and Bart Sano commented on a early draft
of this paper. Finally, the comments of the anonymous reviewers
were much appreciated.

References

[I] Kurt Akeley. RealityEngine Graphics. In Computer Graphics
Annual Conference Series (Proceedings of SIGGRAPH 93),
pages 109-I 16, August 1993.

92

Figure 11: The transparent Cessna seaplane using 2 3 with 16
samples on a 16x 16 grid and storage for 4 fragments per pixel.
The lower figure gives the per-pixel difference from a 16X sparse
supersampled reference image with an unbounded number of
fragments. (Also in the color section.)

[2] James F. Blinn. Jim Blinn’s Comer: What We Need Around
Here is More Aliasing. IEEE Computer Graphics and
Applications, 9(1):75-79, January 1989.

t31

[41

r51

@I

[71

James F. Blimr. Return of the Jaggy. IEEE Computer
Graphics andApplications, 9(2):82-89, March 1989.

Loren Carpenter. The A-buffer, an Antialiased Hidden
Surface Method. In Computer Graphics Annual Conference
Series (Proceedings of SIGGRAPH 84), volume 18, pages
103-108, July 1984.

J. C. Chauvin. An Advanced Z-Buffer Technology. In
Proceedings of the IMAGE VII Conference, pages 77-85,
Tucson, June 1994.

Robert L. Cook, Thomas Porter, and Loren Carpenter. Distrib-
uted Ray Tracing. In Computer Graphics Annual Conference
Series (Proceedings of SIGGRAPH 84), volume 18, pages
137-45, July 1984.

Franklin C. Crow. The Aliasing Problem in Computer
Generated Shaded Images. Communications of the ACM,
20(11):799-805, November 1977.

@I

191

DOI

UI1

WI

u31

P41

1151

V61

Cl71

[If31

[I91

PO1

WI

James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics, Principles and Practice,
Second Edition. Addison-Wesley, Reading, Massachusetts,
1990.

Andrew S. Glassner. Principles of Digital Image Synthesis.
Morgan Kaufmann, San Francisco, California, 1995.

Paul E. Haeberli and Kurt Akeley. The Accumulation
Buffer: Hardware Support for High-Quality Rendering. In
Computer Graphics Annual Conference Series (Proceedings
of SIGGRAPH 90), volume 24, pages 309-318, August 1990.

Abraham Mammen. Transparency and Antialiasing Al-
gorithms Implemented with the Virtual Pixel Maps Tech-
nique. IEEE Computer Graphics and Applications, 9(4):43-
55, July 1989.

Joel McCormack and et. al. Neon: A Single-Chip 3D
Workstation Graphics Accelerator. In Proceedings of the
EurographicslSIGGRAPH Workshop on Graphics Hardware,
pages 123-132, Lisbon, Portugal, September 1998.

Megatek. Instacuity White Paper. 1993.

Steven E. Momar. Image-Composition Architecturesfor Real-
Time Image Generation. PhD thesis, University of North Car-
olina at Chapel Hill, 1991. Available as UNC-CH Computer
Science TR91-046, at http:llwww.cs.unc.edu/Research/tech-
reports.html.

John Montrym, Daniel Baum, David Dignam, and Chris-
topher Migdal. InfiniteReality: A Real-Time Graphics
System. In Computer Graphics Annual Conference Series
(Proceedings of SIGGRAPH 97), pages 293-302, August
1997.

Brian Pinz. Private communication. 1998.

Claudia Romanova and Ulrich Wagner. A VLSI Architecture
for Antialiasing. In Proceedings of the 4th Eurographics
Workshop on Graphics Hardware, 1989.

Andreas Schilling. A New Simple and Efficient Anti-aliasing
with Subpixel Masks. In Computer Graphics Annual Con-
ference Series (Proceedings of SIGGRAPH 91), volume 25,
pages 133-141, July 1991.

Andreas Schilling and Wolfgang Stral3er. EXACT Algorithm
and Hardware Architecture for an Improved A-buffer. In
Computer Graphics Annual Conference Series (Proceedings
of SIGGRAPH 93), volume 27, pages 85-92, August 1993.

Jay Torborg and James T. Kajiya. Talisman: Commodity
Realtime 3D Graphics for the PC. In Computer Graphics
Annual Conference Series (Proceedings of SIGGRAPH 96),
pages 353-364, New Orleans, Louisiana, August 1996.

Stephanie Winner, Mike Kelly, Brent Pease, Bill Rivard, and
Alex Yen. Hardware Accelerated Rendering of Antialiasing
Using a Modified A-buffer Algorithm. In Computer Graphics
Annual Conference Series (Proceedings of SIGGRAPH 97),
pages 307-316, Los Angeles, California, August 1997.

93

Figure 2: The color represents the maximum number of fragments
that arc visible in each pixel of one frame of the x-wing test case
when using 16 samples per pixel. The color code at the bottom
shows the colors representing 1 (white) to 16 (red).

Figure 9: The x-wing fighter with 16 samples on a 16x 16 grid
and storage for 3 fragments. The lower figure gives the per-pixel
difference from a 16X sparse supersampled reference image.

Figure 3: The color represents the maximum number of fragments
that are visible in each pixel of one frame of the transparent Cessna
test case when using 16 samples per pixel. The color code at the
bottom shows the colors representing 1 (white) to 16 or more (red).
Some pixels have as many as 30 fragments.

Figure 11: The transparent Cessna seaplane with 16 samples on a
16 x 16 grid and storage for 4 fragments per pixel. The lower figure
gives the per-pixel difference from a 16X sparse supersampled
reference image with an unboundednumber of fragments.

Z3: An Economical Hardware Technique for High-Quality Antialiasing and Transparency
Norman P. Jouppi, Chun-Fa Chang

143

