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ABSTRACT 

We discuss hardware extensions to 3D-texturing units, which 
are very small but nevertheless remove some substantial per- 
formance limits typically found when using a 3D-texturing unit 

for volume rendering. The underlying algorithm uses only a 
slight mod$cation of existing method, which limits negative 
impacts on application software. 

In particular, the method speeds up the compositing operation, 
improves texture cache eflciency and allows for early ray ter- 
mination and empty space skipping. Early ray termination can 
not be used in the traditional approach. 

Simulations show that, depending on data set properties, the 
performance of readily available, low-cost PC graphics accel- 
erators is already suflcient for real-time volume visualization. 
Thus, in terms ofperformance, the TRIANGLECASTER-extensions 

can make dedicated volume rendering accelerators unneces- 
sary. 

CCS Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture - graphics processors; 1.3.3 
[Computer Graphics]: Picture/Image Generation - display 
algorithms 
Additional Keywords and Phrases: graphics hardware, 3D- 
texture mapping, volume rendering, ray casting 

1 INTRODUCTION 

With the advent of 3D-texturing systems the idea was born to 
use the 3D-texturing hardware for volume rendering [l]. For 
this purpose, the data set (containing either the raw data for 
post-interpolation look-up or pre-classified and pre-shaded 
RGBa-voxels) is loaded into the texture memory. A series of 
equidistant planes parallel to the view plane are cut through the 
volume, and processed in back-to-front order. Each cut is 
decomposed into triangles, which are scan-converted and “tex- 
tured” using the volume data set as texture. All planes are 
blended together in some way to give the final image. 
Conceptually, this method is equivalent to (orthographic) ray- 
casting, provided the pixel centers on the triangles are the inter- 
section points of the rays with the planes. 
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1 .I Advantages 
In general, 3D-texturing based volume rendering (henceforth 
called TVR) is an attractive idea since most of the required 
hardware units are already there: the texture memory as storage 
for the volume data set and arithmetic units for the mapping of 
the discrete 3D data set on arbitrarily oriented planes. In many 
graphics systems, the compositing (blending) operation is also 
implemented in hardware. Due to the back-to-front processing 
order, no opacity component needs to be stored in the frame 
buffer, which keeps memory costs and bandwidth requirements 
low. Thus, hardware support for basic volume rendering comes 
at no extra costs. In conjunction with versatile programming 
libraries such as the OpenGL Volumizer [14], interactive vol- 
ume rendering finally becomes generally available to the 
graphics community. 
Compared to a prominent dedicated volume rendering acceler- 
ator, the announced VolumePRO [l 11, TVR shows a number 
of additional advantages: 
cl 

cl 

0 

Arbitrary perspective projections, instead of only parallel 
projections, can be generated. This is useful for walk- 
throughs and stereoscopic projections. Artifacts resulting 
from the non-uniform sampling rate along the rays can be 
avoided by using concentric spheres instead of parallel 
planes, and by approximating these spheres by a larger 
number of triangles. 
The sampling rate is arbitrary in all directions, with full 
hardware support. 
Polygonal and volume graphics can easily be combined. 

1.2 Disadvantages 
However, compared to VolumePRO and other volume render- 
ing architectures such as VIRIM [7] or VOGUE [9], TVR 
shows two major disadvantages: 
0 no or limited support for classification and shading opera- 

tions on a per-raypoint basis, and 
0 compromised rendering speed. 
Most of the recent work in this area has been done to overcome 
the classification and shading limitations of existing machines. 
In [ 161, the achievable performance using pre-classification and 
-shading is evaluated. In [ 171, gradient shading is accomplished 
by interpolating the raypoint value and its surface normal, the 
latter from pre-computed voxel gradients, and by storing these 
quantities in the frame buffer. The final colors are obtained by 
copying each pixel onto itself while applying an appropriately 
initialized color matrix. The work in [6] also uses the 3D-textur- 
ing hardware to interpolate density and gradient components, 
whereas shading is done on the CPU. Even shadows can be 
included into texture-based volume rendering, as reported in [3]. 
The main focus of this work, however, is the limited achievable 
performance (for a short digression into inexpensive hardware 
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The performance of TVR is limited by a number of factors: 
0 

0 

0 

0 

The compositing operation causes excessive frame buffer 
traffic. For each raypoint, one read and one write opera- 
tion must be done. A potentially existing frame buffer 
cache is most likely no remedy: accesses to the same 
screen location are separated by too many accesses to 
other pixels (potentially the entire screen is processed 
before a particular pixel is visited again). Thus, a frame 
buffer cache only allows us to perform these accesses in 
bursts. 
A large amount of data traffic occurs between the texture 
memory and the texturing unit, which makes the use of a 
texture cache mandatory. However, due to the plane-ori- 
ented processing order and the low temporal coherence of 
its access pattern we cannot achieve a satisfactory hit rate. 
Early ray termination can not be used due to the back-to- 
front and plane-oriented processing order. Therefore, we 
cannot take advantage of large opaque structures in the 
data set to increase rendering speed. 
Empty space skipping is also problematic due to the plane- 
oriented processing order. The OpenGL Volumizer API 
[14] proposes to subdivide the volume, and to render only 
the non-empty sub-volumes. However, this causes the 
number of triangles to increase, and may cause bottlenecks 
in other parts of the pipeline. 

support for classification and shading, see section 7). It is true 
that the original papers reported high frame rates (up to 10 
frames/s for 5 12x512~64 volumes) [4],[5],[18], however, they 
used expensive, high-end graphics hardware. The goal of this 
work is to achieve high rendering speed for low-cost, potential- 
ly PC-based systems. 

It should be noted that early ray termination and empty space 
skipping offer the biggest speed-up potential for many data 
sets. 
Another disadvantage is the limited arithmetic precision and 
possibly large accumulated rounding error due to the limited 
width of the color components in the frame buffer. 
All these disadvantages can be alleviated using the techniques 
as described in this work. In section 2, the underlying algorith- 
mic changes are explained. The resulting hardware extensions 
are described in section 3. Section 4 covers issues concerning 
the mixed rendering of polygonal and volume data. Results 
obtained from a software simulation are given in section 5. 

2 ALGORITHM 
The work presented here relies on the assumption of parallel 
planes instead of concentric spheres. Conceptually, the pro- 
cessing is the same as for traditional systems. However, the 
(virtual) screen is divided into small tiles. Each screen tile is 
further subdivided into triangles, here called S-triangles. 
Examples are shown in Figure 1. 
The projection of a given S-triangle on all planes yields a set of 
triangles which are herein called P-triangles. 
Instead of the commonly used plane-at-a-time order, the algo- 
rithm processes all P-triangles associated with a given S-trian- 
gle. After completion, the algorithm steps to the next S-triangle 
until the virtual screen is finished. 
This small modification shows a number of substantial advan- 
tages: 
0 a small memory unit on the same chip as the texturing unit 

can be used as frame buffer for one complete S-triangle. 

Tile size: 8x4 

Tile size: 
8x8 

Pixel-Distribution between 
S-triangles depends on 
actual Rasterization method 

Tile size: 
4x4 

Figure 1: Possible Tile Sizes and S-Triangles 

All compositing operations are then performed completely 
on-chip, which yields a dramatic speed-up. 

0 It is then possible to provide storage for a-values, so that 
front-to-back processing can be used without increasing 
the size of the external frame buffer. Then, we can use 
early ray termination in units of S-triangles: whenever all 
pixels of an S-triangle are opaque, no more P-triangles 
need to be processed. 

0 Due to the small number of entries in the on-chip buffer, 
we can use more bits per component to provide the needed 
numerical precision. 

0 The small size gives us the opportunity for an additional 
optimization: we can use a dual-ported memory, one 
write-port and one read-port, so that reading raypoint p 
and writing raypoint q can take place at the same time. 

0 The efficiency of the texture cache can be increased sub- 
stantially, due to the better locality of the accesses to the 
volume data set. 

0 Most (low-end) graphics systems have a combined mem- 
ory for z, RGB~L and textures. The on-chip memory frees 
up a large amount of bandwidth, which can be used for 
accessing the volume data set. 

The on-chip memory and the associated arithmetic units are 
herein collectively called Compositing Buffer (see section 
3.2), and represent part of the proposed hardware extensions. 
However, the generation of all those P-triangles must not create 
a performance limitation at other parts of the pipeline. Table 1 
lists the required triangle generation rates for different resolu- 
tions under the assumption of an 8x8 pixel tile size, 10 frames 
per second and no empty space skipping or early ray termina- 
tion. Any of these rates may already exceed the capabilities of 
the target graphics system. 

Ik 20MTh 8OMTls 320MTls 

Table 1: Required Triangle Generation Rates 

However, the special mode of operation as shown in Figure 2 
simplifies the generation of the P-triangles very much. 
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The axes of the screen coordinate 
system are denoted x,y,z, where- 
as the coordinates of the volume 
data set are denoted U, V, W. 

Figure 2: Casting Triangles through the Volume 

Obviously, the P-triangles on the different planes all share the 
same screen coordinates and rasterization parameters, with the 
exception of the texture coordinates of the vertices. However, 
these can be found by adding a constant offset when proceed- 
ing from one plane to the next, assuming equidistant planes. 
Written equationally, this gives: 

‘k,n+ 1 = uk,n+Auk 

‘k,n+ 1 = vk,“+A’Vk 

Wk,n+l , = W, “+AWk 
(1) 

In (l), k = { 1,2,3 } denotes the triangle vertex and n is the 
plane number. Thus, to generate the texture coordinates of P- 
triangle n+l from the parameters of P-triangle n, nine additions 
must be performed. 
Depending on the actual implementation of the rasterizer, it 
may only be necessary to generate the texture coordinates of 
one vertex per triangle, reducing the number of adds to three. 
For perspective projections, the derivatives of the texture coor- 
dinates with respect to the screen coordinates are not constant 
from one plane to the next. Thus, these parameters must be 
updated as well. However, these updates are again linear incre- 
ments as illustrated in Figure 3. 
Thus, updating the derivatives is given by: 

au n+l 

ay 
and accordingly for the V- and W-derivatives. This operation 
involves six additions. Thus, generating the next P-triangle 
requires only 9 or 15 additions. 
Generating the P-triangles can therefore be done by a small 
dedicated hardware unit, herein called Triangle Generation 
Unit (see section 3. l), which is the second hardware extension 
proposed in this work. 

au, av, aw, 
zy ‘3 ‘3, 

au, av, aw, 
\ ‘3i ‘ax 

Plane 
au, av, 
ax ‘zi ’ 

1 Plane 1 

Figure 3: Updating the Texture Coordinate Derivatives 

Using this scheme, the host or the geometry accelerator gener- 
ates only the front triangle of a given S-triangle and the incre- 
ments in (1) and (2). The front triangle is the frontmost P- 
triangle which cuts the (bounding volume of the) data set. 
Additionally, the farthest P-triangle having points in common 
with the data set (called the back triangle) is determined. The 
number of P-triangles from the front to the back triangle is used 
as a counter value. Processing of the actual S-triangle is termi- 
nated when this counter has expired or all pixels are opaque. 

2.1 Generation of the Front and Back Tri- 
angles and Empty Space Skipping 

The method proposed here uses the graphics pipeline and can 
be classified as a bounding hull scan conversion algorithm (dis- 
tantly related to PARC [ 151). However, a small modification to 
the z-buffer circuitry can again provide a substantial speed-up. 
The method uses a polygonal hull of the non-zero elements in 
the data set. If the data set contains different materials, each 
material should have its own hull. The bounding hull should be 
defined using only a small number of triangles, typically sever- 
al hundred. It must be built once per data set, or optionally after 
each re-classification. This can be done using the Marching- 
Cube-algorithm and mesh simplification methods afterwards. 
For some data sets, however, the hull may simply be the 
bounding box of the entire data set, eliminating the possibility 
of this kind of empty space skipping in this case. 
For each frame, the bounding hull is rendered twice into the z- 
buffer at virtual screen resolution, using the standard “less 
than” z-compare operator in the first pass and the “greater 
than” operator in the second. After each pass, the z-buffer is 
read back. The CPU finds the nearest (farthest) value in each S- 
triangle, which after perspective correction and rounding 
defines the plane of the front (back) triangle. 
The z-buffer circuitry could be modified such that the reads are 
done in units of screen tiles, and that it determines the closest z- 
value (or farthest, respectively) in each S-triangle by itself 
using the existing z-comparator. This reduces the data traffic 
back to the CPU by a factor of 32 in case of 8x8 tiles. 
It should be noted that we can not jump over internal empty 
spaces using this method. 
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2.2 Depth-Cueing 3.1 Triangle Generation Unit 
Assumed the rasterizer/texturing unit is capable of weighting 
the texture color R,G,B T of a pixel by its interpolated (shad- 
ed) color RJG,BJ, i.e. 

R = R,.R, G = G,.G, B = B,.B, (3) 

then this feature can be used for depth-cueing with no further 
hardware expenses and only a slight performance loss. For this 
purpose, the CPU computes the depth-cueing factors, x- and y- 
derivatives and all increments from one plane to the next for 
the front triangle. The Triangle Generation Unit interpolates 
the depth-cueing parameters and hands them to the rasterizer in 
the color channels for interpolation. 
In this way it is even possible to simulate the effect of distance- 
dependent color shifts. This scheme can be used for TVR as well. 

3 THE TRIANGLECASTER EXTENSIONS 
Figure 4a shows a typical midrange graphics system for work- 
stations or PCs. High-performance versions have multiple 
pipelines and some sort of interconnection structure. Geometry 
accelerators may or may not be present. Figure 4b shows the 
same pipeline with the TEUANGLE~ASTER hardware extensions 
supporting the algorithm outlined above. 

A simplified block diagram of the Triangle Generation Unit is 
shown in Figure 5. Depending on the desired triangle genera- 
tion rate, the triangle parameters can be computed sequentially, 
in parallel, or partially sequentially as in this example, which 
uses three adders. Additionally, there are three multiplexers, a 
control unit, a counter, three sets of increment registers and 
three sets of result registers. 
For a given S-triangle, all needed rasterization and texturing 
parameters of the front triangle are generated by the host CPU 
or dedicated hardware units (geometry or setup processor) and 
written into the result registers. The increments of the texture 
coordinates and their derivatives are also computed and written 
into the increment registers. 
After having received the counter value, the control unit trans- 
fers the parameters of the front triangle to the rasterizer/textur- 
ing unit, generates the next P-triangle and decrements the 
counter. If the counter value reached zero, the processing of the 
current S-triangle is terminated. Otherwise the control unit 
waits until the rasterizer/texturing unit is ready for the next P- 
triangle. 
Termination of the current S-triangle can also occur if the 
Compositing Buffer detects that all P-triangles behind the one 
it has just finished are invisible. In this case, the Compositing 
Buffer activates the signal TT (see also Figure 7). 
In Figure 5 we assumed that the generation of the texture coor- 
dinates for one vertex per P-triangle is sufficient. The result 
register files hold additional data, in case parameters such as 
screen coordinates must be reloaded for every P-triangle. 
Obviously, this unit requires very little chip space, even if a 
higher degree of parallelism is required to meet the perfor- 
mance figures given in Table 1. 

a.) Standard 
Graphics 
Pipeline 

b.) Standard Graphics 
Pipeline with two 
Hardware 
Extensions for 
fast Volume 
Rendering, and 
potentially 
enhanced 
Rasterizer 

\\I ’ Compositing 
Buffer 

Figure 4: The TRIANGLECASTER Hardware Extensions 

3.2 Compositing Buffer 
Regardless of how the shading and classification have been 
done (either during pre-processing or on-the-fly), pixels (ray- 
points) coming to this stage are defined by their color and 
opacity. Processing is done in front-to-back order to take 
advantage of early ray termination (on a per-triangle-basis). 
Instead of an alpha-component, the accumulated translucency 

R, = jyl-ai, OQLiI1 (4) 
i=O 

is maintained in the on-chip memory. Thus, for the processing 
of the n-th resample location (a raypoint on the n-th plane), the 
following operations must be done: 

C new = Cold + c, . a . Rold 

sz = nold . (1 -a,) = *;,d-an. Rold 
(5) 

new 

In (5), C can be R, G or B, and C,, represents the color compo- 
nents of the resample location. Accordingly, CL, is the opacity 
of the raypoint. The quantities with index “old” are taken out 
of the Compositing Buffer and replaced by their updated ver- 
sions with index “new”. The operations in (5) can be carried 
out in a pipeline, since the processing order as shown in Figure 
6 eliminates all data dependencies. 
A simplified block diagram of the Compositing Buffer is shown 
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Increment Register Sets 

CONTROL 

UNIT 

Zontrol 

Signals 

Control 

Signals 

Control Signals 
from I to 
Rasterization I 
Texturing Unit, 
Compositing Buffer, 
host CPU and 
Setup Processor 

Terminate Triangle Signal (TT) + + + 
from Compositing Buffer Scan Conversion and Texturing Parameters to Rasterizermexturing Unit 

Figure 5: Schematic Diagram of the Triangle Generation Unit (simplified) 

ever, that pixel p is read for P-triangle n+l while or before pixel 
p of P-triangle n is completed. Given a certain number of pipe- 
line stages, this sets a lower limit for the size of the S-triangles. 
Early ray termination is facilitated using the circuitry at the bot- 
tom of Figure 7. The user can specify a threshold value E for the 
translucency R along the rays. If R falls below E for a given ray, 
all further raypoints are considered invisible. The S-triangle can 
be terminated if this condition occurs for all of its rays (pixels). 
Every newly generated Q-value is compared to this threshold. 
If it is less, a corresponding bit in the opaque-pixels register is 
set, and remains set until the current S-triangle is finished. This 
register is reset at the beginning of a given S-triangle. If all pix- 
els in the current S-triangle have a set bit, every pixel is 
opaque, and thus, the Compositing Buffer sends a signal 
(labeled 7’7’) to the Triangle Generation Unit to terminate this 
S-triangle and to start the next one. 
The triangle-oriented approach bears the disadvantage that 
opaque pixels are still processed until the very last pixel of the 
associated S-triangle becomes opaque. However, using the indi- 
vidual opaque-pixel signals (OP,) from the opaque-pixels reg- 
ister, the rasterizer/3D-texturing unit could be modified such 

Raypoint written back Raypoint clocked in 

P- I L 

Figure 6: Processing Order (Enumeration) of Raypoints 

in Figure 7. The index n denoting the plane number has been 
omitted (it is assumed that all raypoints currently in the pipeline 
are on the same P-triangle). The parameter p is the pixel number 
within the actual P-triangle, as depicted in Figure 6. Due to the 
pipelined architecture, there are always a number of pixels 
simultaneously under construction. It may never happen, how- 
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Opaque-Pixel Signals (OP,), Terminate Triangle (TT), 
to Rasterizer/3D-Texturing Unit to Triangle Generation Unit 

Figure 7: Compositing Buffer (Number and Structure of Pipeline Stages may vary) 

that it either skips over opaque pixels entirely, or at least avoids 
cache fill operations in case of texture cache misses for these 
pixels. 
A traditional raycasting accelerator, however, may also not 
reach optimum speed-up from early ray termination: it suffers 
from the possibly large number of pipeline stages between the 
raypoint generator and the compositing unit. There may be a 
large number or even all remaining raypoints of a prematurely 
terminated ray already in the pipeline. Then, no or only small 
performance gains can be obtained from this technique. 
Once a given S-triangle is finished, the contents of the on-chip 

frame buffer are written into the external frame buffer for dis- 
play. The on-chip frame buffer is then initialized for the next S- 
triangle (R = I, R = G = B = 0). 
The needed capacity of the on-chip dual-ported SRAM is 512 
Bytes, assuming that an entire 8x8 pixel tile can be cached and 
that each component is 16 bits wide. It should be noted, howev- 
er, that a blending stage and possibly a frame buffer cache may 
be needed for the standard rendering fimctionality anyway 
(e.g., for transparent or multi-textured objects). In this case, the 
additional chip space requirements for the TRIANGLECASTER- 
extensions may be close to negligible. 
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4 MIXING GEOMETRY AND VOLUMES 
We only consider opaque geometrically defined objects in this 
work. The general processing order is outlined below. 
1. The volume’s bounding hull is rendered into a far and 

near buffer to determine the front and back triangles as 
described in section 2.1. 

2. All the geometry is rendered in the standard way with z- 
buffering enabled. 

3. Z-tests remain enabled with “less-than”-operator, but z- 
buffer updates are disabled. 

4. All P-triangles are rendered as explained throughout the 
paper, but additionally with z-values attached to them (see 
below). 

During step 4., however, the operation of the rasterizer must be 
modified in the following way. Whenever a z-value in the z- 
buffer is smaller than that of a pixel (raypoint) of a P-triangle, 
the corresponding color values in the frame buffer (belonging 
to the geometric object) are blended with the values in the 
Compositing Buffer using a=l, instead of the raypoint colors. 
This pixel is then marked by a set opaque-pixel flag (OP,), 
which can be used to exclude it from further processing. Note 
that if the entire P-triangle is obscured by geometry, processing 
of the S-triangle is ended due to early ray termination. 
However, two issues need additional consideration. First, for 
perspective projections of polygonal primitives, the rasterizer 
usually interpolates z ’ = z/w, with w = z/z~ + I and { 0, O,-ZE} 
being the eye point. For correct z-compares, the z-values of the 
P-triangle vertices must also be perspectively transformed. 
Clearly, this would not be feasible given the high number of P- 
triangles. However, since the planes through the volume are 
parallel to the screen, all P-triangle vertices on a given plane 
have the same z-value, and therefore transform to the same 
perspective z-value z ‘. Thus, all z’-values for a given view can 
be precomputed and stored in a table to which the Triangle 
Generation Unit has access (e.g., in the frame buffer). It per- 
forms one table look-up per P-triangle using the plane number 
as index, and passes the z’-value along with dzx ’ = dry ’ = 0 to 
the rasterizer. 
Second, the need to perform z-tests introduces additional frame 
buffer traffic compared to pure volume rendering. In many cas- 
es, however, the geometry covers only small portions of the 
screen, as in the case of a scalpel or a prosthetic device in a 
medical data set. Then, performing z-tests for all P-triangles is 
a waste of bandwidth. This can be avoided by a small change in 
the operation mode of the z-buffer circuitry. For each front tri- 
angle, the rasterizer checks whether all z-values still have their 
initial value. If so, no z-tests must be done for all remaining P- 
triangles of that S-triangle. 

5 RESULTS 
A software simulator, containing z-buffer, Gouraud shader, 3D 
texturing unit and the TRIANGLECASTER-extensions was writ- 
ten to evaluate cache efficiency, memory traffic and achiev- 
able performance. We assumed an 8x8 pixel tile size. The 
memory in the Compositing Unit was implemented as a direct 
mapped cache instead of an SRAM as shown in Figure 7. This 
was done because then the same memory can be used as a 
frame buffer cache when comparing the TRIANGLECASTER- 
extensions to the traditional method (see section 5.1). The 
frame buffer cache has 64 entries, each 64 bits wide, to store 

the RGBA-components of all pixels in a tile (or two S-trian- 
gles) in 16-bit precision. 
An eight-bank, direct-mapped texture cache was implemented, 
which allows the parallel access to any (cached) set of 2x2~2 
voxels for tri-linear interpolation. The texture cache can either 
hold 512 or 4096 voxels. Voxels are 16 bits wide for a texture 
cache size of 1 K or 8KByte. One cache line in each bank holds 
8 voxels. Cache lines are updated individually in chunks of 16 
Bytes, accordingly. 
The test data sets were taken from the HP Voxelator CD: 
MRBrain (256~256~109, courtesy of UNC Chapel Hill) and 
Engine (256x256~110). Screen resolution was 256x256, 
except where noted otherwise in column 1 (see tables on next 
page). The distance from one plane to the next was 0.75 vol- 
ume data set grid units. Both data sets have been rendered 
using a texture cache size of 1K and IKByte, and early ray ter- 
mination on and off. For early ray termination, only the TT-sig- 
nal was used. Thus, invisible raypoints were processed in full 
until the entire S-triangle was opaque. A pixel was considered 
opaque when its translucency fi fell below 11255. 
The results using the TRIANGLECASTER-extensions are summa- 
rized in Table 2. 
We counted texture (volume) cache hits and misses in the fol- 
lowing way. If for a given raypoint k of the eight surrounding 
voxels needed for tri-linear interpolation have been found in 
the cache, the hits have been increased by k, and the misses by 
8-k. Thus, the following relation must always be satisfied: 
Raypoints * 8 = Hits + Misses. For each miss, however, 8 
voxels or 16 bytes are fetched from texture memory since a 
cache line holds 8 voxels. Thus, the number of bytes read from 
texture memory equals Misses * 16. The number of processed 
S-triangles is given by the projection of the bounding hull of 
the data set on the screen. For evaluation purposes, we used 
very tight bounding hulls, which consist of volume cell faces. 
They were automatically generated using a threshold value, 
which caused some noise to be included. The projection of the 
bounding hulls and the resulting set of S-triangles can be seen 
in Figure 8a and d. 
Using pure volume rendering and the TRIANGLECASTER- 
extensions, there are no reads from the frame buffer. For each 
S-triangle, about 32 RGB-triples are written to the frame buff- 
er on average. 
The images in Figure 8b, c, e and f were generated by post- 
interpolation look-up, using only the interpolated function val- 
ue as index to obtain color and opacity. No attempt was made 
to include more sophisticated classification and shading tech- 
niques (see section 7). The MRBrain data set contains index 
bits for four different materials, which were used to select one 
of four lookup-tables. 
Note that the performance figures are the same for the opaque 
and translucent view of each data set if early ray termination is 
disabled. Therefore, they are not listed separately in Table 2. 

5.1 Traditional Method 
The tests have also been run in the traditional way, i.e., back- 
to-front and one plane at a time. For fairness, we used the same 
tight bounding hull for empty space skipping, and the same tri- 
angulation across the planes as in the TRIANGLECASTER-ver- 
sion. Thus, these tests produced the same number of triangles 
and raypoints as shown in Table 2 with early ray termination 
disabled. The results are given in Table 3. Again, opaque and 
translucent views have the same performance. 
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Volume Early P- Raypoints Volume Volume Bytes Bytes Net 

Dataset Fig. Cache Ray Triangles s- (Tri-linear (Texture) (Texture) read written Bandwidth 

Tri. Inter- Cache Cache 
from to needed 

Size Term. Total polations) Hits Misses Texture Frame for 3Ofls 
Memory Buffer (MB/s) 

MRBrain 8b 1KB No 196,999 1,816 6,300,309 49,129,695 1,272,777 20,364,432 174,120 616 

Table 2: Performance Measurement SUmmaiy with TRIANGLECASTER-Extensions 

Table 3: Performance Measurement Summary using traditional texture-based Volume Rendering 

6 DISCUSSION 

The most striking result is that all 2562-views in Table 2 could 
be generated by low-cost PC hardware at 30frames/s if all 
speed-up methods offered by the TRtANGLECASTER-exten- 
sions are used (speaking only in terms of performance, since 
most of the PC graphics accelerators do not yet support 3D tex- 
turing. However, the step from tri-linear texture filtering to 3D 
texturing is not a dramatic one). The maximum numbers across 
the table for 256x256 screens are 8KByte texture cache, 
512Byte frame buffer cache, 14MByte addressable texture 
memory, 4M P-triangles/s, 128M tri-linear interpolations per 
second, and lGByte/s memory bandwidth. Most of these num- 

bers are met or exceeded by typical PC graphics accelerators 
[2],[12],[13]. The required P-triangle rate can easily be 
achieved by inclusion of a Triangle Generation Unit (see sec- 
tion 3.1). At the same time, this would be the only major addi- 
tion to the consumed silicon area besides an extended blending 
stage as discussed in section 3.2. 
The most dramatic improvement over traditional texture-based 
volume rendering comes from the almost complete elimination 
of the frame buffer traffic, which was the main motivation for 
this work. This becomes most apparent for higher screen reso- 
lutions, as shown for 512x512 and 1024~1024 pixel screens. 
Next, the texture memory traffic is reduced by about 50% on 
average (compare Table 2, test runs without early ray termina- 
tion, to Table 3). 
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Figure 8: Images of the Test Data Sets 

Finally, early ray termination can further reduce the rendering 
costs enormously, in our examples by as much as 75%, depend- 
ing of course on viewing parameters and data set characteristics. 

On the other hand, traditional texture-based volume rendering 
poses serious bandwidth requirements on the graphics system, 
as detailed in Table 3. For 256x256 images, we can achieve a 
21.2-fold reduction in overall traffic in the best case (Engine, 
opaque, 8KByte cache), while we still achieve a 2.4-fold reduc- 
tion in-the worst case (Engine, translucent, 1KByte cache). 

For 512~512 and 1Kx IK images, the reqtiired bandwidth 
might be out of reach for all but the most expensive machines 
using the traditional method. 

With the TRIANGLECASTER-extensions, however, the required 
memory bandwidth is already provided by mid-range PC sys- 
tems. In case of a 512x512 (1KxlK) screen, the image of Fig- 
ure 8c would require 14M (53M) P-triangles/s, and 462M 
(1.7G) tri-linear interpolations per second for 30frames’s. This 
might currently be out of reach for PC graphics accelerators as 
well, however, the bottlenecks using the TRIANGLECASTER- 
method now occur on-chip, where they can be tackled much 
easier. 

7 REAL-TIME CLASSIFICATION AND 
SHADING 

The prior work as listed in section 1.2 focussed on improving 
existing designs. However, for new designs, there is a whole 
range of possible solutions from very low-cost implementa- 
tions to expensive gradient filters and Phong shaders. The fol- 
lowing methods are targeted mainly at low-cost systems and 
can complement the TRIANGLECASTER-extensions for a com- 
plete volume rendering accelerator. 
Classification and, in cost-efficient solutions, also shading are 
usually done table-based, so the task is to make pointers avail- 
able and to provide on-chip or external look-up tables. 
The most basic method (as used in this work) to determine the 
color C and opacity cr. of a raypoint is to use the interpolated 
function value F as index into an RGBcL-table. Given 8-bit 
quantities, this requires 1KByte (on-chip) storage. 
A more versatile, two-dimensional opacity look-up table is 
accessed using the gradient magnitude G (or some measure of it) 
and the function value [lo]. For low-cost implementations, gra- 
dient components are precomputed at the grid locations and 
stored together with the function value F as 32-bit voxels (e.g., 
GzGyGxF in 8 bit precision each) in the texture memory. The 
interpolated gradient components are squared and added (if the 
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true magnitude is desired, a fast and compact square root unit as 
described in [S] can be used). G2 and Fare then used as pointers 
into an adjusted opacity table. If three square units are already 
too expensive, the sum G* of the components (LI-norm) could 
be used as index. This reduces the hardware expenses to just two 
adders at the costs of increased classification uncertainty. The 
opacity table can be stored in the frame buffer, requiring one 
external access per raypoint. Alternatively, a reduced-precision 
table can be kept on-chip, using a number of high-order bits 
(e.g., 5 for a 1KByte table) of G, G2 or G* and F as pointers, and 
the remaining low-order bits for bi-linear interpolation. This 
interpolation could be done using existing circuitry in a second 
pass, or by providing dedicated interpolation units. 

For low-cost shading, white light sources at infinity and a con- 

stant viewing vector ? are assumed. Then, for a given scene, the 
only variable in commonly used illumination models is the gra- 
dient. The Phong illumination model can then be simplified to: 

K = C.kd.C(~.Z,)+k;C(B.d,)” = C.Id+I, 

where 
94, (6) 

fi, = 
iz?J 

and K,C = { R,G,B} 

The sums Id and I, over all light sources c,,, can be precomput- 
ed for all gradient orientations in reduced precision, e.g., using 
only the 5 MSBs of each component, and stored as a 3D intensity 
map in the frame buffer. I, must be recomputed whenever the 
observer moves, both Id and I, whenever a light source is moved. 
This limits the number m of light sources in practice, although 
we can exploit the fact that the Is-elements are mostly zero 
except within a narrow cone for each light source. 

During rendering, the high-order bits of the gradient compo- 
nents are used to access this map. The remaining low-order bits 
could be used to tri-linearly interpolate the light intensity, again 
either using the existing circuitry or dedicated units. This meth- 
od requires access to either one or eight data elements per ray- 
point. Finally, the reflected raypoint color K is computed using 
three multipliers and three adders. 

It should be noted that modern multi-texturing units may pro- 
vide two four-channel tri-linear interpolators, potentially with a 
cache in front of both. These interpolators could be placed into a 
pipeline for concurrent interpolation of voxels, opacity and 
intensity elements. Depending on the cache-structure, a high 
raypoint processing rate might still be achievable despite the 
additional table look-ups. 

8 CONCLUSIONS 

As the simulations show, a 3D-texturing unit equipped with the 
TRIANGLECASTER-extensions can provide real-time volume 
rendering at very low additional costs. Further low-cost exten- 
sions for classification and shading as outlined in the previous 
section can be used for sophisticated volume visualization in a 
standard, surface-oriented graphics system. Then, dedicated 
volume rendering accelerators are no longer necessary, even 
more so because the combined rendering of polygonal and vol- 
umetric objects is much easier in such an integrated system. 
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