
TRIANGLECASTER
Extensions To 3BTexturing Units For Accelerated Volume Rendering

Gunter Knittel
Hewlett-Packard Laboratories, Visual Computing Department, knittel@hpl.hp.com

ABSTRACT

We discuss hardware extensions to 3D-texturing units, which
are very small but nevertheless remove some substantial per-
formance limits typically found when using a 3D-texturing unit

for volume rendering. The underlying algorithm uses only a
slight mod$cation of existing method, which limits negative
impacts on application software.

In particular, the method speeds up the compositing operation,
improves texture cache eflciency and allows for early ray ter-
mination and empty space skipping. Early ray termination can
not be used in the traditional approach.

Simulations show that, depending on data set properties, the
performance of readily available, low-cost PC graphics accel-
erators is already suflcient for real-time volume visualization.
Thus, in terms ofperformance, the TRIANGLECASTER-extensions

can make dedicated volume rendering accelerators unneces-
sary.

CCS Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture - graphics processors; 1.3.3
[Computer Graphics]: Picture/Image Generation - display
algorithms
Additional Keywords and Phrases: graphics hardware, 3D-
texture mapping, volume rendering, ray casting

1 INTRODUCTION

With the advent of 3D-texturing systems the idea was born to
use the 3D-texturing hardware for volume rendering [l]. For
this purpose, the data set (containing either the raw data for
post-interpolation look-up or pre-classified and pre-shaded
RGBa-voxels) is loaded into the texture memory. A series of
equidistant planes parallel to the view plane are cut through the
volume, and processed in back-to-front order. Each cut is
decomposed into triangles, which are scan-converted and “tex-
tured” using the volume data set as texture. All planes are
blended together in some way to give the final image.
Conceptually, this method is equivalent to (orthographic) ray-
casting, provided the pixel centers on the triangles are the inter-
section points of the rays with the planes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
rcquircs prior specific permission and/or a fee.
1999 Eurographics LosAngelcs CA LISA
Copyright ACM 1999 I-581 13-170-4/99/08...$5.00

1 .I Advantages
In general, 3D-texturing based volume rendering (henceforth
called TVR) is an attractive idea since most of the required
hardware units are already there: the texture memory as storage
for the volume data set and arithmetic units for the mapping of
the discrete 3D data set on arbitrarily oriented planes. In many
graphics systems, the compositing (blending) operation is also
implemented in hardware. Due to the back-to-front processing
order, no opacity component needs to be stored in the frame
buffer, which keeps memory costs and bandwidth requirements
low. Thus, hardware support for basic volume rendering comes
at no extra costs. In conjunction with versatile programming
libraries such as the OpenGL Volumizer [14], interactive vol-
ume rendering finally becomes generally available to the
graphics community.
Compared to a prominent dedicated volume rendering acceler-
ator, the announced VolumePRO [l 11, TVR shows a number
of additional advantages:
cl

cl

0

Arbitrary perspective projections, instead of only parallel
projections, can be generated. This is useful for walk-
throughs and stereoscopic projections. Artifacts resulting
from the non-uniform sampling rate along the rays can be
avoided by using concentric spheres instead of parallel
planes, and by approximating these spheres by a larger
number of triangles.
The sampling rate is arbitrary in all directions, with full
hardware support.
Polygonal and volume graphics can easily be combined.

1.2 Disadvantages
However, compared to VolumePRO and other volume render-
ing architectures such as VIRIM [7] or VOGUE [9], TVR
shows two major disadvantages:
0 no or limited support for classification and shading opera-

tions on a per-raypoint basis, and
0 compromised rendering speed.
Most of the recent work in this area has been done to overcome
the classification and shading limitations of existing machines.
In [161, the achievable performance using pre-classification and
-shading is evaluated. In [171, gradient shading is accomplished
by interpolating the raypoint value and its surface normal, the
latter from pre-computed voxel gradients, and by storing these
quantities in the frame buffer. The final colors are obtained by
copying each pixel onto itself while applying an appropriately
initialized color matrix. The work in [6] also uses the 3D-textur-
ing hardware to interpolate density and gradient components,
whereas shading is done on the CPU. Even shadows can be
included into texture-based volume rendering, as reported in [3].
The main focus of this work, however, is the limited achievable
performance (for a short digression into inexpensive hardware

25

The performance of TVR is limited by a number of factors:
0

0

0

0

The compositing operation causes excessive frame buffer
traffic. For each raypoint, one read and one write opera-
tion must be done. A potentially existing frame buffer
cache is most likely no remedy: accesses to the same
screen location are separated by too many accesses to
other pixels (potentially the entire screen is processed
before a particular pixel is visited again). Thus, a frame
buffer cache only allows us to perform these accesses in
bursts.
A large amount of data traffic occurs between the texture
memory and the texturing unit, which makes the use of a
texture cache mandatory. However, due to the plane-ori-
ented processing order and the low temporal coherence of
its access pattern we cannot achieve a satisfactory hit rate.
Early ray termination can not be used due to the back-to-
front and plane-oriented processing order. Therefore, we
cannot take advantage of large opaque structures in the
data set to increase rendering speed.
Empty space skipping is also problematic due to the plane-
oriented processing order. The OpenGL Volumizer API
[14] proposes to subdivide the volume, and to render only
the non-empty sub-volumes. However, this causes the
number of triangles to increase, and may cause bottlenecks
in other parts of the pipeline.

support for classification and shading, see section 7). It is true
that the original papers reported high frame rates (up to 10
frames/s for 5 12x512~64 volumes) [4],[5],[18], however, they
used expensive, high-end graphics hardware. The goal of this
work is to achieve high rendering speed for low-cost, potential-
ly PC-based systems.

It should be noted that early ray termination and empty space
skipping offer the biggest speed-up potential for many data
sets.
Another disadvantage is the limited arithmetic precision and
possibly large accumulated rounding error due to the limited
width of the color components in the frame buffer.
All these disadvantages can be alleviated using the techniques
as described in this work. In section 2, the underlying algorith-
mic changes are explained. The resulting hardware extensions
are described in section 3. Section 4 covers issues concerning
the mixed rendering of polygonal and volume data. Results
obtained from a software simulation are given in section 5.

2 ALGORITHM
The work presented here relies on the assumption of parallel
planes instead of concentric spheres. Conceptually, the pro-
cessing is the same as for traditional systems. However, the
(virtual) screen is divided into small tiles. Each screen tile is
further subdivided into triangles, here called S-triangles.
Examples are shown in Figure 1.
The projection of a given S-triangle on all planes yields a set of
triangles which are herein called P-triangles.
Instead of the commonly used plane-at-a-time order, the algo-
rithm processes all P-triangles associated with a given S-trian-
gle. After completion, the algorithm steps to the next S-triangle
until the virtual screen is finished.
This small modification shows a number of substantial advan-
tages:
0 a small memory unit on the same chip as the texturing unit

can be used as frame buffer for one complete S-triangle.

Tile size: 8x4

Tile size:
8x8

Pixel-Distribution between
S-triangles depends on
actual Rasterization method

Tile size:
4x4

Figure 1: Possible Tile Sizes and S-Triangles

All compositing operations are then performed completely
on-chip, which yields a dramatic speed-up.

0 It is then possible to provide storage for a-values, so that
front-to-back processing can be used without increasing
the size of the external frame buffer. Then, we can use
early ray termination in units of S-triangles: whenever all
pixels of an S-triangle are opaque, no more P-triangles
need to be processed.

0 Due to the small number of entries in the on-chip buffer,
we can use more bits per component to provide the needed
numerical precision.

0 The small size gives us the opportunity for an additional
optimization: we can use a dual-ported memory, one
write-port and one read-port, so that reading raypoint p
and writing raypoint q can take place at the same time.

0 The efficiency of the texture cache can be increased sub-
stantially, due to the better locality of the accesses to the
volume data set.

0 Most (low-end) graphics systems have a combined mem-
ory for z, RGB~L and textures. The on-chip memory frees
up a large amount of bandwidth, which can be used for
accessing the volume data set.

The on-chip memory and the associated arithmetic units are
herein collectively called Compositing Buffer (see section
3.2), and represent part of the proposed hardware extensions.
However, the generation of all those P-triangles must not create
a performance limitation at other parts of the pipeline. Table 1
lists the required triangle generation rates for different resolu-
tions under the assumption of an 8x8 pixel tile size, 10 frames
per second and no empty space skipping or early ray termina-
tion. Any of these rates may already exceed the capabilities of
the target graphics system.

Ik 20MTh 8OMTls 320MTls

Table 1: Required Triangle Generation Rates

However, the special mode of operation as shown in Figure 2
simplifies the generation of the P-triangles very much.

26

The axes of the screen coordinate
system are denoted x,y,z, where-
as the coordinates of the volume
data set are denoted U, V, W.

Figure 2: Casting Triangles through the Volume

Obviously, the P-triangles on the different planes all share the
same screen coordinates and rasterization parameters, with the
exception of the texture coordinates of the vertices. However,
these can be found by adding a constant offset when proceed-
ing from one plane to the next, assuming equidistant planes.
Written equationally, this gives:

‘k,n+ 1 = uk,n+Auk

‘k,n+ 1 = vk,“+A’Vk

Wk,n+l , = W, “+AWk
(1)

In (l), k = { 1,2,3 } denotes the triangle vertex and n is the
plane number. Thus, to generate the texture coordinates of P-
triangle n+l from the parameters of P-triangle n, nine additions
must be performed.
Depending on the actual implementation of the rasterizer, it
may only be necessary to generate the texture coordinates of
one vertex per triangle, reducing the number of adds to three.
For perspective projections, the derivatives of the texture coor-
dinates with respect to the screen coordinates are not constant
from one plane to the next. Thus, these parameters must be
updated as well. However, these updates are again linear incre-
ments as illustrated in Figure 3.
Thus, updating the derivatives is given by:

au n+l

ay
and accordingly for the V- and W-derivatives. This operation
involves six additions. Thus, generating the next P-triangle
requires only 9 or 15 additions.
Generating the P-triangles can therefore be done by a small
dedicated hardware unit, herein called Triangle Generation
Unit (see section 3. l), which is the second hardware extension
proposed in this work.

au, av, aw,
zy ‘3 ‘3,

au, av, aw,
\ ‘3i ‘ax

Plane
au, av,
ax ‘zi ’

1 Plane 1

Figure 3: Updating the Texture Coordinate Derivatives

Using this scheme, the host or the geometry accelerator gener-
ates only the front triangle of a given S-triangle and the incre-
ments in (1) and (2). The front triangle is the frontmost P-
triangle which cuts the (bounding volume of the) data set.
Additionally, the farthest P-triangle having points in common
with the data set (called the back triangle) is determined. The
number of P-triangles from the front to the back triangle is used
as a counter value. Processing of the actual S-triangle is termi-
nated when this counter has expired or all pixels are opaque.

2.1 Generation of the Front and Back Tri-
angles and Empty Space Skipping

The method proposed here uses the graphics pipeline and can
be classified as a bounding hull scan conversion algorithm (dis-
tantly related to PARC [151). However, a small modification to
the z-buffer circuitry can again provide a substantial speed-up.
The method uses a polygonal hull of the non-zero elements in
the data set. If the data set contains different materials, each
material should have its own hull. The bounding hull should be
defined using only a small number of triangles, typically sever-
al hundred. It must be built once per data set, or optionally after
each re-classification. This can be done using the Marching-
Cube-algorithm and mesh simplification methods afterwards.
For some data sets, however, the hull may simply be the
bounding box of the entire data set, eliminating the possibility
of this kind of empty space skipping in this case.
For each frame, the bounding hull is rendered twice into the z-
buffer at virtual screen resolution, using the standard “less
than” z-compare operator in the first pass and the “greater
than” operator in the second. After each pass, the z-buffer is
read back. The CPU finds the nearest (farthest) value in each S-
triangle, which after perspective correction and rounding
defines the plane of the front (back) triangle.
The z-buffer circuitry could be modified such that the reads are
done in units of screen tiles, and that it determines the closest z-
value (or farthest, respectively) in each S-triangle by itself
using the existing z-comparator. This reduces the data traffic
back to the CPU by a factor of 32 in case of 8x8 tiles.
It should be noted that we can not jump over internal empty
spaces using this method.

21

2.2 Depth-Cueing 3.1 Triangle Generation Unit
Assumed the rasterizer/texturing unit is capable of weighting
the texture color R,G,B T of a pixel by its interpolated (shad-
ed) color RJG,BJ, i.e.

R = R,.R, G = G,.G, B = B,.B, (3)

then this feature can be used for depth-cueing with no further
hardware expenses and only a slight performance loss. For this
purpose, the CPU computes the depth-cueing factors, x- and y-
derivatives and all increments from one plane to the next for
the front triangle. The Triangle Generation Unit interpolates
the depth-cueing parameters and hands them to the rasterizer in
the color channels for interpolation.
In this way it is even possible to simulate the effect of distance-
dependent color shifts. This scheme can be used for TVR as well.

3 THE TRIANGLECASTER EXTENSIONS
Figure 4a shows a typical midrange graphics system for work-
stations or PCs. High-performance versions have multiple
pipelines and some sort of interconnection structure. Geometry
accelerators may or may not be present. Figure 4b shows the
same pipeline with the TEUANGLE~ASTER hardware extensions
supporting the algorithm outlined above.

A simplified block diagram of the Triangle Generation Unit is
shown in Figure 5. Depending on the desired triangle genera-
tion rate, the triangle parameters can be computed sequentially,
in parallel, or partially sequentially as in this example, which
uses three adders. Additionally, there are three multiplexers, a
control unit, a counter, three sets of increment registers and
three sets of result registers.
For a given S-triangle, all needed rasterization and texturing
parameters of the front triangle are generated by the host CPU
or dedicated hardware units (geometry or setup processor) and
written into the result registers. The increments of the texture
coordinates and their derivatives are also computed and written
into the increment registers.
After having received the counter value, the control unit trans-
fers the parameters of the front triangle to the rasterizer/textur-
ing unit, generates the next P-triangle and decrements the
counter. If the counter value reached zero, the processing of the
current S-triangle is terminated. Otherwise the control unit
waits until the rasterizer/texturing unit is ready for the next P-
triangle.
Termination of the current S-triangle can also occur if the
Compositing Buffer detects that all P-triangles behind the one
it has just finished are invisible. In this case, the Compositing
Buffer activates the signal TT (see also Figure 7).
In Figure 5 we assumed that the generation of the texture coor-
dinates for one vertex per P-triangle is sufficient. The result
register files hold additional data, in case parameters such as
screen coordinates must be reloaded for every P-triangle.
Obviously, this unit requires very little chip space, even if a
higher degree of parallelism is required to meet the perfor-
mance figures given in Table 1.

a.) Standard
Graphics
Pipeline

b.) Standard Graphics
Pipeline with two
Hardware
Extensions for
fast Volume
Rendering, and
potentially
enhanced
Rasterizer

\\I ’ Compositing
Buffer

Figure 4: The TRIANGLECASTER Hardware Extensions

3.2 Compositing Buffer
Regardless of how the shading and classification have been
done (either during pre-processing or on-the-fly), pixels (ray-
points) coming to this stage are defined by their color and
opacity. Processing is done in front-to-back order to take
advantage of early ray termination (on a per-triangle-basis).
Instead of an alpha-component, the accumulated translucency

R, = jyl-ai, OQLiI1 (4)
i=O

is maintained in the on-chip memory. Thus, for the processing
of the n-th resample location (a raypoint on the n-th plane), the
following operations must be done:

C new = Cold + c, . a . Rold

sz = nold . (1 -a,) = *;,d-an. Rold
(5)

new

In (5), C can be R, G or B, and C,, represents the color compo-
nents of the resample location. Accordingly, CL, is the opacity
of the raypoint. The quantities with index “old” are taken out
of the Compositing Buffer and replaced by their updated ver-
sions with index “new”. The operations in (5) can be carried
out in a pipeline, since the processing order as shown in Figure
6 eliminates all data dependencies.
A simplified block diagram of the Compositing Buffer is shown

28

Increment Register Sets

CONTROL

UNIT

Zontrol

Signals

Control

Signals

Control Signals
from I to
Rasterization I
Texturing Unit,
Compositing Buffer,
host CPU and
Setup Processor

Terminate Triangle Signal (TT) + + +
from Compositing Buffer Scan Conversion and Texturing Parameters to Rasterizermexturing Unit

Figure 5: Schematic Diagram of the Triangle Generation Unit (simplified)

ever, that pixel p is read for P-triangle n+l while or before pixel
p of P-triangle n is completed. Given a certain number of pipe-
line stages, this sets a lower limit for the size of the S-triangles.
Early ray termination is facilitated using the circuitry at the bot-
tom of Figure 7. The user can specify a threshold value E for the
translucency R along the rays. If R falls below E for a given ray,
all further raypoints are considered invisible. The S-triangle can
be terminated if this condition occurs for all of its rays (pixels).
Every newly generated Q-value is compared to this threshold.
If it is less, a corresponding bit in the opaque-pixels register is
set, and remains set until the current S-triangle is finished. This
register is reset at the beginning of a given S-triangle. If all pix-
els in the current S-triangle have a set bit, every pixel is
opaque, and thus, the Compositing Buffer sends a signal
(labeled 7’7’) to the Triangle Generation Unit to terminate this
S-triangle and to start the next one.
The triangle-oriented approach bears the disadvantage that
opaque pixels are still processed until the very last pixel of the
associated S-triangle becomes opaque. However, using the indi-
vidual opaque-pixel signals (OP,) from the opaque-pixels reg-
ister, the rasterizer/3D-texturing unit could be modified such

Raypoint written back Raypoint clocked in

P- I L

Figure 6: Processing Order (Enumeration) of Raypoints

in Figure 7. The index n denoting the plane number has been
omitted (it is assumed that all raypoints currently in the pipeline
are on the same P-triangle). The parameter p is the pixel number
within the actual P-triangle, as depicted in Figure 6. Due to the
pipelined architecture, there are always a number of pixels
simultaneously under construction. It may never happen, how-

29

Opaque-Pixel Signals (OP,), Terminate Triangle (TT),
to Rasterizer/3D-Texturing Unit to Triangle Generation Unit

Figure 7: Compositing Buffer (Number and Structure of Pipeline Stages may vary)

that it either skips over opaque pixels entirely, or at least avoids
cache fill operations in case of texture cache misses for these
pixels.
A traditional raycasting accelerator, however, may also not
reach optimum speed-up from early ray termination: it suffers
from the possibly large number of pipeline stages between the
raypoint generator and the compositing unit. There may be a
large number or even all remaining raypoints of a prematurely
terminated ray already in the pipeline. Then, no or only small
performance gains can be obtained from this technique.
Once a given S-triangle is finished, the contents of the on-chip

frame buffer are written into the external frame buffer for dis-
play. The on-chip frame buffer is then initialized for the next S-
triangle (R = I, R = G = B = 0).
The needed capacity of the on-chip dual-ported SRAM is 512
Bytes, assuming that an entire 8x8 pixel tile can be cached and
that each component is 16 bits wide. It should be noted, howev-
er, that a blending stage and possibly a frame buffer cache may
be needed for the standard rendering fimctionality anyway
(e.g., for transparent or multi-textured objects). In this case, the
additional chip space requirements for the TRIANGLECASTER-
extensions may be close to negligible.

30

4 MIXING GEOMETRY AND VOLUMES
We only consider opaque geometrically defined objects in this
work. The general processing order is outlined below.
1. The volume’s bounding hull is rendered into a far and

near buffer to determine the front and back triangles as
described in section 2.1.

2. All the geometry is rendered in the standard way with z-
buffering enabled.

3. Z-tests remain enabled with “less-than”-operator, but z-
buffer updates are disabled.

4. All P-triangles are rendered as explained throughout the
paper, but additionally with z-values attached to them (see
below).

During step 4., however, the operation of the rasterizer must be
modified in the following way. Whenever a z-value in the z-
buffer is smaller than that of a pixel (raypoint) of a P-triangle,
the corresponding color values in the frame buffer (belonging
to the geometric object) are blended with the values in the
Compositing Buffer using a=l, instead of the raypoint colors.
This pixel is then marked by a set opaque-pixel flag (OP,),
which can be used to exclude it from further processing. Note
that if the entire P-triangle is obscured by geometry, processing
of the S-triangle is ended due to early ray termination.
However, two issues need additional consideration. First, for
perspective projections of polygonal primitives, the rasterizer
usually interpolates z ’ = z/w, with w = z/z~ + I and { 0, O,-ZE}
being the eye point. For correct z-compares, the z-values of the
P-triangle vertices must also be perspectively transformed.
Clearly, this would not be feasible given the high number of P-
triangles. However, since the planes through the volume are
parallel to the screen, all P-triangle vertices on a given plane
have the same z-value, and therefore transform to the same
perspective z-value z ‘. Thus, all z’-values for a given view can
be precomputed and stored in a table to which the Triangle
Generation Unit has access (e.g., in the frame buffer). It per-
forms one table look-up per P-triangle using the plane number
as index, and passes the z’-value along with dzx ’ = dry ’ = 0 to
the rasterizer.
Second, the need to perform z-tests introduces additional frame
buffer traffic compared to pure volume rendering. In many cas-
es, however, the geometry covers only small portions of the
screen, as in the case of a scalpel or a prosthetic device in a
medical data set. Then, performing z-tests for all P-triangles is
a waste of bandwidth. This can be avoided by a small change in
the operation mode of the z-buffer circuitry. For each front tri-
angle, the rasterizer checks whether all z-values still have their
initial value. If so, no z-tests must be done for all remaining P-
triangles of that S-triangle.

5 RESULTS
A software simulator, containing z-buffer, Gouraud shader, 3D
texturing unit and the TRIANGLECASTER-extensions was writ-
ten to evaluate cache efficiency, memory traffic and achiev-
able performance. We assumed an 8x8 pixel tile size. The
memory in the Compositing Unit was implemented as a direct
mapped cache instead of an SRAM as shown in Figure 7. This
was done because then the same memory can be used as a
frame buffer cache when comparing the TRIANGLECASTER-
extensions to the traditional method (see section 5.1). The
frame buffer cache has 64 entries, each 64 bits wide, to store

the RGBA-components of all pixels in a tile (or two S-trian-
gles) in 16-bit precision.
An eight-bank, direct-mapped texture cache was implemented,
which allows the parallel access to any (cached) set of 2x2~2
voxels for tri-linear interpolation. The texture cache can either
hold 512 or 4096 voxels. Voxels are 16 bits wide for a texture
cache size of 1 K or 8KByte. One cache line in each bank holds
8 voxels. Cache lines are updated individually in chunks of 16
Bytes, accordingly.
The test data sets were taken from the HP Voxelator CD:
MRBrain (256~256~109, courtesy of UNC Chapel Hill) and
Engine (256x256~110). Screen resolution was 256x256,
except where noted otherwise in column 1 (see tables on next
page). The distance from one plane to the next was 0.75 vol-
ume data set grid units. Both data sets have been rendered
using a texture cache size of 1K and IKByte, and early ray ter-
mination on and off. For early ray termination, only the TT-sig-
nal was used. Thus, invisible raypoints were processed in full
until the entire S-triangle was opaque. A pixel was considered
opaque when its translucency fi fell below 11255.
The results using the TRIANGLECASTER-extensions are summa-
rized in Table 2.
We counted texture (volume) cache hits and misses in the fol-
lowing way. If for a given raypoint k of the eight surrounding
voxels needed for tri-linear interpolation have been found in
the cache, the hits have been increased by k, and the misses by
8-k. Thus, the following relation must always be satisfied:
Raypoints * 8 = Hits + Misses. For each miss, however, 8
voxels or 16 bytes are fetched from texture memory since a
cache line holds 8 voxels. Thus, the number of bytes read from
texture memory equals Misses * 16. The number of processed
S-triangles is given by the projection of the bounding hull of
the data set on the screen. For evaluation purposes, we used
very tight bounding hulls, which consist of volume cell faces.
They were automatically generated using a threshold value,
which caused some noise to be included. The projection of the
bounding hulls and the resulting set of S-triangles can be seen
in Figure 8a and d.
Using pure volume rendering and the TRIANGLECASTER-
extensions, there are no reads from the frame buffer. For each
S-triangle, about 32 RGB-triples are written to the frame buff-
er on average.
The images in Figure 8b, c, e and f were generated by post-
interpolation look-up, using only the interpolated function val-
ue as index to obtain color and opacity. No attempt was made
to include more sophisticated classification and shading tech-
niques (see section 7). The MRBrain data set contains index
bits for four different materials, which were used to select one
of four lookup-tables.
Note that the performance figures are the same for the opaque
and translucent view of each data set if early ray termination is
disabled. Therefore, they are not listed separately in Table 2.

5.1 Traditional Method
The tests have also been run in the traditional way, i.e., back-
to-front and one plane at a time. For fairness, we used the same
tight bounding hull for empty space skipping, and the same tri-
angulation across the planes as in the TRIANGLECASTER-ver-
sion. Thus, these tests produced the same number of triangles
and raypoints as shown in Table 2 with early ray termination
disabled. The results are given in Table 3. Again, opaque and
translucent views have the same performance.

31

Volume Early P- Raypoints Volume Volume Bytes Bytes Net

Dataset Fig. Cache Ray Triangles s- (Tri-linear (Texture) (Texture) read written Bandwidth

Tri. Inter- Cache Cache
from to needed

Size Term. Total polations) Hits Misses Texture Frame for 3Ofls
Memory Buffer (MB/s)

MRBrain 8b 1KB No 196,999 1,816 6,300,309 49,129,695 1,272,777 20,364,432 174,120 616

Table 2: Performance Measurement SUmmaiy with TRIANGLECASTER-Extensions

Table 3: Performance Measurement Summary using traditional texture-based Volume Rendering

6 DISCUSSION

The most striking result is that all 2562-views in Table 2 could
be generated by low-cost PC hardware at 30frames/s if all
speed-up methods offered by the TRtANGLECASTER-exten-
sions are used (speaking only in terms of performance, since
most of the PC graphics accelerators do not yet support 3D tex-
turing. However, the step from tri-linear texture filtering to 3D
texturing is not a dramatic one). The maximum numbers across
the table for 256x256 screens are 8KByte texture cache,
512Byte frame buffer cache, 14MByte addressable texture
memory, 4M P-triangles/s, 128M tri-linear interpolations per
second, and lGByte/s memory bandwidth. Most of these num-

bers are met or exceeded by typical PC graphics accelerators
[2],[12],[13]. The required P-triangle rate can easily be
achieved by inclusion of a Triangle Generation Unit (see sec-
tion 3.1). At the same time, this would be the only major addi-
tion to the consumed silicon area besides an extended blending
stage as discussed in section 3.2.
The most dramatic improvement over traditional texture-based
volume rendering comes from the almost complete elimination
of the frame buffer traffic, which was the main motivation for
this work. This becomes most apparent for higher screen reso-
lutions, as shown for 512x512 and 1024~1024 pixel screens.
Next, the texture memory traffic is reduced by about 50% on
average (compare Table 2, test runs without early ray termina-
tion, to Table 3).

32

a.) W

I W e.)
Figure 8: Images of the Test Data Sets

Finally, early ray termination can further reduce the rendering
costs enormously, in our examples by as much as 75%, depend-
ing of course on viewing parameters and data set characteristics.

On the other hand, traditional texture-based volume rendering
poses serious bandwidth requirements on the graphics system,
as detailed in Table 3. For 256x256 images, we can achieve a
21.2-fold reduction in overall traffic in the best case (Engine,
opaque, 8KByte cache), while we still achieve a 2.4-fold reduc-
tion in-the worst case (Engine, translucent, 1KByte cache).

For 512~512 and 1Kx IK images, the reqtiired bandwidth
might be out of reach for all but the most expensive machines
using the traditional method.

With the TRIANGLECASTER-extensions, however, the required
memory bandwidth is already provided by mid-range PC sys-
tems. In case of a 512x512 (1KxlK) screen, the image of Fig-
ure 8c would require 14M (53M) P-triangles/s, and 462M
(1.7G) tri-linear interpolations per second for 30frames’s. This
might currently be out of reach for PC graphics accelerators as
well, however, the bottlenecks using the TRIANGLECASTER-
method now occur on-chip, where they can be tackled much
easier.

7 REAL-TIME CLASSIFICATION AND
SHADING

The prior work as listed in section 1.2 focussed on improving
existing designs. However, for new designs, there is a whole
range of possible solutions from very low-cost implementa-
tions to expensive gradient filters and Phong shaders. The fol-
lowing methods are targeted mainly at low-cost systems and
can complement the TRIANGLECASTER-extensions for a com-
plete volume rendering accelerator.
Classification and, in cost-efficient solutions, also shading are
usually done table-based, so the task is to make pointers avail-
able and to provide on-chip or external look-up tables.
The most basic method (as used in this work) to determine the
color C and opacity cr. of a raypoint is to use the interpolated
function value F as index into an RGBcL-table. Given 8-bit
quantities, this requires 1KByte (on-chip) storage.
A more versatile, two-dimensional opacity look-up table is
accessed using the gradient magnitude G (or some measure of it)
and the function value [lo]. For low-cost implementations, gra-
dient components are precomputed at the grid locations and
stored together with the function value F as 32-bit voxels (e.g.,
GzGyGxF in 8 bit precision each) in the texture memory. The
interpolated gradient components are squared and added (if the

33

true magnitude is desired, a fast and compact square root unit as
described in [S] can be used). G2 and Fare then used as pointers
into an adjusted opacity table. If three square units are already
too expensive, the sum G* of the components (LI-norm) could
be used as index. This reduces the hardware expenses to just two
adders at the costs of increased classification uncertainty. The
opacity table can be stored in the frame buffer, requiring one
external access per raypoint. Alternatively, a reduced-precision
table can be kept on-chip, using a number of high-order bits
(e.g., 5 for a 1KByte table) of G, G2 or G* and F as pointers, and
the remaining low-order bits for bi-linear interpolation. This
interpolation could be done using existing circuitry in a second
pass, or by providing dedicated interpolation units.

For low-cost shading, white light sources at infinity and a con-

stant viewing vector ? are assumed. Then, for a given scene, the
only variable in commonly used illumination models is the gra-
dient. The Phong illumination model can then be simplified to:

K = C.kd.C(~.Z,)+k;C(B.d,)” = C.Id+I,

where
94, (6)

fi, =
iz?J

and K,C = { R,G,B}

The sums Id and I, over all light sources c,,, can be precomput-
ed for all gradient orientations in reduced precision, e.g., using
only the 5 MSBs of each component, and stored as a 3D intensity
map in the frame buffer. I, must be recomputed whenever the
observer moves, both Id and I, whenever a light source is moved.
This limits the number m of light sources in practice, although
we can exploit the fact that the Is-elements are mostly zero
except within a narrow cone for each light source.

During rendering, the high-order bits of the gradient compo-
nents are used to access this map. The remaining low-order bits
could be used to tri-linearly interpolate the light intensity, again
either using the existing circuitry or dedicated units. This meth-
od requires access to either one or eight data elements per ray-
point. Finally, the reflected raypoint color K is computed using
three multipliers and three adders.

It should be noted that modern multi-texturing units may pro-
vide two four-channel tri-linear interpolators, potentially with a
cache in front of both. These interpolators could be placed into a
pipeline for concurrent interpolation of voxels, opacity and
intensity elements. Depending on the cache-structure, a high
raypoint processing rate might still be achievable despite the
additional table look-ups.

8 CONCLUSIONS

As the simulations show, a 3D-texturing unit equipped with the
TRIANGLECASTER-extensions can provide real-time volume
rendering at very low additional costs. Further low-cost exten-
sions for classification and shading as outlined in the previous
section can be used for sophisticated volume visualization in a
standard, surface-oriented graphics system. Then, dedicated
volume rendering accelerators are no longer necessary, even
more so because the combined rendering of polygonal and vol-
umetric objects is much easier in such an integrated system.

9 ACKNOWLEDGMENTS
The author would like to thank Tom Malzbender, Fred Kitson
and Byron Alcom for supporting this work. The suggestions of
the anonymous reviewers have been very helpful in preparing
the final paper. The use of the opaque-pixel flags has been
inspired by one of the comments in the reviews.

10 REFERENCES

PI

PI

131

[41

PI

[61

[71

PI

[91

VOI

1111

1121

[I31

D41

II151

[161

u71

1181

Kurt Akeley, “RealityEngine Graphics”, Proceedings
SIGGRAPH 93, pages 109 - 116
ATI Technologies Inc., “A TI RAGE 128 Chip Informa-
tion “, http:llwww.atitech.comica~usltechnology/
hardware/ragel28.html
Uwe Behrens, Ralf Ratering, “Adding Shadows to a
Texture-Based Volume Renderer”, Proceedings 1998
Symposium on Volume Visualization, pages 39 - 46
Brian Cabral, Nancy Cam, Jim Foran, “Acceferated
Volume Rendering and Tomographic Reconstruction
Using Texture Mapping Hardware “, Proceedings 1994
Symposium on Volume Visualization, pages 91 - 97
Timothy J. Cullip, Ulrich Neumann, “Accelerating Vol-
ume Reconstruction with 3D Texture Hardware”,
Technical Report TR93-027, University ofNorth Carolina
at Chapel Hill, 1993
Frank Dachille, Kevin Kreeger, Baoquan Chen, Ing-
mar Bitter, Arie Kaufman, “High-Quality Volume
Rendering Using Texture Mapping Hardware”, Proceed-
ings 1998 Eurographics/SIGGRAPH Workshop on
Graphics Hardware, pages 69 - 76
T. Gilnther, C. Poliwoda, C. Reinhart, J. Hesser, R.
Miinner, H.-P. Meinzer, H.-J. Baur, “VIRIM: A Mas-
sively Parallel Processor for Real-Time Volume
Visualization in Medicine “, Proceedings 9th Eurographics
Workshop on Graphics Hardware, 1994, pages 103 - 108
Gtlnter Knittel, “Proven - Prompt Vector Normalizer “,
Proceedings 6th IEEE ASIC Conference, 1993, pages 112
- 115
Jilrgen Hesser, Reinhard MHnner, Glinter Knittel,
Wolfgang Straller, Hanspeter PBster, Arie Kaufman,
“Three Architectures for Volume Rendering”, Proceed-
ings 1995 Eurographics Conference, Computer Graphics
forum, Vol. 14, No. 3, pages 111 - 122
Marc Levoy, “Display of Surfaces from Volume Data”,
IEEE CG & A, Vol. 8, No. 3,1988, pages 29 - 37
Mitsubishi Electric, “Volume PROTM Technology at a
Glance “, http:Nwww.3dvolumegraphics.corn/
3dvolumegraphics/product/index.htm
NVIDIA, “RIVA TNT2 Product Description”, http://
www.nvidia.com/3Dgraphics/features.html
S3 Inc., “Savage4 - AGP4x for the Volume Mainstream
PC Markets”, http:llwww.s3.com/savage4lindex.htm
Silicon Graphics, Inc., “OpenGL@ Volumizer Program-
mer ‘s Guide “, 1998
Lisa M. Sobierajski, Rlcardo S. Avila, “A Hardware
Acceleration Method for Volumetric Ray Tracing”, Pro-
ceedings ‘95 Visualization Conference, pages 27 - 34
Allen Van Gelder, Kwansik Kim, “Direct Volume Ren-
dering with Shading via Three-Dimensional Textures “,
Proceedings 1996 Symposium on Volume Visualization,
pages 23 - 30
Rlldiger Westermann, Thomas Ertl, “Eflciently Using
Graphics Hardware in Volume Rendering Applications”,
Proceedings SIGGRAPH 98, pages 169 - 177
Orion Wilson, Allen Van Gelder, Jane Wilhelms,
“Direct Volume Rendering via 3D Textures”, Technical
Report UCSC-CRL-94- 19, University of California,
Santa Cruz, 1994

34

