
Multiresolution Rendering With Displacement Mapping

Stefan Gumhold:Tobias Hiittnert

WSI/GRIS University of Tiibingen

Abstract

In this paper, we present for the first time an approach for hard-
ware accelerated displacement mapping. The displaced surface IS
generated from a 2D displacement map by remeshmg a coarse tn-
angle mesh according to the screen proJection of the surface The
remeshing algorithm is Implemented in hardware. Filtered access to
the displacement map makes our approach competltlve with avall-
able view dependent multiresolutlon techniques. The advantage of
displacement mapping 1s the compact representation. A dlsplace-
ment mapped surface consumes together with all filter levels only
a fraction of the storage space needed for a hardware compatible
representation of an equivalent tnangle mesh

A possible design of the displacement mapping rendering
pipeline is proposed. Previously described hardware components
are used as often as possible. Our approach can be smoothly m-
tegrated mto all available graphics application programming mter-
faces. Most existing graphics applications can be extended to the
new feature with marginal effort.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture-Raster display devices 1.3.3 [Computer Graphics]:
Picture/Image Generation-Bitmap and framebuffer operations,
Display algonthms, Viewing algorithms 1.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modelmg-Curve, sur-
face, solid, and object representations 1.3.7 [Computer Graphics]:
Three-Dlmenslonal Graphics and Realism-Color, shading, shad-
owing, and texture

Keywords: hardware, multlresolutlon, displacement mapping

1 Introduction

Our approach for displacement mapping extends currently available
3D raster graphics hardware m order to allow for real time applica-
tions. The realism of rastered surfaces depends greatly on the detail
of the surface and the type of ~llummation. Available graphics hard-
ware 1s based on the rasterization of triangles.

As the number of rendered tnangles 1s limited by several fac-
tors, additional detail can be added with the help of texture map-
ping. Textures are mapped onto triangles via a two dimensional
parametnzation with rectangular domain. The coordinate axes in
the domain are commonly denoted with ‘u. and 21. Each triangle

*Em=1 gumhold@um-tuebmgen de
tErna thuettneagns urn-taebmgen de

%m~sston to make &&al or hard copies of all or part of this work tin
~sonal or classroom use IS granted wlthout fee plovlded that copses
ire not made or dlstrlbuted for profit or commercial advantage and that
:op~es bear tills notlce and the full cltahon on the first page To copy
,therwse, to republish, to post on servers or to redlstnbutc to hsts.
cqwes prior spcclfk pcrmw~on and/or a fee
1999 Eurographics LosAngelcs CA USA
lopynght ACM 1999 l-581 13-170-4/99/08.. $5.00

vertex 1s supplied with texture coordinates. The texture coordmates
mslde the tnangle are linearly interpolated m world coordmates As
the tnangle 1s rastered m screen coordmates the texture coordmates
must be perspectively corrected [121. To avoid aliasmg the access
to texture maps must be filtered. The commonly realized approach
1s MIPmap filtermg [28], which 1s not optimal as a screen pixel can
be mapped through the inverse perspective projection to long and
thin footprmts m the texture domain. Therefore, adaptive filtermg
techniques have been proposed which sample this footprmt more
precisely [5, 11,271.

In available hardware accelerators illummatlon 1s mostly based
on Gouraud shading. Here the llluminatlon is evaluated at the tn-
angle comers. The resulting color values are just interpolated over
the tnangle. Although several architectures for Phong shading have
been proposed [2.5, 1, 6, 19, 31, only some speclahzed raster hard-
ware support it, as the surface normal must be interpolated and
renormahzed for each processed pixel.

Although the initial idea dates far back on Blinn [2], hardware
architectures for bump mapping have been proposed only more re-
cently [8, 24, 181. Bump mapping is a further posslbllrty to add
detail to a surface by varying not the diffuse color attnbute as in
case of texture mapping but the normal vector which 1s used for il-
lumination. This allows to simulate more realistic illumination of a
surface with small bumps, that vary the surface normal. To realize
bump mapping the interpolated surface normal vector is changed
by adding a deflection vector and probably by renormalizmg the
result. The surface normal is interpolated from the normals at the
tnangle comers as m the case of Phong shading. The deflection vec-
tor is defined by an access to the bump map which is parametnzed
in the same way as a texture map. Even the same coordmates
rmght be used The difficulty of the bump mapping approach 1s
that the deflection vector must be defined in a local coordmate sys-
tem which needs to be computed during rastenzatlon at least par-
tially. Blmn [2] proposes to compute the deflection vector from
a displacement map, which stores for each parameter position the
displacement of the surface in &rection of the interpolated normal.
For this the derivatives of the displacement map in u and w direction
must be approximated. Blmn simplifies the formula for the deflec-
tion vector further by assuming that drsplacements are small. The
approach of Kugler [183 defines the deflection of the current normal
by two rotation angles which are stored in the bump map. This ap-
proach does not use an approximation and 1s therefore also suitable
for large displacements. One general drawback of bump mapping 1s
that it only applies to small variations of the surface. The lack of the
actual geometrical displacement of the surface produces two kmds
of artifacts. Firstly, the silhouette looks still as m the undisplaced
case and secondly the geometrical displacement causes occlusions
and movement of surface points which can shift intersections of
eye rays with the displaced surface significantly. Finally, we want
to mention the difficulties m filtenng normal fields as discussed by
Foumier [101.

Most problems of bump mapping can be solved by actually per-
formmg the geometrical displacement of the base surface. Three
approaches have been proposed for displacement mapping so far.
Cook [4] describes a shader which can vary the pixel posltlon on
the screen. This feature can be used for displacement mapping, but
no details are given. The problem of moving pixels around is that

55

the surface will get cracks if the displacement varies too much and
that the displacement map cannot be sampled appropriately in view
direction which is extremely important to represent the silhouette
of the rendered surface. The second approach is to resample the
displacement in volumetric textures [159, 221. The storage space
for this approach is increased by one dimension, which restricts the
applicability to either repetitive textures or small displacements. A
second problem is that illumination can only be handled by either
increasing the computational costs or the consumed storage space
immensely. Finally, the approach of Patterson[23] is based on ray-
casting and therefore not compatible with common graphics hard-
ware.

Figure 1: Principle of displacement mapping.

Up to now all approaches to displacement mapping assumed that
the displacements are rather small and that the displacement map is
basically repetitive. This often results in simple examples, which
primarily look like a sphere with some bumps on it. In this paper
we want to demonstrate the possibilities provided by displacement
mapping. Figure 1 shows a displacement map obtained with a cy-
berware scanner. The displacement is mapped onto a cylinder con-
sisting of thirty two triangles. The advantage of the displacement
map representation is the small size of the data set and the regular
arrangement of the data, what makes hardware access easy. The ge-
ometry of the example surface in figure 1 is represented in 5122 x 2
bytes for the displacement map plus 34 x 12 bytes for the cylinder
mesh which is specified in a triangle strip. Altogether this sums up
to 512.2 KB which is significantly less than the 3 MB, which are
consumed by an equivalent triangle mesh in triangle strip represen-
tation, when each coordinate is represented with only two bytes.
We present an approach for displacement mapping which remeshes
the coarse mesh view dependently with triangles of pixel size. Our
remeshing algorithm might produce too many fine triangles as it
does only depend on the screen resolution and not on the surface
variation, but the triangles are produced directly on the graphics
board and can therefore be processed much faster.

This example shows that our displacement mapping hardware
can be used for view dependent multiresolution rendering. In this
area two basic techniques have been available so far. Discrete mul-
tiresolution models as described in [13, 17,21,29] are most flexible
and provide best error control. But even in a storage space efficient
representation as described in [26] the connectivity and hierarchy
information increases the size of the view dependent multiresolu-
tion model to several times the size of the original triangle mesh.
The other multiresolution techniques are based on wavelet repre-
sentations of the surface as described in [20]. Wavelet based surface
representations are very compact. We do not know of a view depen-
dent rendering algorithm, what is surely feasible. But it is not clear
if such an algorithm is suitable for a hardware implementation.

In displacement mapping the multiresolution representation is
stored in filter levels similar to MIPmaps. The screen space error
produced with this approach depends on the quality of the filter lev-
els and on the access strategy. We propose simple solutions to both

problems in section 4. But we cannot control the screen space error
completely. This is at the moment the only drawback we see com-
pared to other multiresolution representations. We will work on this
in future and believe that displacement is a beautiful compromise
between control of the screen projected error on the one hand and
compactness of the representation and simplicity of accessing the
surface on the other hand.

In what follows we describe a possible design for a displacement
mapping hardware. The design is meant as a proposal for a redesign
of existing graphics accelerators.

2 Displacement Mapping

In this section we give an overview of the displacement mapping
hardware and describe a complete rendering pipeline including dis-
placement mapping. But first we define the notion of a displaced
surface in a mathematical framework.

2.1 Principles of Displacement Mapping

a) b)

Figure 2: a) Base and displaced surface. b) Base triangle.

Figure 2 a) illustrates the basic components of a displaced sur-
face: a base surface p(u, v) which is parametrized over a two di-
mensional domain, a normal field n(u, w) and a displacement scale
field d(u, u), both defined over the same domain as the base surface.
Often the normal field is computed from the normalized cross prod-
uct between the partial derivatives of p in 21 and 2) direction. But
this is not mandatory for the definition of the displaced surface p’

p’(u, v) gf p(u, v) + d(u, w) . n(u, v). (1)

For application in a rasterization hardware the base surface is dis-
cretized and approximated by a triangulation. The coarse triangles
which approximate the base surface are called base triangles. Fig-
ure 2 b) shows such a base triangle. Each base triangle vertex con-

tains a position Pi, a normal vector Ni, a pair Ti 2 (u;, v;) of

texture coordinates and a color vector C; g’ (r;, gi, bi, ai). All the
vertex data denoted by V; is linearly interpolated to points inside
the triangle. The normals are additionally normalized after interpo-
lation or could be interpolated via the angle as described in [19].
Interpolated vertices and vertex data is denoted with small letters
in contrast to base triangle vertices which are denoted with capi-
tal letters. During the interpolation the vertex positions define the
base surface, the vertex normals the normal field and the texture
coordinates the inverse of a two dimensional parametrization. With
the help of the parametrization the displacement scale field can be
realized with a two dimensional array of scale values which are
multiplied to the interpolated normal and in this way define the dis-
placement. This array is called displacement map. The values of
the displacement map are 16 bit integers. They are scaled to the
range between the minimal and maximal displacement in world co-
ordinates, which is both stored with the displacement map.

For a correct illumination of the displaced surface the knowledge
of the surface normal n’(u, u) is very important. The normals are

56

computed with one of the available bump mapping approaches. We
favorite the approach of Kugler [181 as it is not based on an approx-
imation, which is especially important for us as we want to support
large displacements.

We do not want to change the user graphics application program-
ming interface (API). Only the functionality for specifying the dis-
placement map is added. Everything else stays the same. Therefore,
base triangles arrive at the displacement mapping unit in an arbi-
trary order and nothing about the adjacent base triangles is known.
In order to avoid cracks at common edges of adjacent base triangles
the displacement along the edges must be applied consistently. For
this two conditions must be fulfilled. Firstly, the computation of
the displaced surfaces along the triangle edges may only depend on
the vertex data of the two incident vertices and not on the data of
the third vertex. This condition may never be neglected. It imposes
a severe constraint as it influences the design of the remeshing al-
gorithm and the access to the filter levels. We call this constraint
the edge constraint. The second condition is that the common ver-
tices of adjacent triangles must contain the same vertex positions
and vertex normals. The second condition must be fulfilled by the
programmer and can easily be ensured by the use of vertex arrays.

2.2 Displacement Mapping Hardware

In this section we describe a complete rendering pipeline which
is oriented at the commonly used OpenGL rendering pipeline and
similar components are used. The new rendering pipeline is shown
in figure 3. The view dependent remeshing and the displacement
calculations take place in a special unit, the Displacement Unit. It is
located between the Primitive Assembly stage and the Perspective
Transformation stage of the standard OpenGL pipeline, see Fig-
ure 3. Parts of the OpenGL pipeline are reused, for example the
illumination unit and the perspective transformation.

In order to integrated the displacement unit into the OpenGL
pipeline, two interface units are inserted before and after the dis-
placement unit. The Controller Unit directs the to be displaced base
triangles into the displacement unit. The remaining triangles are di-
rectly transferred to the FIFO/Triangle Buffer Unit, which synchro-
nizes triangles from the controller with triangles generated in the
displacement unit. The triangle buffer is locked by either the dis-
placement unit or the controller unit and unlocked after the triangles
have been transmitted. The buffer also allows to cover latencies in
the displacement pipeline.

The displacement unit is organized as a pipeline and consists of
five stages. The first stage is the setup for the base triangles, where
the vertex data is prepared for the remeshing algorithm. The input
to the triangle setup consists of three vertices, each of them contain-
ing the vertex position P, the vertex normal N, the texture coordi-
nates T and the color C. For correct illumination computations the
positions and normals must be given in the same coordinate sys-
tem as the light sources and the view point. We call this the wofld
coordinate system and choose it with the origin in the view point,
the z direction in view direction and the x and y directions parallel
to the corresponding viewport coordinates. In the setup stage the
vertex positions are transformed to screen space and the base tri-
angle clipping is performed. The vertex data is handed on to the
next stage, the remeshing stage, which performs a sweep-line algo-
rithm in order to produce quadrilaterals and triangles of pixel size.
The remeshed vertices are computed in world coordinates and de-
noted with lower case letters in contrast to the upper case notation
of the original vertices. These two units implement the remeshing
algorithm, which is the core contribution of this paper and is com-
prehensively described in section 3.

All vertices which are newly produced by the remeshing stage
are piped through the last three stages of the displacement unit.
First the bump and the displacement mapping is performed in paral-

Signal not used

- Signal used in the next
unit

- Signal changed in this unit
and used in the next unit

Controller

I

Base Triangk
setup

&
View ~Volumc I I View Volume I

clipping

FIFO I Triangle Buffer
I

Perspective
85

Rasterizerizing Unit

Figure 3: Displacement Mapping rendering pipeline.

lel. The bump mapping unit generates the surface normal n’ of the
displaced surface in world coordinates. Any additional data needed
by a specific bump mapping technique is also interpolated during
the remeshing and handed on to the bump mapping unit. The dis-
placement mapping unit computes the displacement scale by a fil-
tered displacement map lookup and generates the new surface point
via formula I. Next the illumination unit performs Phong shading.
Finally, the vertex contains the illuminated color and the displaced
position and is ready for stripping.

The stripping unit is a mixture between generalized triangle
strips as descibed in [141 and the generalized mesh as proposed by
Deering [7]. It contains a buffer with four registers each of which
can hold one vertex. The vertices are referenced by a two bit in-
dex. The stripping unit always produces sequential triangle strips,
which can be built with stored vertices and new ones. Therefore,
the stripping unit is controlled by the three commands init, setrefi
and ref i. The init command starts a new strip. The setref i com-
mand loads register i with a new vertex and adds the vertex to the
current strip. Finally, the ref i command adds the buffered vertex
in register i to the current strip. The commands are sent from the
remeshing unit through the signal cr to the stripping unit. Each time

57

a triangle is produced in the current strip, the triangle vertices are
placed into the triangle buffer. The stripping unit was introduced
to allow the reuse of more displaced and illuminated vertices but
could be skipped as well.

3 View Dependent Remeshing

In this section we describe the main contribution of our paper, a
view dependent remeshing technique, which can be implemented in
hardware. Base triangles are subdivided according to their extend
in screen space. With the filtered access to the displacement maps,
a view dependent multiresolution remeshing is achieved.

An appropriate remeshing is especially important for base trian-
gles with normals orthogonal to the viewing direction, as the cor-
responding displacements contribute most to the silhouette of the
displaced surface. Therefore, we extend the viewport in the view-
ing direction as described in section 3.1. In this way the remeshing
can be done not only in x and y directions but also in x and z or in
y and z directions.

Figure 4: The proposed remeshing does not produce any t-vertices
on a common edge of adjacent base triangles.

The most important constraint for the remeshing algorithm is the
edge constraint (see section 2.1). If the vertices, which are newly
generated by the remeshing, on an edge are not the same for both
of its adjacent base triangles, t-vertices are generated. As the dis-
placement map normally is not a linear map, cracks will appear at
the t-vertices. They will be visible even if their size is smaller than a
pixel, because a rounding operation in the rasterizer might produce
different results or because the orientation of some triangles around
the t-vertex can be flipped inconsistently such that the triangles are
back face culled away by mistake. Our remeshing algorithm avoids
the t-vertices by subdividing the edges only dependent on the two
incident vertices. Figure 4 illustrates this feature of our algorithm.
The two base triangles were remeshed with a resolution 45 times
coarser than the screen resolution. The lower triangle is remeshed
in x and y direction and the upper triangle in x and Z. On their
common edge no t-vertices arise.

The organization of the rest of this section is oriented at figure 5,
which gives an overview of the remeshing unit containing the base
triangle setup and the view dependent remeshing.

The setup unit is fed with three vertices given in world coor-
dinates. Each vertex contains the position, the normal vector, the
texture position and the color vector as noted in brackets on the top
right side in figure 5. The first stage transforms the three vertices to
screen space and to grid space. The latter is used for the remeshing
and described in section 3.1. After the transformation the vertices
are prepared for perspective correct interpolation. Therefore, sec-
tion 3.2 describes the vector interpolation and the perspective cor-

E perspective correction

vpwodd ~nworki)f’ vc) 0

Figure 5: Overview diagram of remeshing unit.

rection approach. This also includes the last stage of the remeshing
unit. The next stage in figure 5 clips the base triangles. For this
the view volume is extended according to the smallest z position
of the base triangle and the maximal displacement as described in
section 3.3. If the base triangle is clipped away, execution termi-
nates, what is illustrated in figure 5 by the bold arrow pointing out
of the unit. The remaining stages of figure 5 constitute the core of
the remeshing algorithm and are described in section 3.4. For the
orientation of the reader, in section 3.4 the beginning of a new stage
is marked with a new subsection heading.

3.1 Screen Space vs Grid Space

As mentioned in the introduction to this section, the remeshing
might be done in z direction. It is very important that the remeshing
resolution in z direction decreases according to the perspective pro-
jection with increasing distance from the view point. The first idea
which comes to mind is to sample the z direction in screen space,
which is the vector space resulting from the perspective projection
including the division by the homogenous w coordinate. The prob-
lem is that for the I direction no appropriate scaling is known as
in the case of the x and y coordinates, which is given by the view-
port mapping. It is not possible to choose a constant scaling in
z direction consistently over the complete z range. Our experi-
ments showed for typical perspective projections that for any con-
stant choice of the z scaling zones arise in the z direction where the
pixel size will be stretched or compressed in z direction by a factor
of ten and more. This is a serious problem if we imagine a remesh-
ing in z direction of base triangles which also have some slope in x
or y direction. Then one step in the z direction can produce jumps
of up to ten pixels in the other direction, what conflicts with the idea
of the view dependent remeshing.

Let us have a look at the problem in world coordinates. Fig-
ure 6 shows on the left the two dimensional viewport of width W
and height H pixels in world coordinates taken at the near clipping
plane. On the right the whole scenario is turned around the y axis
by ninety degrees. The viewport is extended into the z direction
in a way that the resulting voxels are all similar to cubes, i.e. all
edges of one voxel have nearly the same length. A unit voxel grid
in screen space is different from this intuitive voxel grid. Although
the fraction of the voxel heights over the voxel widths is constant
all over the ~,~,rd range, the fraction of the voxel heights or widths
over the voxel depths varies significantly depending on the .Z loca-

58

view ort
P

Id

Figure 6: Extension of pixel grid in view direction.

tion. The i&,,ld positions Zk (see figure 6) of the cube-like voxel
grid can be calculated in a recursive manner from the pixel size
anear on the near clipping plane and the distance znear of the near
clipping plane from the view point. Knowing zu to be znear, zk is
calculated for Ic > 1 via

zk = zk-1 +
zk-1
-&Ear *
&Ear

~k=&,..r++~)k.

(2)
With a view angle Q in y direction and a viewport height of H
pixels, s neaP computes to

s near = 2tan gy. (3)

Solving equation 2 for lc yields a continuous mapping Zsrid(&,orld)
from the z world coordinate to the z grid coordinate of the voxel
grid. Together with equation 3 this yields

ln Z,odd - n znear 1
Zgrid =

>
.

(4)

The z and y coordinates zsrid and usrid of the voxel grid are the
same as the viewport coordinates zscreen and Y~~,.~.~, which are
computed by applying the perspective projection followed by the
viewport mapping. The vector space defined over the voxel grid
coordinates zgrid, &rid and agrid is called the grid space in dis-
tinction to the screen space which is formed by xscreen, yScTeen
and zscreenr where zscreen is scaled to the range [-1, 11.

;m ~/$Fj

20 %#or18° 8o loo 20 ~worl&” O0 loo

4 b)

Figure 7: For znear = 1, afar = 100, cr = 90” and H = W =
300: a) Fraction of voxel width over voxel depth computed for the
screen space voxel grid in world coordinates as function of &orrd;
b) Zg,+ and zscreen as function of Z,,,rd.

Figure 7 illustrates once more the difference between grid space, If the sweep-line algorithm was performed in grid space, the
screen space and world coordinates. Figure 7 a) plots the fraction newly generated vertices would have to be projected back onto
of the voxel width over the voxel depth on a logarithmic scale as the base triangle to avoid curved base triangles, which is essential

a function of the distance .&&d from the view point. The voxel
width was computed according to equation 3 as 2 tan 5 y.
Grid space is defined in a way that the voxel depth equals the voxel
width not only in grid coordinates but also in world coordinates.
Therefore, the corresponding fraction is constant equal to one and
its logarithm zero. In screen space zscreen needs not be scaled to
[-1, l] but can be scaled to any interval. In figure 7 a) we scaled
it such that the fraction of the voxel width over the voxel depth
computed in world coordinates equals one at &.,&d = 10. But
the fraction is not at all equal to one anywhere else and therefore
screen space is not suitable for a remeshing in the z direction. We
also showed the fraction of width over depth for a voxel grid with
0.1 . Zworld as voxel depth.

Figure 7 b) compares the plots of Zgrid(awOrld) and
zscreen(zworld). This time the zscreen coordinate was scaled such
that both plots have the same values at a,,& = znear and
&o,ld = Zfar.

3.1 .l Vertex Transformation

t
+id

lookup

Figure 8: Hardware design for transformation from world positions
to grid positions and screen positions.

Figure 8 shows a hardware design for the transformation from
world positions to grid and screen positions. On the left of the
diagram the world coordinates are perspectively transformed and
mapped to viewport coordinates. The z coordinate is mapped to a
device independent coordinate such that the range [znear, Zrar] in
world coordinates is mapped to [-1, l] in screen space. The per-
spective transformation outputs also the homogenous w coordinate
‘Whom0 of the vertex, which is needed for perspective correction.

On the right side of figure 8 the z world coordinate is scaled to
the range [0, l] and then transformed to the grid coordinate with
a linearly interpolating lookup into a one dimensional float valued
array which realizes equation 4. This array and the parameters for
the perspective transformation only need to be initialized once after
each change of a camera parameter and or the viewport.

3.2 Vertex Interpolation and Perspective Correc-
tion

The remeshing in grid space bears a problem. As the transforma-
tion from &orld to &reen is not linear nor perspective, a line and
therefore also a base triangle in grid space will be bent in world
coordinates. This is illustrated by the bold dashed line in figure 6.
The line was drawn in the y/z plane of grid space with slope minus
one half, i.e. it moves two grid voxels in z direction for each voxel
in the negative y direction. In world coordinates and therefore also
in screen coordinates the line is bent.

59

for correct texture, bump and displacement mapping. We project
the grid positions onto the triangle in screen space in a very sim-
ple way. Let psrid,r , &id,2 and ps+,s be the comer locations
of a base triangle in grid space. Then any grid space location
psrid can be expressed with the help of its barycentric coordi-

nates ngrid,i as Pgrid = Ef=, 0grid.iPgrid.i. If pscreen,i are the
screen space corner locations of the base triangle, psrid is projected
onto the location pScPeen on the base triangle in screen space by

pScPeen = Cz=, Ugrid,iPscreen,i. In this way we use Zgrid to de-

fine a scaling for the z coordinate in screen space, which is adapted
to the current triangle. Only for triangles which span the complete
z range the grid space approach degenerates to the remeshing in
screen space. In practice, no barycentric coordinates are needed.
The vertex data is interpolated by applying the same vector opera-
tions which are performed in grid space in a one to one fashion to
the vertex data in screen space.

As all the vertex data will be needed in world coordinates in
successive units, the new vertices which are generated in screen
space need to be perspectively corrected. The standard perspec-
tive correction method can be applied. We interpolate the vertex
data in world coordinates divided by the homogenous w coordi-
nate Whom0 of the vertex, which is computed by the vertex trans-
formation stage shown in figure 8. In addition to the vertex data we
have to interpolate the homogenous w coordinate. From the rela-
tion between ‘Whom0 and the constant focal distance fc, which can
be found in standard literature,

‘Whomo =

we can deduce that the quantity

(3

cgf 1 ZSCTlX7% --I=--
‘Whomo fo

(6)

is proportional to zscreen and can therefore be interpolated in screen
space. Thus, after the vertex transformation stage (see figure 5), the
vertex data is multiplied by 6 and C becomes part of the vertex
data.

One could imagine also to interpolate the position and normals
in screen coordinates in order to avoid the perspective transfonna-
tion of the newly generated vertices before the rasterizing unit (see
figure 3). This is actually possible but the increase of the hardware
complexity for the interpolation and the correct computation of the
displacement in screen coordinates is higher than the complexity for
the perspective transformation unit. Simple pipelining of the units
in figure 3 can avoid any computational overhead of the proposed
approach.

The vertex data in world coordinates are obtained from the inter-
polated values by multiplying each component with & = ‘Il)homo,
which is done in the perspective correction stage in figure 5 at the
end of the remeshing unit before a newly generated vertex is sent to
the mapping, illumination and stripping units.

3.3 Base Triangle Clipping

After the transformation of the base triangle positions to grid and
screen space, follows the clipping of the base triangles within
screen space. As the displaced surface over the base triangle can
be very complex and is not known before the remeshing stage, we
propose a conservative clipping mechanism. As in each displace-
ment map the minimum and the maximum displacement in world
coordinates are stored, also the absolute value d,,, of the maxi-
mum displacement is known in world coordinates. For each base
triangle we extend the clipping volume as shown in figure 9 by the
length d,,, .

extended clipping volum/e
l.l

Figure 9: Extension of clipping volume for base triangle clipping.

The figure shows the situation in the more intuitive world coor-
dinates. The influence of d,,, onto the extension of the clipping
volume in screen coordinates depends on the z coordinate. If the
triangle is nearer to the view point the displacement can span more
pixels as if the triangle is further apart. Therefore, we transform the
length d,,, at the minimal z coordinate zref (see figure 9) of the
base triangle. In x and y direction we have to take care since the
faces of the clipping volume do not lay in world coordinate planes.
We have to substitute d,,, with

d E -mao.
xgy - (.o$j 4

The perspective transformation and the viewport mapping yield the
new clipping coordinates xLin, xlmao, ykin, y&,,, zkin and z&,,
from the original clipping coordinates xmin. xmoz, ymin, ymas,
-1 and 1:

,
xrnin =

W.e,,y I
Xmin - 2tan 9 xnmz =

I
Ymin = ymin - * y;,, =

2 I
Znlin = -l-2(for&m

zr,,-rn:ap)(=n.o~-dmo.) I
Zmaz: =

z”ea ma*
’ + 2 (Ifar-=near~;lzfar-dm,,)

(8)
Better clipping results can be obtained by using for each base tri-
angle an appropriate d,,,. This can either be specified by the user
or can be computed from an additional hierarchy over the displace-
ment map, which stores the maximal displacement for each cell.

3.4 Sweep-Line Algorithm in Gris Space

As a first simplification of the remeshing algorithm we round the
grid positions of the comer vertices to integer values, which are
in pixel units. The screen positions are not rounded such that the
base triangle will still be interpolated at the comer points. This
is very important if the remeshing resolution is coarser than the
screen resolution, since in this case the rounding of the screen co-
ordinates would change the comer positions of the triangles by a
visible amount. Our method has the side effect that the remeshing
directions are slightly distorted from the screen space directions.
This is the reason, why the lines in the lower triangle of figure 4 are
not exactly parallel to the x and y directions.

The leading idea of the sweep-line algorithm is illustrated in fig-
ure 10. First the base triangle is projected into the best suited co-
ordinate plane in grid space (figure 10 a)). The selected coordinate
plane is called the remeshing plane. In the remeshing plane the
voxel grid projects to a quadrilateral grid. The quadrilaterals have

60

4 b) c)

Figure 10: Leading idea of the remeshing: a) Base triangle is pro-
jected to the remeshing plane. b) Remeshing, vertices near edges
are dragged onto edges. c) Partitioning is projected back onto the
base triangle.

the size of a pixel on the screen and are ideally suited for remesh-
ing the base triangle. Grid vertices near the edges of the triangle
are dragged onto the edges as hinted in figure 10 b). Finally, this
remeshing is used to partition the original base triangle into quadri-
laterals and triangles as indicated in figure 10 c).

The edge constraint (see section 2.1) implies that the newly gen-
erated vertices on the edges may only depend upon the incident
comer vertices of the base triangle, such that no t-vertices are pro-
duced. Therefore, we define for each edge the main direction as
follows:

Definition 1 The main direction of an edge from p1 to pa is the

coordinate direction x.@d, &-id or zgri& rt?SjmtiVe~y, iff Ax gf

IP Z.xgrid - pl.zgr;dl, Ay or AZ, respectively, is the maximum
among Ax, Ay and AZ. If the maximum is not unique, Xg+d has
the highest priority and z&d the lowest.

t
Zgrid

a) b)

Figure 11: Arrows indicate main direction of edges. a) New vertices
on the edges are generated along the main direction. b) Triangle
with three different main directions.

Each edge is subdivided along the main direction in pixel units as
shown in figure 11 a). For most base triangles the remeshing plane
can be chosen in a way that all main directions of the edges lay
within the remeshing plane. In this case each newly generated edge
vertex lies at least on one grid line. But the three dimensional screen
space bears triangles, where all three edges have different main di-
rections as shown in figure 11 b). This yields some more special
cases during remeshing because two different edge points might
round to the same grid point when projected to the remeshing plane.

Back to simplifications of the remeshing algorithm. An edge is
called a primary edge of the base triangle if the third triangle vertex
lies inside the primary edge according to the main direction of the
primary edge. More formal:

Definition 2 An edge plpz with main direction xs,+ is a pri-
mary edge of the triangle PlP2P3. ifSmin(pi.xgpid, p2.xgrid) I

p3.zgr;,j 5 max(pi .xgrid, p2 .x@d). Similar definitions apply to
main directions Ygpid and Zgrid.

Theorem 1 For each triangle exists at least one primary edge.

Sketch of ProoWf all edges of the triangle have the same main
direction this is trivial. In case of two edges with the same
main direction their common vertex must have a minimal or max-
imal main direction coordinate, otherwise all edges have the same
main direction. The edge between the common vertex and the
other vertex with extremal main direction coordinate is a pri-
mary edge. If all edges have different main directions, the proof
leads all attempts to generate a counter example to a contradic-
tion: The nine planes x = pl .xg,+d/p2.zgp;d / p3 .C?$.id, , . , Z =
pl.zgridlp2.zgridlp3.zgrid form eight cubic cells with 27 ver-
tices. The three triangle comers must be placed on the cell-vertices
such that on each plane lies at least one comer. This implies that
no two vertices lie on the same plane. There are only three direrent
cases up to symmetry: 1) one comer-‘, one face- and one edge-
vertex; 2) two comer- and the interior vertex and 3) three edge-
vertices. Next the main directions are assigned to the edges such
that no edge spans the complete range of its main direction. There
is one possibility for case I), none for case 2) and two possibilities
for 3). Finally, for each main direction two inequalities among the
six distances of adjacent parallel planes are derived from the def-
inition of main direction. All of the three possible assignments of
main directions lead to contradicting inequalities. 0

3.4.1 Sweep & Side Direction

Theorem 1 justifies the following strategy for the sweep-line algo-
rithm. First the longest primary edge is selected and the correspond-
ing main direction will be used as the sweep direction for the sweep-
line. Coordinates in the sweep direction are denoted with psweep.
The other two edges will be referred to as side edges. Secondly, the
remeshing plane is chosen from the two coordinate planes contain-
ing the sweep direction to maximize the projected area of the base
triangle. The second coordinate direction in the remeshing plane is
called side direction and coordinates in this direction are denoted
with p&de.

3.4.2 Difference Vertices

P .rweeD

Figure 12: The vertex differences computed in the base triangle
setup.

For the incremental update of the newly generated vertices
one has to compute the difference vertices Dprimary, Dedge,l,
D edge,29 D sWeep and Dside (see figure 12). A difference vertex
contains not only the difference in psveep and psi& but also the
difference in all components of the vertex data. Dprimary is the

‘The notion of corner-, edge-, face- and interior vertex is applied to the
convex hull of the eight cells.

61

difference vector in direction of the primary edge and can be com-
puted by the vertex difference of the incident vertices divided by the
difference in their psweep direction. Dedge,i and Dedge,2 contain
the difference vertices of the remaining edges and are calculated
as D nrimary except that they are divided by the difference in their
main directions.

Dsweep and Dside have psweep and psi& difference coordinates
of [l, 0] and [0, l]. Their vertex data need to be calculated from
&.ThW~ and De+,1 or Dedge,2. For numerical stability we
choose among Dedge,i and Dedge,2 the one with the larger slope
in side direction, imagine this to be Dedge,i . We calculate the ma- - _

trix

10 1 [Dprimary.pswaep Dedge,l.Psureep a b
0 1 = Dprimary .Pside Dedge,l.Pside ’ C d ’ I[1

(9)
For the inversion of the 2x2-matrix, which is formed by the differ-
ence vertices Dsweep and Dside, we only need two multiplications,
one division, two negations and one subtraction. Finally, Dsweep
and Dside can be computed

D sweep = a.D primary + C. Dedge,l (10)
Dside = b . Dprimary + d . Dedge,l. (11)

3.4.3 Case Selection

In order to allow an incremental update of the vectors used by the
sweep-line algorithm it is important that the vectors on the side
edges have increasing coordinates in side direction. Therefore, we
distinguish the three cases illustrated in figure 13. In the roof case

b)

cl

Figure 13: The three different cases of the orientation in side direc-
tion of the side edges: a) Roof. b) Increasing. c) Decreasing.

one side edge has an increasing slope in side direction and the other
edge has a decreasing slope. In the other two cases both side edges
are either increasing or decreasing. The base triangle is split in all
three cases at the side vertex, which is common to both side edges,
into two sub-triangles each consisting of one side edge, a part of
the main edge and a new interior edge, which is parallel to the side
direction. For each sub-triangle a separate sweep-line process is
performed and the sweep direction is chosen such that the side co-
ordinate on the side edge is increasing as illustrated in figure 13 by
the arrows.

The base triangle setup unit (see figure 5) transmits for each sub-
triangle four difference vertices and the four vertices Vstart, Vend,

V&se and V&e (see figure 13). The meaning of these vertices
is described in the next section. After the remeshing of the first
sub-triangle new vertices Vstart and Vbase are transferred back
to the case selection unit which are used in the Increasing and De-
creasing case as input for the sub-triangle remeshing of the second
sub-triangle.

3.4.4 Sub-Triangle Remeshing

I’: I”

sweep-line A

Figure 14: Vertices and vertex differences used during the sweep-
line algorithm.

Figure 14 shows a sample sub-triangle together with the ver-
tices and vertex differences used during remeshing. Vsta,.t is not
stored and therefore twelve registers are needed on the sub-triangle
remeshing unit for the storage of the different vertices and vertex
differences. Each register each contains the remeshing coordinates
psweep and psi& and the vertex data. The registers are indexed with
a four bit index and the remeshing algorithm always works with
these indices, such that assignment of vertices and comparison on
identity can be simplified significantly. Vertices which are invalid
are represented through an index larger than eleven.

The sweep-line moves from Vsta,.t to Vend always addressing
two pswe,, positions such that quadrilaterals can be formed. In
vstart the current vertex on the primary edge is stored, which is
updated if the sweep-line moves on by adding Dsweep. The newly
generated vertices are denoted with lower case letters in contrast to
the upper case notation of the vertex differences and these vertices
which are computed only once per base triangle. At each sweep-
line position the algorithm produces a quad-strip beginning at the
current vStart and the next vstart. The vertices vbl, vbr, vtl and
vtr are used to store the comer vertices of the current quadrilateral.
The vertices vtl and vt,. are computed from vbl and vbr by adding
Dside . In the inner loop of the remeshing algorithm the so called
side wnlk the quadrilateral is moved in side direction by setting vbl
to vtlr vbr to vtr and by recomputing vtl and vtr.

vbl is initialized to vstart and vbr to vsta,.t + Dprimary. As
the main direction of the primary edge is equivalent to the sweep
direction and as the grid coordinates have been rounded to integer
values, the psweep coordinates of both points are integer valued.
On the other hand the psi& coordinates are normally not integer
valued. For this the vertex v&se is placed on the nearest grid point
to vstart. If the sweep-line moves on, vbaSe is updated by adding
Dszueep and probably Dside as needed. Thus the vertices vtl and
vtr can also in the first step be computed by adding Dside but this
time to vbase and the next v&se. In this way a multiplication of
Dside with the fractional part of vStart.pS;& can be avoided.

During the side walk the top vertices finally hit the second edge.
This is detected by comparing the top vertices to v&e. As the case

62

selection prepared the sub-triangles in a way that the side coordi-
nate of the upper edge is always increasing, vtt must hit the upper
edge first. This allows us to keep only one vedge which is first used
for v a and then moved on along the edge by.adding Dedge tO serve
as edge detection for vt r . If a top vertex is on the grid point which
is nearest to Veage, the top vertex is dragged to the edge vertex in
order to avoid t-vertices. If the right top vertex vt~ hits the edge, the
side walk terminates. This is detected in the quadrilateral/triangle
generation unit which generates for each new quadrilateral or tri-
angle the commands for the stripping unit. Afterwards the bottom
vertices are set to the top vertices, such that the current quadrilateral
is moved on in side direction.

The stripping unit is adapted to the sub-triangle remeshing al-
gorithm and supports storage and reuse of the four vertices Vstart,
Vedge, Vbl and Vbr.

loop ,r

i v~

left: step in side direct ion]

Idght: step in side di_reetion

IIII1
• quadrilateral/ tr iangle generat ion

Figure 15: Sweep-Line.

Figure 15 shows the hardware layout of the sweep-line algo-
rithm. Here the different vertex indices are shown in different
columns. The two loops are shown as boxes. The outer loop is
left when the current start vertex is on the same sweep position as
the end vertex. The inner loop is left when the side walk has been
terminated. All signals which enter a loop must also exit the loop.
The signals Vstart and Dprimarv are not used in the inner loop but
therefore reappear at the end of the outer loop. The vertices vta and
vt~ are only used in the inner loop and no arrows in the correspond-
ing columns exit the inner loop.

The outer loop for the sweep line is very simple. Vbl and Vb,
are computed from vstart and Dprimarv. After that Vstart is set to
Vb,. In the inner loop three major stages can be distinguished.

The first two stages compute the vertices vtt and vtr . During the
computation of vtt the vertices Vbase and Vedge are moved on in
sweep direction if they have been used on the left side. The vertices
vtt and v t r are dragged onto Vedge if needed. There are two cases
when a top vertex must be set to invalid:

1. the corresponding bottom vertex is already on the upper edge

2. the bottom vertex on the other side has a smaller side coordi-
nate as the bottom vertex on this side

The stage which computes vtt must check during the update of
veag~ if the next Vedg e lies on the same grid point. In this case

the triangle connecting Vbl ~ Vedge~ Vedge + Dedge is generated, vtt
is set to the next Verge and Vedge is moved on once more in the
edge direction.

The third stage generates a quadrilateral or a triangle depending
on the validity of the four points Vbt, Vbr, vtt and vt~. It produces
commands for the stripping unit. The new vertices vtt and v t , are
placed into the register of the stripping unit with the same index.
For this the interpolated vertex data is first perspectively corrected
as described in section 3.2. After the perspective correction the
resulting vertex position, the normal, the texture coordinates and
the vertex color are all given in world coordinates projected back
to the base triangle. Next the world coordinate data is sent to the
mapping and the illumination units. Reused vertices are referred
to at the stripping unit. After the triangle or quadrilateral has been
generated either the side walk is terminated or the bottom vertices
are set to the top vertices and the side walk is continued.

All stages of the sub-triangle remeshing unit need only the fol-
lowing four basic vector operations

1. vector addition

2. vector assignment

3. comparison on identity

4. comparison on same grid point.

The vector addition is the most expensive to build but can be par-
allelized optimally. It is used any time a vector difference is added
to a vector. The vector assignment is done by assigning the indices
which is optimally simple and fast. Also the comparison on identity
is done through the indices and therefore very cheap. The compar-
ison is needed to check whether the bottom vertices are equal to
vstart or Vedge. The comparison on the grid point equality is used
to drag the top vertices onto the upper edge. For this .a rounded com-
parison needs to be performed on the coordinates Psweep and Pside
only. The important observation is that the sub-triangle remeshing
algorithm uses only additions and comparisons, no multiplications.
In average only slightly more than two additions and some compar-
isons are needed per produced quadrilateral.

4 Multiresolution Filtering

The access to the displacement map will produce aliasing if the
object moves far away from the observer, since then each quadri-
lateral produced by the remeshing unit spans a large area in the
displacement map. To allow easy adaptation of current hardware
we oriented our filtering approach at the MIPmap technique. Thus
with each displacement map a filter level with half of the original
extend and a level with a quarter of the original extend and so on
are supplied by the user.

4.1 Filter Level Access

The access to the filter levels by the displacement mapping unit
will be similar to texture mapping approaches except that the sub-
samples will not be combined with an averaging filter but by se-
lecting the maximum. We recommend the maximum selection as it
conserves mountains on the silhouette of the objects. It will flatten
out valleys if they are of pixel width on the screen, but that is ok
since on the silhouette mountains are much more important for a
natural look of the object. If a displaced surface is viewed from the
backside, not a maximum but a minimum filter is used.

In order to allow the displacement mapping unit to determine a
footprint around each newly generated vertex, the remeshing algo-
rithm supplies the displacement mapping unit with four additional

63

texture positions. These vertices are computed from the newly gen-
a D erated vertex by adding :t=½Dsweep ± ~ side. For vertices on the

edges only two additional texture positions can be computed by
adding ::E½Dedge or ±½Dp~iraa,.u. The edge constraint does not
allow to use Dsw,~p or Dside for computation of the footprint, be-
cause otherwise the displaced surface might get cracks. It is no
serious problem that only two additional vertex positions can be
generated on the base triangle edges since the projection into the
sampling plane cannot stretch and compress a footprint by more
than a factor 2 of about x/~. Thus the footprint of the three texture
positions along an edge can be stretched to a square, without intro-
ducing an uncontrolled error.

4.2 Filter Level Generation

The averaging filters which are used for MIPmap generation flatten
out the displacement field. Applying an averaging filter to the head
of Volker, which is shown in figures 1 and 18, shrinks the complete
head and shortens the nose significantly. Neither works a sine-filter
which cuts away high frequencies of the displacement map.

The problem is similar to the mesh simplification problem. For
our purposes it is most important to conserve the silhouette of the
object. We believe that the best approach would be to minimize
the two-sided Haussdorff distance as proposed in [16]. But so far
we did not find an algorithm which is fast enough. Therefore, we
minimize the volume between the original and the approximated
displacement map, which is some kind of approximation to the two-
sided Haussdorff distance.

O 0 ¢ ~ , l " -= "= , " .-. highest resolution
¢~1 t "~ .~ , ~ \ appmximaraon

Z "~ / ,
I !

! . / :

: i ! i ~ /

I I I i I i l

Figure 16: Variational approach for displacement map simplifica-
tion which minimizes the volume between the original and the sim-
plified surface.

Figure 16 shows the problem in a two dimensional projection.
We used a variational approach to minimize the volume between
the approximation in a certain filter level and the highest resolu-
tion of the displacement map. The grid positions of the vertices in
the approximation are fixed, only their displacement can be varied.
The difference volume is a function of the vertex displacements of
the approximating grid. If the displacement of one vertex is varied,
the approximation surface is changed only over a small influenced
area, as illustrated in figure 16 for the second vertex. Thus we can
compute the partial derivative OiV of the difference volume in di-
rection of the displacement of the i th vertex in the following way.
First the volume over the influenced area Vi is computed, then the
vertex is displaced by an e and again the difference volume over the
influenced area V/' is computed. If A is the size of the influenced

2v~ is the tangens of the maximal angle between a base triangle and
the sampling plane in screen space. Thus a slight correction of this factor
can result from perspective correction according to the difference in Whomo
which is small for pixel sized distances.

area, the partial derivative can be computed from

. f V / - V~
OiV = (12)

eA

OiW is computed for all vertices of the approximation surface be-
fore the vertices are displaced at the same time by an amount
of -)~OiV. This process is iterated until the difference volume con-
verges to a minimum, which might be only a local minimum.

All filter levels where adjusted with this algorithm by minimiz-
ing the difference volume between the computed level and the dis-
placement map in the highest resolution. We used an e of 10 -4 and
varied A between 2 ~ and 2 -2 in order to control the convergence.
We initialized the filter level at the beginning of the iteration to an
averaged resampling of the original displacement map. The differ-
ence volume was in most cases reduced to about 70% of the initial
value. Results can be found in the next section.

5 Resu l ts

To demonstrate the power of the proposed remeshing algorithm we
implemented the graphics pipeline from figure 3 in software. We
did not implement any of the bump mapping approaches, but cal-
culated the vertex normals of the remeshed meshes from the vertex
positions and the connectivity information.

We produced two examples of real world objects. The first ex-
ample in figure 18 is the head of Volker. He was scanned with
a cyberware scanner which produces a texture and a displacement
map parametrized in cylindrical coordinates with 5122 texels. The
base mesh is a cylinder consisting of 32 triangles as shown in fig-
ure 1. The displacement field was corrected to compensate for the
difference between the base triangle mesh and a perfect cylinder.
Figure 18 shows in a), b) and c) remeshings at three different dis-
tances from the view point. In d), e) and If) the different remeshed
meshes are illustrated in wireframe mode.

Figure 17 shows the same game for our second example, a model
of the earth. The wireframe meshes are shown from above in order
to visualize the adaptation of the remeshing to the voxel grid size.
The remeshed meshes in to b) and c) are too fine for wireframe
mode. Therefore the wireframe meshes in e) and If) were remeshes
on a voxel grid five times larger than the pixel size. e) and f) illus-
trate the influence of the perspective on the remeshing. Areas near
to the view point are remeshed finer than areas further apart.

The earth is rendered with standard texture mapping and a tex-
ture map with 10242 texels for the complete earth. But between
the second and the eighteenth degree of longitude and between the
forty forth and the fifty sixth degree of latitude we mapped a dis-
placement field with 1916 x 1438 texels and a higher resolution
texture map of the Alps with 10242 texels onto eight coarse trian-
gles. The displacement map for the Alps was scaled by a factor
of thirty in order to see the Alps on the huge globe. Again we cor-
rected the displacement map by the difference between the triangles
and the sphere.

The need of a sophisticated filter technique is illustrated in fig-
ure 19. The filtered and the unfiltered versions in b) and c) were
remeshed on voxels with twenty times the pixel size as illustrated
around figure 19 c). Figure 19 shows the Alps remeshed on voxels
of pixel size. The red line in figure 19 b) and c) is the silhouette of
the original alps. It can be seen that the unfiltered Alps significantly
loose in height, which is avoided with the filtering proposed in sec-
tion 4. Even some accummulations of mountains can be recognized
in the filtered version.

64

6 Discussion

With this paper we showed that hardware based displacement map-
ping is practical and that it allows for view dependent multiresolu-
tion rendering with a very compact surface representation. We start
off a new area of research and want to discuss in this section some
problems and directions of future work.

One problem is that the remeshing only depends on the view
point and the base surface but not on the displacement. Therefore,
details with width less than a pixel but height much larger than a
pixel might vanish. This can only be avoid by adapting the remesh-
ing to the slope of the displacement map. In areas of large slope a
higher remeshing resolution is needed. This would produce a distri-
bution of vertices which is not as regular as in the current approach
and therefore the meshing will become more difficult.

A feature of our remeshing algorithm is that the remeshing res-
olution can be coarsened to a size larger than a pixel. This reduces
the number of fine triangles on cost of the quality of the silhou-
ette. An interesting avenue for future work would be to figure out
how the remeshing resolution can be adjusted to the displacement
map and the screen projection. Base triangles which are orthogonal
to the view direction may be remeshed in a much coarser resolu-
tion since they do not contribute to the silhouette. Easier should
be the adaptation of the sampling resolution to the slope of the dis-
placement map as this relation is view independent. Areas of the
displacement map with large slope must be remeshed in a higher
resolution than areas with small slope.

A problem not discussed in this paper is back side culling of base
triangles. The only solution seems to be a hierarchical map over the
normal vectors which stores normal cones. A base triangle can be
culled away if the normal cone applied to the base triangle vertex
normals always points away completely from the view point. But
there might be better solutions.

Since the remeshing is done in the fixed voxel grid defined as ex-
tension of the viewport and the objects move in world coordinates,
the remeshing of the object changes with every movement. The
change in remeshing is only of pixel size, but large slopes in the
displacement map can produce wagging of steep edges on the sil-
houette. These wagging artifacts during object movement increase
with decreasing sampling resolution.

For our examples we adjusted the displacement map to the base
surface in order to compensate for the creases in the base mesh.
This is not the way a user wants to specify a displacement map,
especially not if the displacement map should move over the base
surface or if the base mesh is changed. The only solution is to use
a smooth base surface as for example bezier patches.

In future work better methods must be developed to generate the
filter levels for the displacement map. A further interesting question
is how to build nice displacement fields from an arbitrary surface.
At the first glance the step from a typical mesh simplification al-
gorithm to the generation of displacement maps seems small. But
there are a lot of problems as for example how to parametrize an
arbitrary surface, how to cut the parametrization into an atlas con-
taining only rectangular maps and how to avoid cracks along map
borders.

Acknownledgements

The authors like to thank Volker Blanz for providing us with his
digitized head.

This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) as part of the project Dl within the Sonderforschungs-
bereich 382.

References

[l] Gary Bishop and David M. Weimer. Fast Phong shading.
In David C. Evans and Russell J. Athay, editors, Computer
Graphics (SIGGRAPH ‘86 Proceedings), volume 20, pages
103-106, August 1986.

[2] James F. Blinn. Simulation of wrinkled surfaces. Computer
Graphics, 12(3):286-292, August 1978.

[3] U. Claussen. Real time Phong shading. In D. Grimsdale and
A. Kaufman, editors, Fifih Eurographics Workshop on Graph-
ics Hardware, 1989.

[4] R. L. Cook. Shade trees. Computer Graphics, 18(3):223-231,
July 1984.

[S] Franklin C. Crow. Summed-area tables for texture map-
ping. In Hank Christiansen, editor, Computer Graphics (SIG-
GRAPH ‘84 Proceedings), volume 18, pages 207-212, July
1984.

[6] Michael Deering, Stephanie Winner, Bit Schediwy, Chris
Duffy, and Neil Hunt. The triangle processor and nor-
mal vector shader: A VLSI system for high performance
graphics. Computer Graphics (SIGGRAPH ‘88 Proceedings),
22(4):21-30, August 1988.

[7] Michael F. Deering. Geometry compression. In Robert Cook,
editor, SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 13-20. ACM SIGGRAPH, Addison
Wesley, August 1995. held in Los Angeles, California, 06-
11 August 1995.

[8] I. Ernst, D. Jackel, H. Rtisseler, and 0. Wittig. Hardware-
supported bump mapping. Computers and Graphics,
20(4):5 15-52 1, July-August 1996.

[9] Kurt Fleischer, David Laidlaw, Bena Currin, and Alan Barr.
Cellular texture generation. In Robert Cook, editor, SIG-
GRAPH 95 Conference Proceedings, Annual Conference Se-
ries, pages 239-248. ACM SIGGRAPH, Addison Wesley,
August 1995. held in Los Angeles, California, 06-l 1 August
1995.

[lo] Alain Foumier. Filtering normal maps and creating multiple
surfaces. Technical Report TR-92-41, Department of Com-
puter Science, University of British Columbia, October 30
1992. Wed, 25 Nov 1998 20:32:49 GMT.

[ll] Andrew Glassner. Adaptive precision in texture mapping.
In David C. Evans and Russell J. Athay, editors, Computer
Graphics (SIGGRAPH ‘86 Proceedings), volume 20, pages
297-306, August 1986.

[12] Paul S. Heckbert. Texture mapping polygons in perspective.
TM 13, NYIT Computer Graphics Lab, April 1983.

[131 Hugues Hoppe. View-dependent refinement of progressive
meshes. In Turner Whitted, editor, SIGGRAPH 97 Confer-
ence Proceedings, Annual Conference Series, pages 189-198.
ACM SIGGRAPH, Addison Wesley, August 1997. ISBN O-
89791-896-7.

[141 Silicon Graphics Inc. GL programming guide. 1991.

[15] James T. Kajiya and Timothy L. Kay. Rendering fur with
three dimensional textures. Computer Graphics (SIGGRAPH
‘89 Proceedings), 23(3):271-280, July 1989.

65

[16] R. Klein, G. Liebich, and W. StraSer. Mesh reduction with
error control. In R. Yagel, editor, Visualization 96. ACM,
November 1996.

[171 Reinhard Klein. Multiresolution representations for surfaces
meshes. Computer & Graphics, 22(1). January 1998.

[18] Anders Kugler. lmem: An intelligent memory for bump-
and reflection-shading. In Proceedings of Eurograph-
its/SIGGRAPH Hardware Workshop ‘98, pages 113-122.
ACM SIGGRAPH, August 1998.

[19] A. A. M. Kuijk and E. H. Blake. Faster Phong shading via
angular interpolation. Computer Graphics Forum, 8(4):315-
324, December 1989.

[20] Michael Lounsbery, Tony D. DeRose, and Joe Warren. Mul-
tiresolution analysis for surfaces of arbitrary topological type.
ACM Transactions on Graphics, 16(1):34-73, January 1997.
ISSN 0730-0301.

[21] David Luebke and Carl Erikson. View-dependent simplifica-
tion of arbitrary polygonal environments. In Turner Whitted,
editor, SIGGRAPH 97 Conference Proceedings, Annual Con-
ference Series, pages 199-208. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN O-89791-896-7.

[22] Fabrice Neyret. Modeling, Animating, and Rendering Com-
plex Scenes Using Volumetric Textures. IEEE Transactions
on Visualization and Computer Graphics, 4(l):%-70, Jan-
uary 1998.

[23] J. W. Patterson, S. G. Hoggar, and J. R. Logie. Inverse dis-
placement mapping. Computer Graphics Forum, 10(2):129-
139, June 1991.

[24] Mark Peercy, John Airey, and Brian Cabral. Efficient bump
mapping hardware. In Turner Whitted, editor, SIGGRAPH
97 Conference Proceedings, Annual Conference Series, pages
303-306. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN o-89791-896-7.

[25] Bui-Tuong Phong. Illumination for computer generated pic-
tures. CACMJune 1975, 18(6):311-317, 1975.

[26] S. Gumhold R. Klein. Data compression of multiresolution
surfaces. In Visualization in Scientific Computing ‘98, pages
13-24. Springer, May 1998.

[27] Andreas Schilling, Gtinter Knittel, and Wolfgang StraSer.
Texram: A smart memory for texturing. IEEE Computer
Graphics &Applications, 16(3):32-41, May 1996.

[28] Lance Williams. Pyramidal parametrics. In Computer Graph-
ics (SIGGRAPH ‘83 Proceedings), pages l-l 1, July 1983.

[29] Julie C. Xia, Jihad El-Sana, and Amitabh Varshney. Adap-
tive real-time level-of-detail-based rendering for polygonal
models. IEEE Transactions on Visualization and Computer
Graphics, 3(2), April-June 1997. ISSN 1077-2626.

66

4 b)

4 e) f-l

Figure 17: Displacement mapping for terrain modeling at the example of the Alps.

a)
b)
c) f-l
Figure 18: This is the head of Volker
remeshed at three different distances from the
view point.

a)

b)

cl

Figure 19: a) The original Alps. b) Alps remeshed with filter on twenty times coarser grid,
which is illustrated below c) and on the right. c) Alps remeshed on the same coarse grid
without filter.

A Multiresolution Hardware With Displacement Mapping
Stefan Gumhold, Tobias Htittner

141

