
Abstract

Hybrid Volume and Polygon Rendering with Cube Hardware

Kevin Kreeger and Arie Kaufman*

Center for Visual Computing (CVC)
and Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

We present two methods which connect today’s polygon graphics
hardware accelerators to Cube-5 volume rendering hardware, the
successor to Cube4 The proposed methods allow mixing of both
opaque and translucent polygons with volumes on PC class ma-
chines, while ensuring the correct compositing order of all objects.
Both implementations connect the two hardware acceleration sub-
systems at the frame buffer. One shares a common DRAM buffer
and one run-length encodes images of thin slabs of polygonal data
and then combines them in the Cube composite buffer In both re-
alizations, we take advantage of the predictable ordered access to
frame buffer storage that is utilized by Cube-5 and the rest of the
family of volume rendering accelerators based on the Cube design.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture-Graphics Processors; 1.3.3 [Computer Graphics]:
Picture/Image Generation-Display algorithms; 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism;

Keywords: Mixing polygons and volumes, Volume rendering,
Ray casting, Run-length-encoding, Cube architecture

Figure 1: A jlight simulation scene miring a texture-mapped
Polygonal terrain, an opaque plane (with 4420 polygons), a
tmnslucent cockpit, and a volumetric cloud (also in c&rp&e).

* (kkreegewi) @cs.sunysb.edu

Permission to make digital or hard copies of all or part ofthis work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. TO COP)'

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1999 Eurographics LosAngeles CA USA
Copyright ACM 1999 I-58113-170-4/99/08...%5.00

1 Introduction

Direct volume rendering accelerators will become commercially
available this year, from Mitsubishi Electric in mid 1999 as a low-
cost plug-in PC1 card called VolumePro [101, and from Japan Radio
Co. in late 1999 as the special purpose U-Cube ultrasound visual-
ization system. Since these systems are based on Cube-4 [l l] we
refer to them as the Cube family of volume rendering accelerators.
Unfortunately, these accelerators work independently from current
geometry rendering hardware. Therefore, it is impossible to ren-
der mixtures of volumetric and polygonal data, unless none of the
objects intersect. Unfortunately, many applications require objects
to intersect. For example, in a flight simulation scene, a polygonal
plane may fly through a volumetric cloud over a textured polygo-
nal terrain viewed from within a translucent cockpit, as shown in
Figure 1. In this paper, we begin expanding the Cube design to ac-
celerate rendering of more than just volumetric data, creating the
fifth generation of Cube architectures, the Cube-5

We propose two methods to connect current geometry pipelines
to the Cube family of volume rendering accelerators on PC class
machines. Both allow mixing of opaque and/or translucent poly-
gons with volumetric data. Translucent polygons complicate the
situation because all fragments (both translucent polygon fragments
and volume samples) must be drawn in topologically depth sorted
order. This is required because compositing with the over opera-
tor [121 is not commutative. Interesting visual effects can be created
with translucent polygons as shown in the translucent tank spinning
in the desert kicking up a volumetric cloud of dust in Figure 2. Vir-
tual environments, such as surgical simulation, require real-time or

Figure 2: Volumetric dust cloud kicked up by a spinning translu-
cent tank (wirh 5082 Polygons) in a desert (also in colorplate).

15

Figure 3: A prosthesis (containing 3758polygons) beingfit to a 256’ CT scan of a hip: (a) translucentpolygons reveal the bony structure
behind the prosthesis, (b) opaque polygons obscure incorrect alignment (also in colorplate).

Figure 4: A translucent ghost ship (containing 4715 polygons)
sailing out of a volumetric fog bank in front of an opaque texture-
mapped island (also in colorplate).

at least interactive feedback. Figure 3 shows a fitting of a polygonal
model of a prosthesis to a CT scan of a patient. The use of translu-
cent polygons enables the surgeon to see the details of the volu-
metric bone behind the polygonal object. Finally, Figure 4 shows a
translucent ghost ship sailing out of a volumetric fog bank.

Software systems, developed for production applications, allow
mixing of volumetric and polygonally modeled objects. Ray tracing
is commonly utilized by these systems to render mixtures of vol-
umes and polygons [7, 151. The flexibility of these systems comes
at the price of an extremely slow frame generation rate. Therefore,
these systems would not perform well for applications requiring in-
teractivity.

Volume Graphics GmbH produces a product which mixes
opaque polygons with volumes by ray casting. They achieve in-
teractivity by utilizing reduced resolution rendering while parame-
ters are being changed followed by slower high quality rendering
whenever the viewing parameters become constant [13]. No hard-
ware acceleration is utilized, so the performance is limited, and no
translucent polygons can be used.

The OpenGL extensions proposed in the HP Vbxelator [8] at-
tempted to create a standard software interface to mix volumetric
data with polygonal objects. However, no mention of hardware ac-
celeration was given and only opaque objects were discussed, ne-
glecting translucent polygons and volumes.

Three dimensional texture map based volume rendering [2] al-
lows the mixing of volumes and polygons. Unfortunately, 3D tex-
ture map based volume rendering is only available on high end
graphics workstations and is neither scalable nor capable of real
shading. Additionally, these systems require very expensive equip-
ment to achieve even interactive frame rates. Our solution, on the
other hand, provides better frame rates, real Phong shading, and an
order of magnitude lower cost in addition to being designed for a
PC class machine.

All of the Cube family (Cube-4/Cube-YVolumeProKJ-Cube) of
volume rendering accelerators utilize slice-order ray casting, an ob-
ject order technique (e.g., [6, 161). This means that input data is
processed in a regular predefined order. This exploitation of mem-
ory coherence is critical to realizing the real-time 30Hz frame rates
of the Cube family. We also take advantage of the repeatable access
pattern in both of our designs, specifically to the frame buffer.

In Section 2, we describe our method to mix translucent poly-
gons with volumes in volume object order. In Section 3, we dis-
cuss the differences between a DRAM frame buffer on current PC
graphics cards and the SRAM composite buffer in previous Cube
designs. Sections 4 and 5 present our two methods to create a hy-
brid volume and polygon rendering system using the Cube-5 archi-
tecture and relatively low cost (compared to high end workstations)
PC graphics pipelines. Section 6 presents results and a performance
comparison.

2 Mixing Polygons into Volume Render-
ing Systems

Volume rendering is the more difficult of the two rendering modal-
ities. Also, the only methods to achieve interactive or real-time
frame rates for volume rendering utilize object order. Therefore,
in our method presented here, we adapt polygon rendering to slice
order volume ray casting (used in the Cube architectures), and orga-
nize the overall rendering process on a volume slice-by-slice basis
rather than a polygon-by-polygon or pixel-by-pixel basis.

In the Cube family of accelerators, the slices of the volume are
processed in depth order. Thus, to correctly order translucent poly-.

16

Polygon
Slab

0

Volume
Sample
Plane

f

Figure 5: Side view of dove-tailing translucent polygons and vol-
ume data. (The gaps between polygon slabs are shown for clarity.
In reality, there is no gap or overlap as shown by the boundary
intervals.)

gon fragments with volume samples, thin slabs of polygons are ren-
dered and composited in between slices of the volume, as shown in
Figure 5. The polygonal slabs represent all of the translucent ob-
jects which lay between two consecutive slices of the volume data.
The boundaries are created such that the union of all the slabs nei-
ther miss nor duplicate anything, such as less-than the current slice
and greater-than-or-equal-to the next slice (see slab boundaries in
Figure 5). The data from the volume slices and translucent polyg-
onal slabs are dove-tailed together in an alternating fashion. In this
way the correct depth ordering of all contributing entities is pre-
served, and use of the over operator to composite them creates cor-
rect colors in the final image pixels.

that the warping operation at the end of Cube rendering creates
correct polygons in the final image. Also, the Z-depths computed
are proportional to the distances along the processing axis. It is
sometimes possible (if all opaque geometry fits within the volume
extents) to set the hither and yon clipping planes to the edges of
the volume and, if the precision of the depth buffer is the same,
the depths computed are exactly the volume slice indices for depth
checking. Otherwise, a simple scaling must be applied when they
are utilized by the volume rendering system. Light positions must
be considered when using this method, as the shearing may not
move the lights correctly.

The Cube architectures take advantage of the storage order of
voxels by processing slices orthogonal to one of the three major
axis. The image produced by this method is aligned with the face
of the volume most perpendicular to the view direction (called the
baseplane). The 2D baseplane image is then warped onto the final
image plane. Since volume slices are always orthogonal to one of
the axes, the polygons should also align this way. Therefore, special
handling of the projection and viewing matrices are used. While
the following methods are extendible to perspective projection, we
show examples for parallel projection, for simplicity and since that
is what VolumePro currently supports.

The thin slices of translucent polygons should align geometri-
cally with their 3D position in space. We begin by aligning the
eye-point as before. Then, to keep the objects from projecting all
the way to the final image plane, we translate the geometry so that
the center of the current thin slab is at the Z = 0 plane before
shearing. Clipping planes allow only the current thin slab to be ren-
dered. The projection plane is set to be within the two volume slices
which border that region with glortho (giFrustum for Perspective).
In a recent paper [5], we presented an algorithm to accelerate the
OpenGL rendering of the thin slices of translucent polygons.

The opaque polygons should be rendered such that, after projec-
tion through the volume dataset, warping creates the correct foot-
print on the final image. Also, the Z-depth values should be aligned
along the processing axis, so that the volume slice index can be used
for the Z-depth check. First, the object space is transformed by a
permutation matrix so that the Z-component is the largest value in
the view vector (i.e., the major viewing direction is along the Z-
axis). The permutation is created by swapping the elements of the
view vector, leaving the relative sizes unchanged. Then, the eye-
point is moved to a position along the permuted Z-axis by rotating
the vector between the look-at-point and the eye-point by some an-
gle we call cy around the X-axis and ,0 around the Y-axis. Notice
that a and p are always between -45 and 45 degrees, otherwise we
would choose a different baseplane. We then apply an “X and Y
according to Z” shear (also known as a Z-slice shear along X and
Y [3]) to the viewing matrix as follows:

3 Frame Buffers versus Composite
Buffers

1 0 tancu 0
0 1 tanp 0

[I

00 10
00 0 1

It is important to understand the organization of frame buffer de-
sign compared to composite buffer design. The previous Cube vol-
ume rendering accelerators utilize a tightly coupled on-chip SRAM
buffer to hold the partially composited rays as a volume is processed
in slice order (see Figure 7), called the composite buffer. Cube ex-
ploits the regular processing sequence inherent in slice order ren-
dering. Specifically, each slice is processed in the same order as
the previous, left-most voxel to right-most voxel of each row, and
bottom-most row to top-most row of each slice (possibly with some
skewing). In this way the SRAM composite buffer becomes a sim-
ple FIFO queue of length equal to the size of a slice. The SRAM
queue is 32 or 48 bits wide to hold 8-bit or 1Zbit fixed point RGBcv
values (called coxels for composite-buffer element). Each pipeline
reads a coxel from the front of the queue and writes a coxel to the
rear of the queue for each clock cycle. With this approach, each
Cube pipeline can process 1 sample per clock, or over 500 million
samples per second fill rate with 4 pipelines at 133MHz (current
VolumePro configuration), sufficient for real-time volume render-
ing of 2563 datasets.

This can be seen in Figure 6. With this geometry, when the opaque Common PC class geometry pipelines, on the other hand, utilize
polygons are drawn, the polygon footprints are “pre-warped” so an external DRAM frame buffer, where the RGBcr color values and

Actual Gecamtry
Shearedbre-warped)

(30cmletry

I Qe-0try -

I

Major,
Viewing

Axis

Figure 6: Top view of creating sheared viewing geometry so that
polygon footprints are “pre-warped” and Z-depths represent dis-
tance along the volume processing direction.

17

V
Display

Figure 7: Previous Cube pipeline showing the on-chip SRAM buffer
used to store partially composited rays.

Figure 8: Graphics accelerator solution, where volume slices com-
pete with polygons for limited resources at the texture memory and
frame buffer memory inte$aces.

Z-depth values for each pixel are stored (see Figure 8). This buffer
must support random access since polygon rendering does not en-
joy the regular access ordering inherent in slice-order volume ren-
dering. Normal polygon rendering produces triangles on the screen
averaging between 10 and 50 pixels. Therefore, the DRAM mem-
ory is organized to maximize access to areas of the screen of this
size. For example, the Digital Neon chip achieves a maximum fill
rate of 100 million fragments per second without blending [9], by
interleaving pixels across parallel memory interfaces and chunking
the frame buffer into tiles the size of a DRAM page. If the en-
tire chunk is not utilized, burst mode access will also not be fully

able
es

\

.
Shade P 1 I /I

Sparse
Translucent

Polygon
Data

Figure 9: Dual use DRAM frame buffer connecting a commodity
surface graphics pipeline with a Cube-5 volume rendering pipeline.

utilized, resulting in decreased bandwidth due to lack of latency
hiding.

When the 3D texture mapping solution for volume rendering is
implemented on geometry pipelines, volume slices perpendicular to
the screen are texture mapped through the volume. The per-vertex
geometry calculations for the slices are easily achievable with any
level graphics hardware. However, the requirement to support ran-
dom access to both the texture memory and frame buffer limits the
performance of this approach to the fill rate achievable with a cur-
rent DRAM frame buffer not optimized for repeatable access pat-
terns as occur in slice order volume rendering.

Very high end surface graphics systems utilize massive paral-
lelism in the fragment processing section of the polygon pipeline.
This, coupled with a highly distributed frame buffer, allow in-
creased fill rate performance. For example, an Infinite Reality
graphics engine with 4 raster manager boards can place 7 10 million
16-bit textured, depth buffered fragments per second into the frame
buffer. Yet, with only one board (a common configuration since it is
the most expensive part), the fill rate quickly drops to 177 million
fragments per second. In our tests we were only able to achieve
up to 90 million fragments per second fill rate, below the published
numbers, due to the blending required for volume rendering.

4 Mixing with a Dual Use DRAM Frame
Buffer

We aim to create a low-cost system which is capable of rendering
mixtures of polygons and volumes. Therefore, we propose to re-
move the SRAM composite buffer from inside the Cube-5 pipeline
and replace it with an external DRAM frame buffer. The frame
buffer is also accessible from a 3D graphics pipeline to allow mix-
ing of polygonal data with volumes. Instead of a typical DRAM
buffer such as in polygon engines, we organize the memory in our
buffer so that it is optimized for volume rendering. Due to the
higher performance requirements of volume rendering, the poly-
gon performance will be equal to or better than current polygon
DRAM frame buffers, but will require increased VLSI. Figure 9
shows how the dual use frame buffer connects the two pipelines.
Only the frame buffer storage is currently shared. To minimize the

18

Current RGBa
'lice Sample
Depth

1 I

Read cc Depth/
Interface Stencil

DRAM

Depth Checking
and Blending

+
16

Coxel
FIFO

queue

- Read/ RGBCZ
Write - DRAM

JLInterface Set A

-C Read/ RGBCX
Write - DRAM

JLInterface Set B

Figure 10: Memory intedaces for each Cube-5 pipeline includ-
ing coxel FIFO queue to align burst mode access and two RGB~Y
DRAM sets to allow concurrent reading/writing.

impact on current hardware, all polygon fragment operations are
still performed in the polygon pipeline, while all volume sample
compositing occur in the volume pipeline.

Figure 11: RGBa coxel layout on 8 DRAM chips (also in color
plate).

To render a scene with both opaque and translucent polygons
and also volume data, the geometry pipeline first renders all opaque
polygons with Z-depth. The volume slices and thin slabs of translu-
cent polygons are then rendered in an alternating fashion - vol-
ume slices by the Cube-5 pipeline and translucent polygons by
the graphics pipeline (opaque polygons could also be handled with
the same dovetailing algorithm, but with increased demand on the
graphics pipeline). Z-depth checking is utilized to insure correct
hidden object removal and blending is set in both pipelines to cor-
rectly composite the samples and fragments. Finally, the geome-
try engine performs the baseplane warp onto the image plane re-
quired by Cube. At any given point in time, either the geometry
sub-system or the Cube-S sub-system is stalled while the other is
rendering to the common frame buffer.

data at both the rising and falling edges of the clock. Using DDR
SDRAMs we can utilize two 16-bit memory interfaces for reading
64 bits per clock and one 16-bit memory interface for writing 32 bits
per clock for a total of three 16-bit memory interfaces per pipeline.

The design of the DRAM buffer is critical to achieve the 503 mil-
lion samples per second required for 30Hz rendering of 2563 vol-
ume datasets. Therefore, we first look at creating a DRAM buffer
just for the Cube-S pipeline by itself, then look at connecting it to
a graphics pipeline. Cube based volume rendering designs consist
of multiple pipelines, such as the one in Figure 7. In each pipeline,
at every clock cycle, a coxel (composite-buffer element consisting
of RGBo) is read from the SRAM composite buffer FIFO, blended
with an appropriate compositing equation and then the new coxel is
placed at the rear of the FIFO. We change the structure of a coxel
to contain 64 bits: 32 bits of color, 8 for each RGBo, and 32 bits
of Z-depth information, 24 + 8-bit stencil. This is required to han-
dle Z-depth checking in the compositing stage. If we assume that
opaque polygon rendering is completed before any volume render-
ing begins, the 32 bits of Z-depth/stencil information is read, but
not re-written. Therefore, for every clock cycle, each Cube pipeline
needs to read 8 bytes of coxel data and write back 4 bytes.

Since we must read and write every clock cycle to keep the
pipeline full, we read from one set of frame buffer chips and write
to another. We keep two sets of chips, A and B. We could read from
set A and write to set B for a complete slice of the volume, and then
switch for the next slice. However, this way, each set would have to
be large enough to hold the complete frame buffer, and the polygon
engine would have to be told which set was current. Therefore, we
alternate reading and writing between sets A and B within a slice
and buffer the processed coxels from the read set until it becomes
the write set. Since every memory access must be a burst, each one
really lasts 4 clock cycles and reads/writes 4 coxels (8 words) with
16-bit DDR DRAM chips. We need to cycle through all 4 banks
to keep the memory bandwidth saturated before writing the new
RBGcv values back. For this reason there is a 16 coxel FIFO queue
(4 coxels for each of 4 banks) that the newly composited RBGcv
portions of the coxels are stored in, as shown in Figure 10.

We would like to utilize commodity DRAM chips to keep the
price affordable to the PC market. SDRAM provides information
synchronized to the pipeline clock and provides burst mode access
to obtain the maximum bandwidth possible if the memory can be
organized correctly. Commonly available chips today typically uti-
lize 4 internal banks which must be accessed in succession with
bursts of at least 8 words per burst to be able to saturate the band-
width between the chip and the memory controller.

There are many different possible configurations for the number
of pipelines in a Cube system. We present an example for a case
of 4 parallel pipelines creating 12 total memory interfaces. Each
pipeline contains one read interface to the Z-depth/stencil portion
of the frame buffer and two read/write interfaces to sets A and B
of the RGBcr portion of the frame buffer. To render a 2563 vol-
ume at 30Hz, each of the 4 pipelines process 125 million voxels
per second. Therefore, we utilize a 133MHz clock for the chip
and the SDRAM. The mapping of the frame buffer pixels onto the
memory chips is critical to performance. It must match exactly the
processing order of the Cube pipelines and the parallel access by
4 pipelines at once. We assume the skewed memory access of the
Cube architecture is “un-skewed” (as in the VolumePro implemen-
tation) so that the volume samples are in order from left to right
across each scanline in groups of 4 since it is easier to follow in
the explanations. The design can be extended to skewed memory,
although the geometry pipeline and screen refresh system must be
aware of the additional skewing.

We propose to utilize memory chips with a word size of 16 bits. Figure 11 shows the layout of the RGBcv portion of the coxels
Therefore, four words must be read by each pipeline on each cycle in the frame buffer. For a given scanline there is a group of pixels
and two words must be written. This means we would need six which reside in set A followed by a group of pixels which reside in
16-bit memory interfaces per pipeline. An emerging technology in set B, repeated across the entire scanline. The length of each set is
SDRAM chips is that of double data rate (DDR) which reads/writes 64 pixels due to the fact that each set must contain pixels which are

WChip 1 RChip 5

@Chip 6

Set B iChip 7
:;;,: :,. :;ys~$Chip 4 ' -Chip 8

19

q Set A Bank 1 Word 1 BBSet A Bank 2 Word 1 @Set B Bank 1 Word lm,BSet B Bank 2 Word 1
q Set A Bank 1 Word 2 : : :
:

. . .
.

Figure 12: Pixel layout in the frame buffer. Clear pixels are in bank I shadedpixels are in bank 2. Set A and Set B shown with 4 parallel
chips per set. In reality there are 4 interleaved banks shifred across successive scanlines, but only 2 are shown so that it$ts across the page.

read from 4 different banks inside each chip, each bank consisting
of 4 RGBa values from 4 parallel chips/pipelines. Thus, the pixel
data in the frame buffer is interleaved across 8 chips, but in fine
detail, it is really interleaved across only 4 chips.

This provides us with an interface which reads

4 pipelines x (1 RGBcv chip + 1 depth chip) x 16 bits
x 133MHz x 2 data rate = 34Gbits = 4.15Gbytes

of data per second. This surpasses the required

2563 x 3OHz x 8 bytes = 3.75 GBytes per second

where 8 bytes are 4 bytes RGBcv + 4 bytes Z-depth/stencil. Addi-
tionally, the frame buffer sub-system is capable of writing

4 pipelines x 1 RGBa chip x 16 bits x 133MHz
x2 data rate = 17Gbits = 2.1Gbytes

once again handling the

2563 x 30Hz x 4 bytes = 1.8 GBytes per second

required for real time 30Hz rendering of 2563 volumes.
This extra bandwidth is not sitting idle. The screen must be

refreshed from the data in the frame buffer. If we assume a
1280x1024 screen resolution with 60Hz refresh rate and that all
4 RGBcr bytes are read from the frame buffer (since our burst mode
access retrieves them anyway), then

1280 x 1024 x 60Hz x 4 bytes = BOOMbytes

are read from the frame buffer per second. Only the RGBo portion
of the frame buffer is required for refresh. Therefore, the refresh
data is read from 8 chips. To read the 300MB per second for screen
refresh, it is sufficient to perform 10 data burst reads/writes (de-
pending on set A or B) to each chip followed by 1 read of data for
refresh. This distribution of memory accesses provides the refresh
hardware with a consistent (although bursty) stream of data. The
10-l ratio also provides enough bandwidth to the volume render-
ing pipelines to still allow 30Hz rendering of 2563 datasets. Cube
pipelines based on 133 MHz clocks, like the current VolumePro
configuration, also contain the same percentage of excess cycles.

The dual use DRAM frame buffer, built out of 12 SDRAM chips,
must also work for polygon rendering without affecting perfor-
mance, or it would not be a desirable solution. The Neon chip [9]
reports that they can achieve 45% of the maximum memory band-
width from their memory sub-system. The amount of usable band-
width depends upon the pattern of the interleaving of pixels to
memory controllers. Our frame buffer organization utilizes a one
dimensional interleaving. While this method is optimal for reading
the pixels for volume rendering and screen refresh, McCormack et
al. [9] show that if an entire column of the screen is mapped to one

memory chip, poor load balancing can result in scenes such as ar-
chitectural walkthroughs where polygons are all aligned vertically.

McCormack et al. go on to propose a 1 D interleaved method that
is shifted from one scanline to the next. We can do this in our buffer
without affecting volume rendering performance. In fact, we set up
the shifting from one scanline to the next so that the banks form a
checkerboard pattern similar to Neon to further increase memory
performance (see Figure 12) by allowing spatially coherent mem-
ory access to different banks so that latency is better hidden. Our
system, with the two sets of memory chips allows additional sep-
aration and possibility to hide latency between memory accesses
at the set boundaries. Unfortunately, it affects the hardware VLSI
costs byincreasing the number of memory controllers, but this is re-
quired to achieve the bandwidth for volume rendering. We predict
that we should be able to achieve a similar percentage performance
as Neon. Since we have a higher base bandwidth, we should be able
to achieve even higher fill rate performance. Even using the 45%
estimate from the Neon paper, we achieve 357 million 64-bit pix-
els per second fill rate from our 6.35GByte combined bandwidth to
all 12 DDR 133MHz 16-bit SDRAM chips. Of course the perfor-
mance of a particular memory layout to polygon fill rates depends
upon the rasterization order of the pipeline. Neon utilizes a square
chunking fragment generation ordering. For a different fragment
scheme, a different pixel assignment may be more optimal, how-
ever, it must also consider the volume rendering requirements we
discussed earlier.

Since our frame buffer is spread across 12 memory interfaces,
we need to hook up only one 64Mbit SDRAM to each interface and
have 96MBytes of frame buffer storage. This is enough storage to
allocate a double buffered, 2500’ pixel frame buffer with 8 bytes
per pixel.

5 Mixing into the SRAM Composite
Buffer

The first frame buffer we presentedutilized commodity components
and, to be realized, required minimal alterations to current hard-
ware. Yet, it created a bottleneck at the frame buffer where the two
sub-systems competed for the same resources. For comparison, we
present an alternative approach to connecting a graphics pipeline to
a volume rendering pipeline that keeps both working at all times
and merges the data in the SRAM composite buffer inside the Cube
chip. At any given time, the volume pipeline is compositing the cur-
rent volume slice with the previous thin slab of polygon data over
the composite buffer, and the graphics pipeline is rendering the next
thin slab of translucent polygons.

We still utilize the dovetailing approach of volume slices and
thin slabs of translucent polygonal data, described in Section 2. We
first project all opaque polygons onto a Z-buffer coincident with the
baseplane (e.g., the volume face most parallel to the screen). Sec-
ondly, the projected RGBcvZ image is loaded into the composite

20

buffer of the volume rendering pipeline. Subsequently, the volume
is rendered with a Z-comparison enabled in the compositing stage.
The thin slabs of translucent polygons are rendered by the geom-
etry pipeline, and their RGBa data is sent to the volume pipeline
to be blended into the SRAM composite buffer within the volume
pipeline.

We modify the compositing stage of the volume rendering ac-
celerator to composite two layers (one volume and one translucent
polygon) per step, thus not delaying the volume rendering process.
This requires the addition of some extra logic. The straightforward
formula for performing a double composition’of a volume sample
u over a translucent pixel fragment p over the old coxel c would
require 4 additions and 4 multiplies in 5 stages:

c6 = CVCY” + [CpcQ7 + Cc(l - cyp)](l -a,)

However, simple math allows the double composition to be calcu-
lated with 4 additions and 2 multiplies in 6 stages with the following
formula (some of the calculations are re-used):

cs = (Cc + (Cp - Cc)ap) + [C” - (Cc + (C, - CC)cyP)l~”

The hardware designer would choose the option more desirable for
a given implementation: less logic and more stages, or fewer stages
and more logic.

It seems simple enough to render a thin slab of translucent poly-
gons in the geometry pipeline and then transfer this “slab image” to
the volume rendering pipeline to be composited. However, consider
the amount of data transfered for a 2563 volume. There are 255
slabs plus one buffer in front of the volume and one behind. Each
of these 257 slabs contains 256KB (256* pixels of RGB@) of data.
This equates to 64MB to be read from the polygon frame buffer and
transferred between the two sub-systems each frame. To achieve
30Hz would require a bandwidth of 1.9GB per second. While this
much data could be transferred with wide enough channels, it must
also be read from the frame buffer. Without changing the organiza-
tion of the current DRAM polygon frame buffers, it is impossible to
read this much data. Additionally, the frame buffer must be cleared
257 times per frame.

To solve this bandwidth challenge we propose to run-length-
encode (RLE) the blank pixels. Each scanline in the polygon frame
buffer is encoded separately, and a “run-of-zeros” is encoded as
four O’s (RGBa) followed by the length of the run. We notice that
the translucent polygon slabs are very sparse, since typically only
a small percentage of the polygons in a scene are translucent. For
example, out of our four test sequences, only an average of 9 1 pix-
els contain color information out of 64K pixels per “slab image”.
Run-length-encoding just the blank pixels in these thin slabs results
in over 99% reduction in the required bandwidth. Lacroute and
Levoy [6] utilized RLE to take advantage of sparse volume data on
a slice-by-slice basis. They gained a rendering frame rate advan-
tage by only processing the visible voxels. Here, we utilize RLE on
2D images of sparse translucent polygons to save on bandwidth.

This method requires hardware in the volume rendering pipeline
that can decode the RLE input stream and create RGBa fragments.
However, since these fragments are utilized by the volume pipeline
in a regular order, it is simple to decode the input stream [l] using a
double buffer to synchronize the two pipelines. Every clock cycle a
value is output from the decoding hardware. If the volume render-
ing machine has multiple pipelines (as most current designs do) we
replicate the decoding hardware for each pipeline, so that they can
keep up with pixel demand.

Likewise, RLE hardware at the originating end connected to the
geometry pipeline could encode the data in real-time before send-
ing it to the volume pipeline. However, we would still need 1.9 GB
per second access to the frame buffer to read all the thin slabs of
translucent polygons and the 257 clears. Therefore, we implement

cdl-2

IllI

ctr41-3

r

Figure 13: An embedded DRAM chip implementation of run-length
encoding frame buffer hardware. Every clock cycle a flit (either a
run-of-zeros or a pixel) is copiedfrom the in buffer to the out buffer
for the scanline.

a separate frame buffer which stores the data directly in RLE for-
mat. Since the thin slabs of translucent data are very sparse, more
time is spent clearing and reading than rasterizing. An RLE buffer,
while not efficient for rasterization, is better suited for both clear-
ing and reading the data. For example, to clear an RLE frame buffer
requires merely storing a single run of zeros (in 5 bytes) for each
scanline instead of writing an entire 256* frame buffer.

To minimize the impact on the current geometry pipelines we
propose implementing the RLE frame buffer using the emerging
technology of embedded DRAM [14] and connecting it parallel to
the normal frame buffer. Previous encoding algorithms assumed
that the data was given in physical order. Triangle rasterization,
however, does not guarantee any ordering of the fragments. There-
fore, we must be able to randomly insert an RGBa value into an
RLE scanline of data.

Figure 13 shows a diagram of our RLE insert. For each fragment,
the encoded scanline is copied from one buffer to another, inserting
the new RGBcv value. Every clock cycle, a single flit (either an
RGBcr pixel, or run-of-zeros) is processed. The entire scanline is
processed flit by flit. In Figure 13, “in Buffer” is the current en-
coded scanline and “out Buffer” is the newly encoded scanline with
the new RGBcv fragment inserted. The choice of what to insert at
each cycle is performed by the 5 byte multiplexor in the center of
the diagram. Pointers to the current flit of both the in (“inptr”) and
out (“outptr”) buffers are located at the top and bottom. The right
side calculates how much has been processed (“total”) and two of
the control points. The other mux control point is calculated by
‘or’-ing together all of the RGBcv values (the flag for run-of-zeros).
“XPOS” is the 5 position of the fragment. We implemented a lookup
table of the current buffer’s location in memory for each y value.
Thus, the buffer can be moved while inserting new pixels and the
table is simply updated. This is seen in the RLEAddFragment
routine in Algorithm 1. The RLEAddPixelToScanline function
demonstrates the processing that occurs in the hardware of Fig-
ure 13.

By utilizing an embedded DRAM we take advantage of the ex-
tremely high bandwidth available when processing occurs on the

21

RLE-AddFragment(xPOS, yPoS, RGBA) {
tmp = nextFreeScanline();
RL~ddPixelToScanline(data[yPos],xPos,RGBA,tmp);
freeScanLine(data[yPosl);
data[yPosl = tmp;

RL!X-AddPixelToScanline(in, xPos, RGBA, out) (
total = 0;
inPtr = 0;
OutPtr = 0;
whilectotal < linewidth) (

if(tota1 == xPos) {
out[outPtr::outPtr+3l=Blend(RGBA,in[inPtr::inPtr+31);
0utPtr += 4;
total++;
if(in[inPtr::inPtr+31 == 0)

in[inPtr+41- -:
else

inPtr += 4:
1

out[outPtr::outPtr+31 = in[inPtr::inPtr+31;
if(in[inPtr::inPtr+31 == 0) (

if(tota1 < XPOS && total+in[inPtr+41 > xPos) 1
out[outPtr+41 = xPos-total-l;
0utPtr +=5;
in[inPtr+41 -= xPos-total;
total = xPos;

I else {
out[outPtr+41 = in[inPtr+41;
total += in[inPtr+41;
0utPtr += 5;
inPtr += 5;

I

I else {
total++;
0utPtr += 4;
inPtr += 4;

) // endif run-of-zeroes
) // endwhile still within scanline

1

Algorithm 1: Pseudo-code showing processing occurring in RLE
hardware.

memory chip [4]. The processing is simple enough to be imple-
mented in the DRAM manufacturing process (one of the drawbacks
to eDRAM so far is that logic gates are not easily placed on DRAM
manufacturing/testing process). For a 1280x1024 frame buffer, the
maximum amount of memory required is SOMbits. This fits onto
eDRAM dies with room for over 3 million gates for the encoding
hardware [14]. We estimate that our RLE frame buffer runs at a
target clock rate of at least 200MHz. At 30Hz frame rate with 256
slices of volume data, that would equate to 27,300 cycles (or flits
accessed) per slice.

Using a 200MHz clock and the flit count per slab, we calculate
how long it takes to render a frame as follows

256

T = c MAX (f;;t;;;s, 130/~ec)

s=o

since a volume rendering pipeline spends 130psec on each slice for
a 2563 volume at 30Hz. An advantage of the encoding algorithm is
that the frame rate slips only slightly when the flit processing count
for a thin slab exceeds its allotted amount.

slice of data. The few times it exceeds this is when there are nu-
merous polygons in a single slab, oriented parallel to the volume
slices. For example, in the slabs which contain the sides of the
tank, the flit count grows enormously. Similarly, in the hip, the al-
loted flit count is exceeded for the back and front face of the long
spike which extends down the femur.

The graph in Figure 14 represents the number of flits processed Figure 15 shows how a polygon pipeline and Cube-5 pipeline are
for each thin slab of translucent polygons for one frame from each connected through the RLE frame buffer, which is double-buffered
sequence. We notice that the flit count is normally well below the to allow rendering during transmission of data. The auxiliary frame
27,300 cycles that it takes for the volume pipeline to render one buffer is connected at the same place as the existing one by simply

70.000

60,000

5$!!00
Count

40,000

30,000

20,000

10,000

140,000

liji
I’l \
I” 1
Ill l
I!1 1

- - - - Flight Simulation

E - Hip

I’
I’

-. Ghost Ship

II
--- Tank

0 50 100 150
Slice

Figure 14: Number of frits processed per thin slab for one frame
from each test sequence. Assuming a 2563 rendering geometry,
objects are placed within the 256 slices of the volume data.

Rem&able-I 1

I Fraament ODeratiOnS 1 1

/a$$,

Cube-5
Pipeline

Dual I I I 1 C, / IS~=ial I

Reieatable
Access

Figure 15: RLEframe buffer connecting a geometry pipeline to the
SRAM composite buffer in the Cube-5 pipeline.

22

n Volume Only Depth 1.5 q Depth 3

Dual Use Frame Buffer

25
Frame
RateZO

256x256 640x480 1024x768 1280x1024
Frame Buffer Resolution

RLE Frame Buffer

Frs
Rat

30

25
me

e20

15

10

5

256x256 640x480 1024x768 1280x1024
Frame Buffer Resolution

Figure 16: Frame rates achievable for the two methods when ren-
dering a 2563 volume with a Cube-5 architecture (with 4 pipelines
at 133MHz), for mixing with polygons at di$erent depth complexi-
ties.

duplicating the fragments, thus not affecting the remainder of the
geometry pipeline. The volume pipeline also double buffers to al-
low receiving of data while blending the previous slab. Note how
volume rendering does not conflict with polygon rendering. Since
the volume pipeline always accesses its memory in a repeatable or-
dered fashion, it achieves the sample fill rate into the frame buffer
at a sufficient speed to achieve 30Hz volume rendering. We utilize
the graphics pipeline to render the opaque polygons before render-
ing the volume. This can normally be accomplished concurrently
with the rendering of the volume for the previous frame. Even if the
polygon engine must render translucent polygons mixed in with the
volume, there is usually enough time to render the opaque polygons
before the volume finishes due to the small number of translucent
polygons in normal scenes.

This design represents a typical implementation; while the ac-
tual hardware may change some details, the efficiency of using an
RLE frame buffer for the sparse translucent polygons in each thin
slab can be analyzed. Run-length encoding for translucent poly-
gons has a great impact on the amount of data transferred between
the pipelines and read from the frame buffer. For example, non-
RLE rendering of our 256’ images with 256 volume slices requires
67MB of data to be transferred between the two pipelines per frame.
RLE of the thin slabs of translucent polygon data, on the other hand,
reduces this below 900KB for the ghost ship, 55OKB for the tank,
470KB for the hip, and 420KB for the flight simulation.

3
Frame
Rate2

1

4

3
Frame
Rate2

1

n volume Only q Depth 1.5 q Depth 3

Dual Use Frame Buffer

256x256 640x480 1024x768 1280x1024
Frame Buffer Resolution

I
RLE Frame Buffer

256x256 640x480 1024x768 1280x1024
Frame Buffer Resolution

Figure 17: Frame rates achievable for the two methods when ren-
dering a 5123 volume with a Cube-5 architecture (with 4 pipelines
at 133MHz), for mixing with polygons at di$erent depth complexi-
ties.

6 Performance

We have simulated both the DRAM frame buffer and the RLE frame
buffer in C++. Our simulation provides shaded volume samples as
if they came through the Cube-5 pipeline. We implemented a trian-
gle rasterization into a software simulation of our RLE frame buffer.
Since we do not have an exact model of a 3D graphics card, we es-
timate a maximum pixel fill rate of 180 million pixels per second
and up to 6 million triangles per second (e.g., current high-end PC
graphics cards such as the RIVA TNT from nVIDIA). We believe
that the real bandwidth to the dual use DRAM frame buffer is 357
million pixels per second, as shown in Section 4, but this number
is a conservative estimate. Usually, the percentage of translucent
polygons is small and thus triangle count is not a problem. With
these assumptions, we analyzed the performance of both methods.

Figure 16 shows the frame rates achievable when rendering a
2563 volume. Various frame buffer resolutions are shown, from
256 x 256 (size of the volume face) up to 1280 x 1024. When ren-
dering the volume only, we always achieve 30Hz on both systems.
The other two bars represent mixing with polygon rendering. We
reference the amount of polygon rendering by the per pixel average
depth complexity (number of objects in front of each other). For
example, rendering 18,432 50-pixel triangles to a 640x480 screen,
draws an average of 3 fragments per pixel for a depth complex-
ity of 3. We can see in the 256 x 256 size that the RLE frame
buffer retains the 30Hz rendering rate while the dual use DRAM
buffer slowed down slightly. This is because of the contention for
the shared frame buffer. This also occurs for the 640 x 480 res-
olution with low depth complexity. However, everywhere else the
dual use DRAM buffer performs better than the RLE frame buffer.
This is because of the inefficiency of the rasterization into the RLE
buffer. For high pixel fill cases, the RLE frame buffer degrades
very quickly while the dual use DRAM frame buffer degrades more

23

gracefully. Additionally, when the RLE buffer does perform better,
it is only by a small amount.

Similarly, Figure 17 shows the frame rates achievable when ren-
dering a 5123 volume. The volume only frame rates drop to under
4Hz due to the performance of 4 pipeline Cube-5 system. How-
ever, since there is more time to render polygons per volume slice,
the RLE frame buffer out performs the dual use DRAM buffer for
higher pixel fill rates than the 2563 case. Once again though, the
dual use DRAM buffer degrades more gracefully than the RLE
frame buffer. For Cube-5 systems that are capable of 30Hz 5123
or larger volume rendering (e.g., with more than 4 pipelines), as
long as the frame buffer size is scaled accordingly, the performance
appears more like Figure 16 than Figure 17.

Sequences of 90 frames for each of our 4 test scenes from Fig-
ures 1,2, 3, and 4 were generated. We measured an average depth
complexity of approximately 1.5 when rendering to a 256 x 256
frame buffer with a 2563 volume. The frame rates from our simula-
tions match the analysis, with one exception. In the tank sequence,
when all of the polygons along the side of the tank fell within one
thin slab, the polygon rendering time was much longer and lowered
the RLE frame rate to 27Hz instead of the achievable 30Hz.

7 Concluding Remarks

We showed a method of using a shared frame buffer for mixing
volume and polygon rendering which required minimal changes to
either pipeline. Unfortunately, this creates a bottleneck where the
two sub-systems compete for the shared resource. Therefore, we
also devised a method without such a bottleneck by transmitting
data from the polygon pipeline to the volume pipeline. We pro-
pose an RLE solution to the bandwidth explosion, but it only works
for very sparse polygon datasets. The RLE insert procedure could
be more optimized for the rasterization. Instead of inserting one
fragment at a time, it could insert a whole scanline of the current
primitive. However, this would require radical changes to the 3D
graphics pipeline.

Our analysis of the two systems show that the shared frame
buffer performs better than transmitting data between the two
pipelines for almost every case. Only when there are very few
translucent polygons does the RLE frame buffer keep up with the
volume rendering pipeline. In this case, we lose little time in frame
buffer contention and the dual use DRAM frame buffer performs
insignificantly worse than the RLE buffer. Since the shared frame
buffer solution is so much simpler and represents fewer changes to
current hardware, we believe that this method is the better one to
implement.

The two solutions presented apply to the PC class of machines.
They are not only is an order of magnitude cheaper than high-
end graphics systems with 3D texture mapping, but provide higher
frame rates and full Phong shading of the volume samples.

We believe that volume rendering is a more difficult task that
polygon rendering (even with texture mapping). Therefore, to
merge the two systems, it makes more sense to identify the sim-
ilar parts of the pipelines and create a merged system designed
around the requirements and current features of the volume ren-
dering pipeline. So far, we have shown that for the frame buffer,
a DRAM buffer capable of keeping up with the volume rendering
fill rate is more than sufficient for polygon rendering. In the ftt-
ture Cube-5 design work, we plan to investigate other areas where
the two pipelines can be merged (e.g., compositing and fragment
blending operations are obvious candidates, but texture mapping
and volume sampling could possibly also be merged). Hopefully
a single pipeline can then accelerate rendering of both continuous
polygonal and discrete volumetric data. The possibility is for mul-
tiple pipelines working in parallel to provide a scalable solution to
universal rendering.

Acknowledgments

This work was supported by the National Science Foundation un-
der grant MIP9527694 and Office of Naval Research under grant
N000149710402.

References

I21

131

I41

ISI

I61

I71

Is1

I91

1101

Ill1

I121

1131

I141

1161

J. Barenholtz and C. Dewhurst. A Run Length Encoding Scheme for Real Time
Video Animation. In Proceedings of Northwest ‘76, pages 63-69, Seattle, Wash-
ington, June 1976.

B. Cabral, N. Cam, and I. Foran. Accelerated Volume Rendering and Tomo-
graphic Reconshwtion Using Texture Mapping Hardware. In Symposium on
Volume Visualization, pages 91-98, Oct. 1994.

B. Chen and A. Kaufman. 3D Volume Rotation Using Shear Transformation.
Technical Report TR10.24.98, submitted for publication, State University of
New York at Stony Brook, Oct. 1998.

D. Elliott, W. Snelgrove, andM. Stumm. ComputationalRam: A Memory-SIMD
Hybrid and its Application to DSP. In Custom Integrated Circuits Conference,
pages 30.6.1-30.6.4, May 1992.

K. Kreegerand A. Kaufman. Mixing Translucent Polygons with Volumes. Tech-
nical Report TR.99.03.31, State University of New York at Stony Brook, Com-
puter Science Department, Stony Brook, NY 117944400,Mar. 1999. Submitted
for publication.

P. Lacroute and M. Levoy. Fast Volume Rendering using a Shear-warp Factor-
ization ot the Viewing Transform. In Computer Graphics, SIGGRAPH94, pages
451-457,July 1994.

M. Levoy. A Hybrid Ray Tracer for Rendering Polygon and Volume Data. IEEE
ComputerGraphics & Applications, 10(2):33AO,Mar. 1990.

B. Lichtenbelt. Design of A High Performance Volume. Visualization System.
In Proceedings of the 1997 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages Ill-120,Aug. 1997.

I. McCormack, R. McNamara, C. Gianos, N. Jouppi, T. Dutton, J. Zurawski,
L. Seiler, and K. Cornell. Implementing Neon: A 256-Bit Graphics Accelerator.
IEEEMicro, 19(2), Mar. 1999.

H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro
Real-Time Ray-Casting System. In To Appear in Proceedings of SIGGRAPH
1999. Aug. 1999.

H. Pfister and A. Kaufman. Cube-4 - A Scalable Architecture for Real-Time
Volume Visualization. In Symposium on Volume Visualization, pages 47-54,
Oct. 1996.

T. Porter and T. Duff. Compositing Digital Images. In Computer Graphics,
SIGGRAPH 84, pages 253-259, July 1984.

C. Reinhart. Welcome to Volume Graphics, May 1999.

http://www.volumegrapbics.comlindex.html.

Siemens Semiconductors. Embedded DRAM: Innovations that fit.
http://www.siemens.de/semiconductor/edmm, 1998.

L. Sobierajski and A. Kaufman. Volumetric ray tracing. In Symposiumon Volume
Visualization, pages 1 l-l 9, Oct. 1994.

L. Westover. Footprint Evaluation for Volume Renderilig. In Computer Graph-
ics, SIGGRAPHgO, pages 367-376, July 1990.

24

Figure 1: A flight simuhztion scene miring a texture-mapped
polygonal terrain, an opaque phone (with 4420 polygons), a
translucent cockpit, and a volumetric cloud.

Figure 2: Volumetrtric dust cloud kicked up b-y a spinning
translucent tank (with 5082 Polygons) in a desert.

Figure 3: A prosthesis (containing 3758polygons) being@ to a 2565 CT scan of a hip: (a} translucentpolygons reveal the bony structure
behind the prosthesis, (b) opaque polygons obscure incorrect alignment.

Scanline

Figure 4: A translucentghost ship (containing 47lSpolygons)
sailing out of a volumetric fog bank in front of an opaque
texture-mapped island.

Hybrid Volume and Polygon Rendering with Cube Hardware
Kevin Kreeger, Arie Kaufman

138

