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We present two methods which connect today’s polygon graphics 
hardware accelerators to Cube-5 volume rendering hardware, the 
successor to Cube4 The proposed methods allow mixing of both 
opaque and translucent polygons with volumes on PC class ma- 
chines, while ensuring the correct compositing order of all objects. 
Both implementations connect the two hardware acceleration sub- 
systems at the frame buffer. One shares a common DRAM buffer 
and one run-length encodes images of thin slabs of polygonal data 
and then combines them in the Cube composite buffer In both re- 
alizations, we take advantage of the predictable ordered access to 
frame buffer storage that is utilized by Cube-5 and the rest of the 
family of volume rendering accelerators based on the Cube design. 
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Figure 1: A jlight simulation scene miring a texture-mapped 
Polygonal terrain, an opaque plane (with 4420 polygons), a 
tmnslucent cockpit, and a volumetric cloud (also in c&rp&e). 
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1 Introduction 

Direct volume rendering accelerators will become commercially 
available this year, from Mitsubishi Electric in mid 1999 as a low- 
cost plug-in PC1 card called VolumePro [ 101, and from Japan Radio 
Co. in late 1999 as the special purpose U-Cube ultrasound visual- 
ization system. Since these systems are based on Cube-4 [l l] we 
refer to them as the Cube family of volume rendering accelerators. 
Unfortunately, these accelerators work independently from current 
geometry rendering hardware. Therefore, it is impossible to ren- 
der mixtures of volumetric and polygonal data, unless none of the 
objects intersect. Unfortunately, many applications require objects 
to intersect. For example, in a flight simulation scene, a polygonal 
plane may fly through a volumetric cloud over a textured polygo- 
nal terrain viewed from within a translucent cockpit, as shown in 
Figure 1. In this paper, we begin expanding the Cube design to ac- 
celerate rendering of more than just volumetric data, creating the 
fifth generation of Cube architectures, the Cube-5 

We propose two methods to connect current geometry pipelines 
to the Cube family of volume rendering accelerators on PC class 
machines. Both allow mixing of opaque and/or translucent poly- 
gons with volumetric data. Translucent polygons complicate the 
situation because all fragments (both translucent polygon fragments 
and volume samples) must be drawn in topologically depth sorted 
order. This is required because compositing with the over opera- 
tor [ 121 is not commutative. Interesting visual effects can be created 
with translucent polygons as shown in the translucent tank spinning 
in the desert kicking up a volumetric cloud of dust in Figure 2. Vir- 
tual environments, such as surgical simulation, require real-time or 

Figure 2: Volumetric dust cloud kicked up by a spinning translu- 
cent tank (wirh 5082 Polygons) in a desert (also in colorplate). 
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Figure 3: A prosthesis (containing 3758polygons) beingfit to a 256’ CT scan of a hip: (a) translucentpolygons reveal the bony structure 
behind the prosthesis, (b) opaque polygons obscure incorrect alignment (also in colorplate). 

Figure 4: A translucent ghost ship (containing 4715 polygons) 
sailing out of a volumetric fog bank in front of an opaque texture- 
mapped island (also in colorplate). 

at least interactive feedback. Figure 3 shows a fitting of a polygonal 
model of a prosthesis to a CT scan of a patient. The use of translu- 
cent polygons enables the surgeon to see the details of the volu- 
metric bone behind the polygonal object. Finally, Figure 4 shows a 
translucent ghost ship sailing out of a volumetric fog bank. 

Software systems, developed for production applications, allow 
mixing of volumetric and polygonally modeled objects. Ray tracing 
is commonly utilized by these systems to render mixtures of vol- 
umes and polygons [7, 151. The flexibility of these systems comes 
at the price of an extremely slow frame generation rate. Therefore, 
these systems would not perform well for applications requiring in- 
teractivity. 

Volume Graphics GmbH produces a product which mixes 
opaque polygons with volumes by ray casting. They achieve in- 
teractivity by utilizing reduced resolution rendering while parame- 
ters are being changed followed by slower high quality rendering 
whenever the viewing parameters become constant [13]. No hard- 
ware acceleration is utilized, so the performance is limited, and no 
translucent polygons can be used. 

The OpenGL extensions proposed in the HP Vbxelator [8] at- 
tempted to create a standard software interface to mix volumetric 
data with polygonal objects. However, no mention of hardware ac- 
celeration was given and only opaque objects were discussed, ne- 
glecting translucent polygons and volumes. 

Three dimensional texture map based volume rendering [2] al- 
lows the mixing of volumes and polygons. Unfortunately, 3D tex- 
ture map based volume rendering is only available on high end 
graphics workstations and is neither scalable nor capable of real 
shading. Additionally, these systems require very expensive equip- 
ment to achieve even interactive frame rates. Our solution, on the 
other hand, provides better frame rates, real Phong shading, and an 
order of magnitude lower cost in addition to being designed for a 
PC class machine. 

All of the Cube family (Cube-4/Cube-YVolumeProKJ-Cube) of 
volume rendering accelerators utilize slice-order ray casting, an ob- 
ject order technique (e.g., [6, 161). This means that input data is 
processed in a regular predefined order. This exploitation of mem- 
ory coherence is critical to realizing the real-time 30Hz frame rates 
of the Cube family. We also take advantage of the repeatable access 
pattern in both of our designs, specifically to the frame buffer. 

In Section 2, we describe our method to mix translucent poly- 
gons with volumes in volume object order. In Section 3, we dis- 
cuss the differences between a DRAM frame buffer on current PC 
graphics cards and the SRAM composite buffer in previous Cube 
designs. Sections 4 and 5 present our two methods to create a hy- 
brid volume and polygon rendering system using the Cube-5 archi- 
tecture and relatively low cost (compared to high end workstations) 
PC graphics pipelines. Section 6 presents results and a performance 
comparison. 

2 Mixing Polygons into Volume Render- 
ing Systems 

Volume rendering is the more difficult of the two rendering modal- 
ities. Also, the only methods to achieve interactive or real-time 
frame rates for volume rendering utilize object order. Therefore, 
in our method presented here, we adapt polygon rendering to slice 
order volume ray casting (used in the Cube architectures), and orga- 
nize the overall rendering process on a volume slice-by-slice basis 
rather than a polygon-by-polygon or pixel-by-pixel basis. 

In the Cube family of accelerators, the slices of the volume are 
processed in depth order. Thus, to correctly order translucent poly-. 
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Figure 5: Side view of dove-tailing translucent polygons and vol- 
ume data. (The gaps between polygon slabs are shown for clarity. 
In reality, there is no gap or overlap as shown by the boundary 
intervals.) 

gon fragments with volume samples, thin slabs of polygons are ren- 
dered and composited in between slices of the volume, as shown in 
Figure 5. The polygonal slabs represent all of the translucent ob- 
jects which lay between two consecutive slices of the volume data. 
The boundaries are created such that the union of all the slabs nei- 
ther miss nor duplicate anything, such as less-than the current slice 
and greater-than-or-equal-to the next slice (see slab boundaries in 
Figure 5). The data from the volume slices and translucent polyg- 
onal slabs are dove-tailed together in an alternating fashion. In this 
way the correct depth ordering of all contributing entities is pre- 
served, and use of the over operator to composite them creates cor- 
rect colors in the final image pixels. 

that the warping operation at the end of Cube rendering creates 
correct polygons in the final image. Also, the Z-depths computed 
are proportional to the distances along the processing axis. It is 
sometimes possible (if all opaque geometry fits within the volume 
extents) to set the hither and yon clipping planes to the edges of 
the volume and, if the precision of the depth buffer is the same, 
the depths computed are exactly the volume slice indices for depth 
checking. Otherwise, a simple scaling must be applied when they 
are utilized by the volume rendering system. Light positions must 
be considered when using this method, as the shearing may not 
move the lights correctly. 

The Cube architectures take advantage of the storage order of 
voxels by processing slices orthogonal to one of the three major 
axis. The image produced by this method is aligned with the face 
of the volume most perpendicular to the view direction (called the 
baseplane). The 2D baseplane image is then warped onto the final 
image plane. Since volume slices are always orthogonal to one of 
the axes, the polygons should also align this way. Therefore, special 
handling of the projection and viewing matrices are used. While 
the following methods are extendible to perspective projection, we 
show examples for parallel projection, for simplicity and since that 
is what VolumePro currently supports. 

The thin slices of translucent polygons should align geometri- 
cally with their 3D position in space. We begin by aligning the 
eye-point as before. Then, to keep the objects from projecting all 
the way to the final image plane, we translate the geometry so that 
the center of the current thin slab is at the Z = 0 plane before 
shearing. Clipping planes allow only the current thin slab to be ren- 
dered. The projection plane is set to be within the two volume slices 
which border that region with glortho (giFrustum for Perspective). 
In a recent paper [5], we presented an algorithm to accelerate the 
OpenGL rendering of the thin slices of translucent polygons. 

The opaque polygons should be rendered such that, after projec- 
tion through the volume dataset, warping creates the correct foot- 
print on the final image. Also, the Z-depth values should be aligned 
along the processing axis, so that the volume slice index can be used 
for the Z-depth check. First, the object space is transformed by a 
permutation matrix so that the Z-component is the largest value in 
the view vector (i.e., the major viewing direction is along the Z- 
axis). The permutation is created by swapping the elements of the 
view vector, leaving the relative sizes unchanged. Then, the eye- 
point is moved to a position along the permuted Z-axis by rotating 
the vector between the look-at-point and the eye-point by some an- 
gle we call cy around the X-axis and ,0 around the Y-axis. Notice 
that a and p are always between -45 and 45 degrees, otherwise we 
would choose a different baseplane. We then apply an “X and Y 
according to Z” shear (also known as a Z-slice shear along X and 
Y [3]) to the viewing matrix as follows: 

3 Frame Buffers versus Composite 
Buffers 

1 0 tancu 0 
0 1 tanp 0 

[ I 
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It is important to understand the organization of frame buffer de- 
sign compared to composite buffer design. The previous Cube vol- 
ume rendering accelerators utilize a tightly coupled on-chip SRAM 
buffer to hold the partially composited rays as a volume is processed 
in slice order (see Figure 7), called the composite buffer. Cube ex- 
ploits the regular processing sequence inherent in slice order ren- 
dering. Specifically, each slice is processed in the same order as 
the previous, left-most voxel to right-most voxel of each row, and 
bottom-most row to top-most row of each slice (possibly with some 
skewing). In this way the SRAM composite buffer becomes a sim- 
ple FIFO queue of length equal to the size of a slice. The SRAM 
queue is 32 or 48 bits wide to hold 8-bit or 1Zbit fixed point RGBcv 
values (called coxels for composite-buffer element). Each pipeline 
reads a coxel from the front of the queue and writes a coxel to the 
rear of the queue for each clock cycle. With this approach, each 
Cube pipeline can process 1 sample per clock, or over 500 million 
samples per second fill rate with 4 pipelines at 133MHz (current 
VolumePro configuration), sufficient for real-time volume render- 
ing of 2563 datasets. 

This can be seen in Figure 6. With this geometry, when the opaque Common PC class geometry pipelines, on the other hand, utilize 
polygons are drawn, the polygon footprints are “pre-warped” so an external DRAM frame buffer, where the RGBcr color values and 
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Figure 6: Top view of creating sheared viewing geometry so that 
polygon footprints are “pre-warped” and Z-depths represent dis- 
tance along the volume processing direction. 
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Figure 7: Previous Cube pipeline showing the on-chip SRAM buffer 
used to store partially composited rays. 

Figure 8: Graphics accelerator solution, where volume slices com- 
pete with polygons for limited resources at the texture memory and 
frame buffer memory inte$aces. 

Z-depth values for each pixel are stored (see Figure 8). This buffer 
must support random access since polygon rendering does not en- 
joy the regular access ordering inherent in slice-order volume ren- 
dering. Normal polygon rendering produces triangles on the screen 
averaging between 10 and 50 pixels. Therefore, the DRAM mem- 
ory is organized to maximize access to areas of the screen of this 
size. For example, the Digital Neon chip achieves a maximum fill 
rate of 100 million fragments per second without blending [9], by 
interleaving pixels across parallel memory interfaces and chunking 
the frame buffer into tiles the size of a DRAM page. If the en- 
tire chunk is not utilized, burst mode access will also not be fully 
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Figure 9: Dual use DRAM frame buffer connecting a commodity 
surface graphics pipeline with a Cube-5 volume rendering pipeline. 

utilized, resulting in decreased bandwidth due to lack of latency 
hiding. 

When the 3D texture mapping solution for volume rendering is 
implemented on geometry pipelines, volume slices perpendicular to 
the screen are texture mapped through the volume. The per-vertex 
geometry calculations for the slices are easily achievable with any 
level graphics hardware. However, the requirement to support ran- 
dom access to both the texture memory and frame buffer limits the 
performance of this approach to the fill rate achievable with a cur- 
rent DRAM frame buffer not optimized for repeatable access pat- 
terns as occur in slice order volume rendering. 

Very high end surface graphics systems utilize massive paral- 
lelism in the fragment processing section of the polygon pipeline. 
This, coupled with a highly distributed frame buffer, allow in- 
creased fill rate performance. For example, an Infinite Reality 
graphics engine with 4 raster manager boards can place 7 10 million 
16-bit textured, depth buffered fragments per second into the frame 
buffer. Yet, with only one board (a common configuration since it is 
the most expensive part), the fill rate quickly drops to 177 million 
fragments per second. In our tests we were only able to achieve 
up to 90 million fragments per second fill rate, below the published 
numbers, due to the blending required for volume rendering. 

4 Mixing with a Dual Use DRAM Frame 
Buffer 

We aim to create a low-cost system which is capable of rendering 
mixtures of polygons and volumes. Therefore, we propose to re- 
move the SRAM composite buffer from inside the Cube-5 pipeline 
and replace it with an external DRAM frame buffer. The frame 
buffer is also accessible from a 3D graphics pipeline to allow mix- 
ing of polygonal data with volumes. Instead of a typical DRAM 
buffer such as in polygon engines, we organize the memory in our 
buffer so that it is optimized for volume rendering. Due to the 
higher performance requirements of volume rendering, the poly- 
gon performance will be equal to or better than current polygon 
DRAM frame buffers, but will require increased VLSI. Figure 9 
shows how the dual use frame buffer connects the two pipelines. 
Only the frame buffer storage is currently shared. To minimize the 
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Figure 10: Memory intedaces for each Cube-5 pipeline includ- 
ing coxel FIFO queue to align burst mode access and two RGB~Y 
DRAM sets to allow concurrent reading/writing. 

impact on current hardware, all polygon fragment operations are 
still performed in the polygon pipeline, while all volume sample 
compositing occur in the volume pipeline. 

Figure 11: RGBa coxel layout on 8 DRAM chips (also in color 
plate). 

To render a scene with both opaque and translucent polygons 
and also volume data, the geometry pipeline first renders all opaque 
polygons with Z-depth. The volume slices and thin slabs of translu- 
cent polygons are then rendered in an alternating fashion - vol- 
ume slices by the Cube-5 pipeline and translucent polygons by 
the graphics pipeline (opaque polygons could also be handled with 
the same dovetailing algorithm, but with increased demand on the 
graphics pipeline). Z-depth checking is utilized to insure correct 
hidden object removal and blending is set in both pipelines to cor- 
rectly composite the samples and fragments. Finally, the geome- 
try engine performs the baseplane warp onto the image plane re- 
quired by Cube. At any given point in time, either the geometry 
sub-system or the Cube-S sub-system is stalled while the other is 
rendering to the common frame buffer. 

data at both the rising and falling edges of the clock. Using DDR 
SDRAMs we can utilize two 16-bit memory interfaces for reading 
64 bits per clock and one 16-bit memory interface for writing 32 bits 
per clock for a total of three 16-bit memory interfaces per pipeline. 

The design of the DRAM buffer is critical to achieve the 503 mil- 
lion samples per second required for 30Hz rendering of 2563 vol- 
ume datasets. Therefore, we first look at creating a DRAM buffer 
just for the Cube-S pipeline by itself, then look at connecting it to 
a graphics pipeline. Cube based volume rendering designs consist 
of multiple pipelines, such as the one in Figure 7. In each pipeline, 
at every clock cycle, a coxel (composite-buffer element consisting 
of RGBo) is read from the SRAM composite buffer FIFO, blended 
with an appropriate compositing equation and then the new coxel is 
placed at the rear of the FIFO. We change the structure of a coxel 
to contain 64 bits: 32 bits of color, 8 for each RGBo, and 32 bits 
of Z-depth information, 24 + 8-bit stencil. This is required to han- 
dle Z-depth checking in the compositing stage. If we assume that 
opaque polygon rendering is completed before any volume render- 
ing begins, the 32 bits of Z-depth/stencil information is read, but 
not re-written. Therefore, for every clock cycle, each Cube pipeline 
needs to read 8 bytes of coxel data and write back 4 bytes. 

Since we must read and write every clock cycle to keep the 
pipeline full, we read from one set of frame buffer chips and write 
to another. We keep two sets of chips, A and B. We could read from 
set A and write to set B for a complete slice of the volume, and then 
switch for the next slice. However, this way, each set would have to 
be large enough to hold the complete frame buffer, and the polygon 
engine would have to be told which set was current. Therefore, we 
alternate reading and writing between sets A and B within a slice 
and buffer the processed coxels from the read set until it becomes 
the write set. Since every memory access must be a burst, each one 
really lasts 4 clock cycles and reads/writes 4 coxels (8 words) with 
16-bit DDR DRAM chips. We need to cycle through all 4 banks 
to keep the memory bandwidth saturated before writing the new 
RBGcv values back. For this reason there is a 16 coxel FIFO queue 
(4 coxels for each of 4 banks) that the newly composited RBGcv 
portions of the coxels are stored in, as shown in Figure 10. 

We would like to utilize commodity DRAM chips to keep the 
price affordable to the PC market. SDRAM provides information 
synchronized to the pipeline clock and provides burst mode access 
to obtain the maximum bandwidth possible if the memory can be 
organized correctly. Commonly available chips today typically uti- 
lize 4 internal banks which must be accessed in succession with 
bursts of at least 8 words per burst to be able to saturate the band- 
width between the chip and the memory controller. 

There are many different possible configurations for the number 
of pipelines in a Cube system. We present an example for a case 
of 4 parallel pipelines creating 12 total memory interfaces. Each 
pipeline contains one read interface to the Z-depth/stencil portion 
of the frame buffer and two read/write interfaces to sets A and B 
of the RGBcr portion of the frame buffer. To render a 2563 vol- 
ume at 30Hz, each of the 4 pipelines process 125 million voxels 
per second. Therefore, we utilize a 133MHz clock for the chip 
and the SDRAM. The mapping of the frame buffer pixels onto the 
memory chips is critical to performance. It must match exactly the 
processing order of the Cube pipelines and the parallel access by 
4 pipelines at once. We assume the skewed memory access of the 
Cube architecture is “un-skewed” (as in the VolumePro implemen- 
tation) so that the volume samples are in order from left to right 
across each scanline in groups of 4 since it is easier to follow in 
the explanations. The design can be extended to skewed memory, 
although the geometry pipeline and screen refresh system must be 
aware of the additional skewing. 

We propose to utilize memory chips with a word size of 16 bits. Figure 11 shows the layout of the RGBcv portion of the coxels 
Therefore, four words must be read by each pipeline on each cycle in the frame buffer. For a given scanline there is a group of pixels 
and two words must be written. This means we would need six which reside in set A followed by a group of pixels which reside in 
16-bit memory interfaces per pipeline. An emerging technology in set B, repeated across the entire scanline. The length of each set is 
SDRAM chips is that of double data rate (DDR) which reads/writes 64 pixels due to the fact that each set must contain pixels which are 
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Figure 12: Pixel layout in the frame buffer. Clear pixels are in bank I shadedpixels are in bank 2. Set A and Set B shown with 4 parallel 
chips per set. In reality there are 4 interleaved banks shifred across successive scanlines, but only 2 are shown so that it$ts across the page. 

read from 4 different banks inside each chip, each bank consisting 
of 4 RGBa values from 4 parallel chips/pipelines. Thus, the pixel 
data in the frame buffer is interleaved across 8 chips, but in fine 
detail, it is really interleaved across only 4 chips. 

This provides us with an interface which reads 

4 pipelines x (1 RGBcv chip + 1 depth chip) x 16 bits 
x 133MHz x 2 data rate = 34Gbits = 4.15Gbytes 

of data per second. This surpasses the required 

2563 x 3OHz x 8 bytes = 3.75 GBytes per second 

where 8 bytes are 4 bytes RGBcv + 4 bytes Z-depth/stencil. Addi- 
tionally, the frame buffer sub-system is capable of writing 

4 pipelines x 1 RGBa chip x 16 bits x 133MHz 
x2 data rate = 17Gbits = 2.1Gbytes 

once again handling the 

2563 x 30Hz x 4 bytes = 1.8 GBytes per second 

required for real time 30Hz rendering of 2563 volumes. 
This extra bandwidth is not sitting idle. The screen must be 

refreshed from the data in the frame buffer. If we assume a 
1280x1024 screen resolution with 60Hz refresh rate and that all 
4 RGBcr bytes are read from the frame buffer (since our burst mode 
access retrieves them anyway), then 

1280 x 1024 x 60Hz x 4 bytes = BOOMbytes 

are read from the frame buffer per second. Only the RGBo portion 
of the frame buffer is required for refresh. Therefore, the refresh 
data is read from 8 chips. To read the 300MB per second for screen 
refresh, it is sufficient to perform 10 data burst reads/writes (de- 
pending on set A or B) to each chip followed by 1 read of data for 
refresh. This distribution of memory accesses provides the refresh 
hardware with a consistent (although bursty) stream of data. The 
10-l ratio also provides enough bandwidth to the volume render- 
ing pipelines to still allow 30Hz rendering of 2563 datasets. Cube 
pipelines based on 133 MHz clocks, like the current VolumePro 
configuration, also contain the same percentage of excess cycles. 

The dual use DRAM frame buffer, built out of 12 SDRAM chips, 
must also work for polygon rendering without affecting perfor- 
mance, or it would not be a desirable solution. The Neon chip [9] 
reports that they can achieve 45% of the maximum memory band- 
width from their memory sub-system. The amount of usable band- 
width depends upon the pattern of the interleaving of pixels to 
memory controllers. Our frame buffer organization utilizes a one 
dimensional interleaving. While this method is optimal for reading 
the pixels for volume rendering and screen refresh, McCormack et 
al. [9] show that if an entire column of the screen is mapped to one 

memory chip, poor load balancing can result in scenes such as ar- 
chitectural walkthroughs where polygons are all aligned vertically. 

McCormack et al. go on to propose a 1 D interleaved method that 
is shifted from one scanline to the next. We can do this in our buffer 
without affecting volume rendering performance. In fact, we set up 
the shifting from one scanline to the next so that the banks form a 
checkerboard pattern similar to Neon to further increase memory 
performance (see Figure 12) by allowing spatially coherent mem- 
ory access to different banks so that latency is better hidden. Our 
system, with the two sets of memory chips allows additional sep- 
aration and possibility to hide latency between memory accesses 
at the set boundaries. Unfortunately, it affects the hardware VLSI 
costs byincreasing the number of memory controllers, but this is re- 
quired to achieve the bandwidth for volume rendering. We predict 
that we should be able to achieve a similar percentage performance 
as Neon. Since we have a higher base bandwidth, we should be able 
to achieve even higher fill rate performance. Even using the 45% 
estimate from the Neon paper, we achieve 357 million 64-bit pix- 
els per second fill rate from our 6.35GByte combined bandwidth to 
all 12 DDR 133MHz 16-bit SDRAM chips. Of course the perfor- 
mance of a particular memory layout to polygon fill rates depends 
upon the rasterization order of the pipeline. Neon utilizes a square 
chunking fragment generation ordering. For a different fragment 
scheme, a different pixel assignment may be more optimal, how- 
ever, it must also consider the volume rendering requirements we 
discussed earlier. 

Since our frame buffer is spread across 12 memory interfaces, 
we need to hook up only one 64Mbit SDRAM to each interface and 
have 96MBytes of frame buffer storage. This is enough storage to 
allocate a double buffered, 2500’ pixel frame buffer with 8 bytes 
per pixel. 

5 Mixing into the SRAM Composite 
Buffer 

The first frame buffer we presentedutilized commodity components 
and, to be realized, required minimal alterations to current hard- 
ware. Yet, it created a bottleneck at the frame buffer where the two 
sub-systems competed for the same resources. For comparison, we 
present an alternative approach to connecting a graphics pipeline to 
a volume rendering pipeline that keeps both working at all times 
and merges the data in the SRAM composite buffer inside the Cube 
chip. At any given time, the volume pipeline is compositing the cur- 
rent volume slice with the previous thin slab of polygon data over 
the composite buffer, and the graphics pipeline is rendering the next 
thin slab of translucent polygons. 

We still utilize the dovetailing approach of volume slices and 
thin slabs of translucent polygonal data, described in Section 2. We 
first project all opaque polygons onto a Z-buffer coincident with the 
baseplane (e.g., the volume face most parallel to the screen). Sec- 
ondly, the projected RGBcvZ image is loaded into the composite 
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buffer of the volume rendering pipeline. Subsequently, the volume 
is rendered with a Z-comparison enabled in the compositing stage. 
The thin slabs of translucent polygons are rendered by the geom- 
etry pipeline, and their RGBa data is sent to the volume pipeline 
to be blended into the SRAM composite buffer within the volume 
pipeline. 

We modify the compositing stage of the volume rendering ac- 
celerator to composite two layers (one volume and one translucent 
polygon) per step, thus not delaying the volume rendering process. 
This requires the addition of some extra logic. The straightforward 
formula for performing a double composition’of a volume sample 
u over a translucent pixel fragment p over the old coxel c would 
require 4 additions and 4 multiplies in 5 stages: 

c6 = CVCY” + [CpcQ7 + Cc(l - cyp)](l -a,) 

However, simple math allows the double composition to be calcu- 
lated with 4 additions and 2 multiplies in 6 stages with the following 
formula (some of the calculations are re-used): 

cs = (Cc + (Cp - Cc)ap) + [C” - (Cc + (C, - CC)cyP)l~” 

The hardware designer would choose the option more desirable for 
a given implementation: less logic and more stages, or fewer stages 
and more logic. 

It seems simple enough to render a thin slab of translucent poly- 
gons in the geometry pipeline and then transfer this “slab image” to 
the volume rendering pipeline to be composited. However, consider 
the amount of data transfered for a 2563 volume. There are 255 
slabs plus one buffer in front of the volume and one behind. Each 
of these 257 slabs contains 256KB (256* pixels of RGB@) of data. 
This equates to 64MB to be read from the polygon frame buffer and 
transferred between the two sub-systems each frame. To achieve 
30Hz would require a bandwidth of 1.9GB per second. While this 
much data could be transferred with wide enough channels, it must 
also be read from the frame buffer. Without changing the organiza- 
tion of the current DRAM polygon frame buffers, it is impossible to 
read this much data. Additionally, the frame buffer must be cleared 
257 times per frame. 

To solve this bandwidth challenge we propose to run-length- 
encode (RLE) the blank pixels. Each scanline in the polygon frame 
buffer is encoded separately, and a “run-of-zeros” is encoded as 
four O’s (RGBa) followed by the length of the run. We notice that 
the translucent polygon slabs are very sparse, since typically only 
a small percentage of the polygons in a scene are translucent. For 
example, out of our four test sequences, only an average of 9 1 pix- 
els contain color information out of 64K pixels per “slab image”. 
Run-length-encoding just the blank pixels in these thin slabs results 
in over 99% reduction in the required bandwidth. Lacroute and 
Levoy [6] utilized RLE to take advantage of sparse volume data on 
a slice-by-slice basis. They gained a rendering frame rate advan- 
tage by only processing the visible voxels. Here, we utilize RLE on 
2D images of sparse translucent polygons to save on bandwidth. 

This method requires hardware in the volume rendering pipeline 
that can decode the RLE input stream and create RGBa fragments. 
However, since these fragments are utilized by the volume pipeline 
in a regular order, it is simple to decode the input stream [l] using a 
double buffer to synchronize the two pipelines. Every clock cycle a 
value is output from the decoding hardware. If the volume render- 
ing machine has multiple pipelines (as most current designs do) we 
replicate the decoding hardware for each pipeline, so that they can 
keep up with pixel demand. 

Likewise, RLE hardware at the originating end connected to the 
geometry pipeline could encode the data in real-time before send- 
ing it to the volume pipeline. However, we would still need 1.9 GB 
per second access to the frame buffer to read all the thin slabs of 
translucent polygons and the 257 clears. Therefore, we implement 
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Figure 13: An embedded DRAM chip implementation of run-length 
encoding frame buffer hardware. Every clock cycle a flit (either a 
run-of-zeros or a pixel) is copiedfrom the in buffer to the out buffer 
for the scanline. 

a separate frame buffer which stores the data directly in RLE for- 
mat. Since the thin slabs of translucent data are very sparse, more 
time is spent clearing and reading than rasterizing. An RLE buffer, 
while not efficient for rasterization, is better suited for both clear- 
ing and reading the data. For example, to clear an RLE frame buffer 
requires merely storing a single run of zeros (in 5 bytes) for each 
scanline instead of writing an entire 256* frame buffer. 

To minimize the impact on the current geometry pipelines we 
propose implementing the RLE frame buffer using the emerging 
technology of embedded DRAM [14] and connecting it parallel to 
the normal frame buffer. Previous encoding algorithms assumed 
that the data was given in physical order. Triangle rasterization, 
however, does not guarantee any ordering of the fragments. There- 
fore, we must be able to randomly insert an RGBa value into an 
RLE scanline of data. 

Figure 13 shows a diagram of our RLE insert. For each fragment, 
the encoded scanline is copied from one buffer to another, inserting 
the new RGBcv value. Every clock cycle, a single flit (either an 
RGBcr pixel, or run-of-zeros) is processed. The entire scanline is 
processed flit by flit. In Figure 13, “in Buffer” is the current en- 
coded scanline and “out Buffer” is the newly encoded scanline with 
the new RGBcv fragment inserted. The choice of what to insert at 
each cycle is performed by the 5 byte multiplexor in the center of 
the diagram. Pointers to the current flit of both the in (“inptr”) and 
out (“outptr”) buffers are located at the top and bottom. The right 
side calculates how much has been processed (“total”) and two of 
the control points. The other mux control point is calculated by 
‘or’-ing together all of the RGBcv values (the flag for run-of-zeros). 
“XPOS” is the 5 position of the fragment. We implemented a lookup 
table of the current buffer’s location in memory for each y value. 
Thus, the buffer can be moved while inserting new pixels and the 
table is simply updated. This is seen in the RLEAddFragment 
routine in Algorithm 1. The RLEAddPixelToScanline function 
demonstrates the processing that occurs in the hardware of Fig- 
ure 13. 

By utilizing an embedded DRAM we take advantage of the ex- 
tremely high bandwidth available when processing occurs on the 
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RLE-AddFragment(xPOS, yPoS, RGBA) { 
tmp = nextFreeScanline(); 
RL~ddPixelToScanline(data[yPos],xPos,RGBA,tmp); 
freeScanLine(data[yPosl); 
data[yPosl = tmp; 

RL!X-AddPixelToScanline(in, xPos, RGBA, out) ( 
total = 0; 
inPtr = 0; 
OutPtr = 0; 
whilectotal < linewidth) ( 

if(tota1 == xPos) { 
out[outPtr::outPtr+3l=Blend(RGBA,in[inPtr::inPtr+31); 
0utPtr += 4; 
total++; 
if(in[inPtr::inPtr+31 == 0) 

in[inPtr+41- -: 
else 

inPtr += 4: 
1 

out[outPtr::outPtr+31 = in[inPtr::inPtr+31; 
if(in[inPtr::inPtr+31 == 0) ( 

if(tota1 < XPOS && total+in[inPtr+41 > xPos) 1 
out[outPtr+41 = xPos-total-l; 
0utPtr +=5; 
in[inPtr+41 -= xPos-total; 
total = xPos; 

I else { 
out[outPtr+41 = in[inPtr+41; 
total += in[inPtr+41; 
0utPtr += 5; 
inPtr += 5; 

I 

I else { 
total++; 
0utPtr += 4; 
inPtr += 4; 

) // endif run-of-zeroes 
) // endwhile still within scanline 

1 

Algorithm 1: Pseudo-code showing processing occurring in RLE 
hardware. 

memory chip [4]. The processing is simple enough to be imple- 
mented in the DRAM manufacturing process (one of the drawbacks 
to eDRAM so far is that logic gates are not easily placed on DRAM 
manufacturing/testing process). For a 1280x1024 frame buffer, the 
maximum amount of memory required is SOMbits. This fits onto 
eDRAM dies with room for over 3 million gates for the encoding 
hardware [14]. We estimate that our RLE frame buffer runs at a 
target clock rate of at least 200MHz. At 30Hz frame rate with 256 
slices of volume data, that would equate to 27,300 cycles (or flits 
accessed) per slice. 

Using a 200MHz clock and the flit count per slab, we calculate 
how long it takes to render a frame as follows 

256 

T = c MAX ( f;;t;;;s, 130/~ec) 

s=o 

since a volume rendering pipeline spends 130psec on each slice for 
a 2563 volume at 30Hz. An advantage of the encoding algorithm is 
that the frame rate slips only slightly when the flit processing count 
for a thin slab exceeds its allotted amount. 

slice of data. The few times it exceeds this is when there are nu- 
merous polygons in a single slab, oriented parallel to the volume 
slices. For example, in the slabs which contain the sides of the 
tank, the flit count grows enormously. Similarly, in the hip, the al- 
loted flit count is exceeded for the back and front face of the long 
spike which extends down the femur. 

The graph in Figure 14 represents the number of flits processed Figure 15 shows how a polygon pipeline and Cube-5 pipeline are 
for each thin slab of translucent polygons for one frame from each connected through the RLE frame buffer, which is double-buffered 
sequence. We notice that the flit count is normally well below the to allow rendering during transmission of data. The auxiliary frame 
27,300 cycles that it takes for the volume pipeline to render one buffer is connected at the same place as the existing one by simply 
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Figure 14: Number of frits processed per thin slab for one frame 
from each test sequence. Assuming a 2563 rendering geometry, 
objects are placed within the 256 slices of the volume data. 
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Figure 15: RLEframe buffer connecting a geometry pipeline to the 
SRAM composite buffer in the Cube-5 pipeline. 
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Figure 16: Frame rates achievable for the two methods when ren- 
dering a 2563 volume with a Cube-5 architecture (with 4 pipelines 
at 133MHz), for mixing with polygons at di$erent depth complexi- 
ties. 

duplicating the fragments, thus not affecting the remainder of the 
geometry pipeline. The volume pipeline also double buffers to al- 
low receiving of data while blending the previous slab. Note how 
volume rendering does not conflict with polygon rendering. Since 
the volume pipeline always accesses its memory in a repeatable or- 
dered fashion, it achieves the sample fill rate into the frame buffer 
at a sufficient speed to achieve 30Hz volume rendering. We utilize 
the graphics pipeline to render the opaque polygons before render- 
ing the volume. This can normally be accomplished concurrently 
with the rendering of the volume for the previous frame. Even if the 
polygon engine must render translucent polygons mixed in with the 
volume, there is usually enough time to render the opaque polygons 
before the volume finishes due to the small number of translucent 
polygons in normal scenes. 

This design represents a typical implementation; while the ac- 
tual hardware may change some details, the efficiency of using an 
RLE frame buffer for the sparse translucent polygons in each thin 
slab can be analyzed. Run-length encoding for translucent poly- 
gons has a great impact on the amount of data transferred between 
the pipelines and read from the frame buffer. For example, non- 
RLE rendering of our 256’ images with 256 volume slices requires 
67MB of data to be transferred between the two pipelines per frame. 
RLE of the thin slabs of translucent polygon data, on the other hand, 
reduces this below 900KB for the ghost ship, 55OKB for the tank, 
470KB for the hip, and 420KB for the flight simulation. 
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Figure 17: Frame rates achievable for the two methods when ren- 
dering a 5123 volume with a Cube-5 architecture (with 4 pipelines 
at 133MHz), for mixing with polygons at di$erent depth complexi- 
ties. 

6 Performance 

We have simulated both the DRAM frame buffer and the RLE frame 
buffer in C++. Our simulation provides shaded volume samples as 
if they came through the Cube-5 pipeline. We implemented a trian- 
gle rasterization into a software simulation of our RLE frame buffer. 
Since we do not have an exact model of a 3D graphics card, we es- 
timate a maximum pixel fill rate of 180 million pixels per second 
and up to 6 million triangles per second (e.g., current high-end PC 
graphics cards such as the RIVA TNT from nVIDIA). We believe 
that the real bandwidth to the dual use DRAM frame buffer is 357 
million pixels per second, as shown in Section 4, but this number 
is a conservative estimate. Usually, the percentage of translucent 
polygons is small and thus triangle count is not a problem. With 
these assumptions, we analyzed the performance of both methods. 

Figure 16 shows the frame rates achievable when rendering a 
2563 volume. Various frame buffer resolutions are shown, from 
256 x 256 (size of the volume face) up to 1280 x 1024. When ren- 
dering the volume only, we always achieve 30Hz on both systems. 
The other two bars represent mixing with polygon rendering. We 
reference the amount of polygon rendering by the per pixel average 
depth complexity (number of objects in front of each other). For 
example, rendering 18,432 50-pixel triangles to a 640x480 screen, 
draws an average of 3 fragments per pixel for a depth complex- 
ity of 3. We can see in the 256 x 256 size that the RLE frame 
buffer retains the 30Hz rendering rate while the dual use DRAM 
buffer slowed down slightly. This is because of the contention for 
the shared frame buffer. This also occurs for the 640 x 480 res- 
olution with low depth complexity. However, everywhere else the 
dual use DRAM buffer performs better than the RLE frame buffer. 
This is because of the inefficiency of the rasterization into the RLE 
buffer. For high pixel fill cases, the RLE frame buffer degrades 
very quickly while the dual use DRAM frame buffer degrades more 
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gracefully. Additionally, when the RLE buffer does perform better, 
it is only by a small amount. 

Similarly, Figure 17 shows the frame rates achievable when ren- 
dering a 5123 volume. The volume only frame rates drop to under 
4Hz due to the performance of 4 pipeline Cube-5 system. How- 
ever, since there is more time to render polygons per volume slice, 
the RLE frame buffer out performs the dual use DRAM buffer for 
higher pixel fill rates than the 2563 case. Once again though, the 
dual use DRAM buffer degrades more gracefully than the RLE 
frame buffer. For Cube-5 systems that are capable of 30Hz 5123 
or larger volume rendering (e.g., with more than 4 pipelines), as 
long as the frame buffer size is scaled accordingly, the performance 
appears more like Figure 16 than Figure 17. 

Sequences of 90 frames for each of our 4 test scenes from Fig- 
ures 1,2, 3, and 4 were generated. We measured an average depth 
complexity of approximately 1.5 when rendering to a 256 x 256 
frame buffer with a 2563 volume. The frame rates from our simula- 
tions match the analysis, with one exception. In the tank sequence, 
when all of the polygons along the side of the tank fell within one 
thin slab, the polygon rendering time was much longer and lowered 
the RLE frame rate to 27Hz instead of the achievable 30Hz. 

7 Concluding Remarks 

We showed a method of using a shared frame buffer for mixing 
volume and polygon rendering which required minimal changes to 
either pipeline. Unfortunately, this creates a bottleneck where the 
two sub-systems compete for the shared resource. Therefore, we 
also devised a method without such a bottleneck by transmitting 
data from the polygon pipeline to the volume pipeline. We pro- 
pose an RLE solution to the bandwidth explosion, but it only works 
for very sparse polygon datasets. The RLE insert procedure could 
be more optimized for the rasterization. Instead of inserting one 
fragment at a time, it could insert a whole scanline of the current 
primitive. However, this would require radical changes to the 3D 
graphics pipeline. 

Our analysis of the two systems show that the shared frame 
buffer performs better than transmitting data between the two 
pipelines for almost every case. Only when there are very few 
translucent polygons does the RLE frame buffer keep up with the 
volume rendering pipeline. In this case, we lose little time in frame 
buffer contention and the dual use DRAM frame buffer performs 
insignificantly worse than the RLE buffer. Since the shared frame 
buffer solution is so much simpler and represents fewer changes to 
current hardware, we believe that this method is the better one to 
implement. 

The two solutions presented apply to the PC class of machines. 
They are not only is an order of magnitude cheaper than high- 
end graphics systems with 3D texture mapping, but provide higher 
frame rates and full Phong shading of the volume samples. 

We believe that volume rendering is a more difficult task that 
polygon rendering (even with texture mapping). Therefore, to 
merge the two systems, it makes more sense to identify the sim- 
ilar parts of the pipelines and create a merged system designed 
around the requirements and current features of the volume ren- 
dering pipeline. So far, we have shown that for the frame buffer, 
a DRAM buffer capable of keeping up with the volume rendering 
fill rate is more than sufficient for polygon rendering. In the ftt- 
ture Cube-5 design work, we plan to investigate other areas where 
the two pipelines can be merged (e.g., compositing and fragment 
blending operations are obvious candidates, but texture mapping 
and volume sampling could possibly also be merged). Hopefully 
a single pipeline can then accelerate rendering of both continuous 
polygonal and discrete volumetric data. The possibility is for mul- 
tiple pipelines working in parallel to provide a scalable solution to 
universal rendering. 
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Figure 1: A flight simuhztion scene miring a texture-mapped 
polygonal terrain, an opaque phone (with 4420 polygons), a 
translucent cockpit, and a volumetric cloud. 

Figure 2: Volumetrtric dust cloud kicked up b-y a spinning 
translucent tank (with 5082 Polygons) in a desert. 

Figure 3: A prosthesis (containing 3758polygons) being@ to a 2565 CT scan of a hip: (a} translucentpolygons reveal the bony structure 
behind the prosthesis, (b) opaque polygons obscure incorrect alignment. 

Scanline 

Figure 4: A translucentghost ship (containing 47lSpolygons) 
sailing out of a volumetric fog bank in front of an opaque 
texture-mapped island. 
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