
Extending Graphics Hardware For Occlusion Queries In OpenGL

Dirk Bartz Michael Meil3ner Tobias Hiittner

Computer Graphics Lab ’
University of Tiibingen

Abstract

For intcractivc rendering of large polygonal objects, fast visibil-
ity qucrics arc ncccssary to quickly decide whether polygonal ob-
jccts arc visible and need to bc rcndcrcd. None of the numerous
published algorithms provide visibility pcrthrmancc for interactive
rcndcring of large models.

In this paper, wc propose an OpcnGI> extension for fast occlu-
sion queries. Added after the depth test stage of the OpenCiL rcn-
derillg pipclinc. our algorithm provides fast queries to establish the
occlusion of polygonal ob.jccts. Furthermore, hardware aspects of
this proposal are discussed and possible implementations on two
diffcrcnt graphics architectures arc presented.

CCS Categories: 1.3. I [Hardware Architectures]: Graphics pro-
ccssors, Raster Display Devices; 1.3.3 [Pictureilmage Generation]:
View Algorithms; 1.3.7 [Three-Dimensional Graphics and Rcal-
ism]: Hidden LinciSurfacc Removal;

Keywords: Visibility. occlusion culling, hierarchical data struc-
tures, Opcn(jl..

1 Introduction

I lidtlcn-lint-rclnoval and visibility are among the classic topics in
computer graphics [4]. A large variety of algorithms are known
to solve these visibility problems, including the z-buffer approach
[14, 31, the painter algorithm 141, and many more.

Recently. visibility has been of special interest for walkthroughs
of architectural scenes [I, 151 and rendering of large polygonal
models 19, 5, 171. IJnfortunatcly. these approaches arc limited
to cave-like sccncs 191, require not commonly available hardware
support [7], or do not provide interactive rendering (more than IO
framcs/sccond) of large models on mid-range graphics hardware
[171.

Wc bclicvc that an cxtcnsion to graphic API’s like OpcnGL is
csscntial to deal economically with large polygonal models in an
interactive way.

’ IJniveraity ofTiibingen, WSIKiRIS
Auftler Morgcnstcllc IOKY. D72076 Tubingen, Germany
I:ma~l: (bartl, mc~~stux. thucttnc}(tr gris.llni-ttlcbingcn.dc

In [IO], WC proposed a new visibility algorithm. This algorithm
exploits basic OpenGL functionality for fast visibility queries of
large polygonal models. Frcqucntly, 90% of a sccnc were culled
due to occlusion at no losses in visual quality. Considering large
scenes of millions of polygons, the achicved speed-up is significant
and enables interactive handling of thcsc scenes. In Figure X, a
scene of I 1 056. 2X0 polygons was rcndcrcd at approximately I .X
frames per second on a SGI 02, where almost 9X% of the polygons
were culled, due to occlusion. llsing view-frustum culling only, on
average 0.6 frames per second were achieved.

Following the hierarchical z-buffer approach 171, a spacc-
partitioning scheme (sloppy n-ary space-partitioning tree) was used
to acccleratc the queries. In contrast to 171, wc did not USC a
z-pyramid as an image space hierarchy to accelerate occlusion
queries. Instead, standard OpcnGL buffers were exploited to imple-
ment a virtual occlusion buffer, which improved the performance of
occlusion qucrics. Still, query pcrformancc was limited by scarch-
ing the virtual occlusion buffer for changes. Consequently, an ex-
tension for visibility qucrics within OpcnGL was proposed. In this
paper, we prcscnt a detailed discussion of our extension and outline
two possible hardware implementations.

Our paper is organized as follows: In Section 2. WC briefly out-
line previous work that has been done in the field of hardware sup-
port for occlusion culling. Section 3 presents details of our pro-
posed extension to the OpenGL rendering pipeline. Section 4 dis-
cusses implementations on different hardware platlhrms. In Scc-
tion 5, we outline different additional applications of the proposed
extension. Finally, we state our conclusion and briefly describe fu-
ture work.

2 Related Work

There arc several papers which provide a survey of visibility al-
gorithms. In [l7], Zhang provides a brief recent overview with
some comparison. Hrechner surveys methods for interactive walk-
throughs [2]. Howcvcr, WC focus on papers which propose visibility
algorithms using special hardware support.

In 1993, Greene et al. proposed the hierarchical z-buffer algo-
rithm 17, 61. After subdividing the sccnc into an octrec, each of
the octants is culled to the view-frustum as proposed in [5]. Thcrc-
after, the silhouettes of the remaining octants are scan-converted
into the framebuffer to check if these blocks arc visible. If they
arc visible, their content is assumed to be visible too; if they arc
not visible, nothing of their content can bc visible. The visibil-
ity query itself is performed by checking a z-value-image-pyramid
for changes. Usually, the respcctivc levels of the z-value-imagc-
pyramid are searched for z-value changes, a feature which is con-
monly not supported in hardware. In [7]. a hardware implemcnta-
tion of this query on a Kubota Pacific Titan 3000 workstation using
a Denali GH graphics hardware is discussed. Still, most time of the
visibility query is spent performing this “Z query”.

Hong et al. [9] proposed a fusion between the hierarchical Y-
buffer algorithm [7] and the PVS-algorithm in [121. In this z-buffer-
assisted visibility algorithm, a human colon is first subdivided into
a tube of cells in a pre-process. Thereafter, the visibility is dctcr-

97

mined on-the-fly by checking the connecting portals between these
colon cells, exploiting the hardware z-buffer and temporal coher-
cncc to obtain high culling performance Unfortunately, this ap-
proach is closely connected to the special tube-like topology of the
colon and thcrcforc, is not suited for general visibility problems.

In 1997, occlusion culling using hierarchical occlusion maps was
prcsenled [171. An occluder database is sclccted from the scene
database. Using these occludcrs, screen bounding boxes of the po-
tcntial occludees ofthe scene database are tested for overlaps, using
an image hierarchy of the projected occluders (hierarchical occlu-
sions maps). Basically. two features of this algorithm were sup-
ported in hardware; first, the construction process of the hierarchi-
cal occlusion maps can be supported by modern texture-mapping
hardware. Second, the alternative use of a z-buffer as the depth
estimation buffer for the overlap test.

Last year, Hewlett-Packard proposed an OpenGL extension for
occlusion culling [Xl. Similar to the hierarchical z-buffer approach,
graphic primitives, which represent a more complex geometry, are
rcndcrcd within an occlusion test mode to determine their visibility.
Dcpcnding on the result, all underlying geometry is rendered or
skipped.

3 Embedding Occlusion Queries in the
OpenGL pipeline

The main source of performance problems of visibility algorithms
like the hierarchical z-buffer [7] is the framebuffer-like design of
the z-buffer. Most of the effort is spent tracking down the changes
due to non-occlusion. This information would be easily obtained
by directly catching the write enable signals of the depth buffer
test. In contrast to the z-buffer, this information is data-sensitive
and straightforward to process.

Generally, our strategy for occlusion-driven rendering of a given
hierarchical subdivided scene is based on three steps. For each sub-
division entity, we first render the entity (e.g. an octree block) in
a special occlusion mode, which dots not affect the content of the
framebuffer, similar to the OpcnGL selection mode. Second, we
establish occlusion of the individual subdivision entity by using our
occlusion extension. Finally, depending on the occlusion informa-
tion, the actual graphic primitives, which are represented by the not
occluded subdivision entity are rendered into the framebuffer.

Please note, for the correct computation of occlusion, backface
culling must be enabled. Furthermore, the necessary counting of
pixels of the subdivision entities is only correct, if the objects com-
pound of these polygons are convex.

In this Section, we describe an extension to the OpenGL pipeline
and API of step two. Basically, three features arc provided by the
extension.

l Non-Occlusion Hit Counter (NOHC). This is used to quan-
tify all not occluded pixels of the scan-converted subdivision
entity. This provides simple analysis of the non-occlusion
hits; how many, on which area of the viewport (we call this
a occlusion tile).

l Projection Hit Counter (PHC). This counts the number of
pixels of the projection of the object to be rendered. Projec-
tion hits together with non-occlusion hits can provide infor-
mation about how much of the projection of an object is not
occluded.

Further discussion on the use of the PHC can be found in Sec-
tion 5.

l Multiple Occlusion Tiles. The complete viewport can be
limited to smaller portions, or refined into a hierarchy of

tiles. Alternatively to run a hierarchy of occlusion tests. mul-
tiple occlusion tiles can split the area of interest into a multi-
resolution non-occlusion hit representation, e.g. a quadtrec-
like representation of occlusion in a given scene (see Fig I).

As another application of multiple occlusion tilts, visibility 01
portals in a PVS approach can be determined [121.

Figure I: Quadtree of occlusion tiles t0..tlz are used.

3.1 An OpenGL API extension for Occlusion
Queries

In order to exploit hardware extensions as proposed in Subsec-
tion 3.2 within OpenGL, we need to extend the OpenGL API. Ba-
sically, this extension takes place in three different ways:

Dual-use of already existing OpenGL calls

void glScissor(GLint x, Glint y,
GLint width, Glint height)

To specify the occlusion tile, which limits the viewport for the
occlusion test, the glscissor call is used. Within the view-
port, only the tile, starting at .r,y with width ~vidtl~ and height
heiyht is considered for the occlusion test. This command is used
to limit a test to the neighborhood of a certain area. By default, the
whole viewport is used as occlusion test tile.

Adding new OpenGL calls

void glScissors(GLint numTiles,
GLint *tiles)

Jncontrastto glscissor, glScissors specifiesmultiple
tiles as occlusion test tiles. Depending on the occlusion hardware
below, the various occlusion test tiles are distributed to different
Occlusion Engines (see Subsection 3.2).

The parameter ~~urn7’ilr~s and files specify the number of tiles
and a pointer to an array of nttrttrl’iles tile specifications. Each of
these array entries contains .I‘, u, ulidth, height of one tile.

void glOcclusionBuffers(GLsizei *sizes,
GLuint **buffers)

Similar to the glSelectBuffer call of OpenGL, buffers
for non-occlusion hits are specified occlusion tile-wise. All non-
occlusion hits are stored into the occlusion buffers b~r/frrs of
the sizes specified in si:es, Minimum size of each occlu-
sion buffer is tight, due to the minimal requirements of the
GL-BRIEF-WCLUSION~~~~, which is introduced in the next
paragraph.

98

Adding new parameters to existing OpenGL calls

void glGet(...)

GL-MAX-OCCLUSION-TILES returns the maximal number
of occlusion tiles. This information is important in case multiple
occlusion tiles arc used.

GLint glRenderMode(GLenum mode)

. GL-BRIEF.-OCCLUSION is used to specify a fast occlu-
sion mode. In this mode, the number of non-occluded hits
and the number of projection hits arc returned. Furthermore,
to provide information on position and size of the various not
occluded pixels. X,,,,,, . X,,,,,).. Y,,,,,, , and Y,,,,,,. of the screen
bounding box, and Z ,,,,,, , and Z,,, ,,., as minimal and maximal
depth values ofthc non-occlusion hits arc returned.

. GL-VERBOSE-OCCLUSION. In addition to the features
of the GL-BRIEF-OCCLUSION mode, a list ofthc actual
not occluded pixels of the occlusion tiles is returned, up to
the maximum size of the occlusion buf‘fer, specified with
qlOcclusionBuffer0.

If' glRenderMode (GL-RENDER) is called, the respective
occlusion information is returned into the buffers specified with
glOcclusionBuf f ers. The syntax depends on the previous
occlusion mode and enumerates the information tile-wise. If we
encountered buffer overflows, the number of the respective tilt
buffers is returned. However, the buffers are still set with non-
occlusion hits up to its maximum size - which is specified by
glOcclusionBuf f ers -and terminates with a -I entry. Conse-
quently, some occlusion measure up to a user controllable limit is
returned, without completely computing the potential costly occlu-
sion information.

Note. similar to the GL-SELECT mode, all occlusion render
modes do not change the content of the framcbuffer,

3.2 Hardware-assisted Occlusion Culling

‘The implementation of the proposed extension to the OpenGL API
does require a few modification within the OpenGL pipeline. To
delineate our modifications, we will first give a brief overview of
the OpenGL pipclinc.

OpenGL rendering pipeline

OpcnGL processes graphic data using a pipeline of several distinct
stages [161. In Figure 2, an abstract, high-level block diagram of
this pipeline is given. Commands cntcr from the left and proceed
through what can be thought of as functional units for the specific
operations. Some commands specify the geometry ofobjects, while
others control how the objects are processed during the various pro-
cessing stages.

OpenGL operates in two modes. In immediate mode, all com-
mands are exccutcd directly when they are stated. Alternatively,
a Display List can be used, where commands are compiled and
stored for later execution.

In contrast to objects specified by vertices, parametric curves and
surfaces are approximated by the Evaluator unit. Polynomial com-
mands are evaluated to generate a vertex based description of the
ob.jects.

During the next stage, Per Vertex Operations and Primitive
Assembly, OpenGL processes geometric primitives. These are
points, line segments, and polygons, all of which are described by

b Display List

OpenCL
commands

I + Evaluator + Per Vertex Opcratlons
Primitive Assembly

TextureMemory

t

1-4 Framebuffer 1
I I

Figure 2: Schematic of the OpenGL rendering pipeline. OccU dc-
notes where to fit in the proposed Occlusion Unit.

vertices. The vertices of the primitives are transformed and illumi-
nated. Furthermore, the primitives are clipped to the viewport in
preparation to the next stage.

The Rasterization unit produces framebuffer addresses for the
rasterizing of the primitives. It interpolates associated values using
two-dimensional descriptions of points, line segments, or polygons.
The resulting fragments arc then fed into the last stage, the Per
Fragment Operations.

This stage performs the final operations on the data before the
fragtncnts arc stored as pixels in the framebuffer. Since the frame-
buffer update depends on some conditions, some tests which evalu-
ate arriving and previously stored z-values (for z-buffering) have to
be carried out. Also, blending of incoming pixel colors with stored
colors, as well as masking and other logical operations on pixel
values arc done in this stage of the pipeline.

Input can be in the form of pixels rather than vertices to describe
two dimensional image data. This data skips the first stage of pro-
cessing described above. Instead, it processes data as pixels in the
Pixel Operations stage. The resulting pixels of this stage are either
stored in Texture Memory, for use in the Rasterization stage, or
merged directly into the Framebuffer just as if they were generated
from geometric data.

The New Occlusion Unit

Many per fragment operations exist in the current OpenGL rcnder-
ing pipeline. Some of the most important are scissoring, alpha test,
stencil test, and depth buffer test, as shown in Figure 3.

Testing for occlusion is a “per fragment” operation since every
pixel has to be tested. Therefore, our Occlusion Unit is part of the
functional Per Fragment Operations block as illustrated in Figure
2.

WC differentiate between the Occlusion Unit (OccU), which is
logically responsible for the overall occlusion, and the Occlusion
Engine, which is the actual implementation of the Occlusion Unit.

99

i

Dithcrin

J r
Back

Control

t

1

-Q Framcbuffcr

Figure 3: Per Fragment Operations and Framebuffer.

In order to accclcratc the processing of multiple tiles, the Occlusion
Engine can be replicated within the Occlusion Unit. All Occlusion
Engines of the Occlusion Unit are synchronized at the Occlusion
Control (Occll Control).

To enable our proposed Occlusion IJnit, we need to provide the
unit with the .I’, !I screen space address of the fragment, its depth
value :. and the write cnablc signal of the depth buffer test, which
is used to write and update the framebuffer with the fragment which
IS closer than Ihc so f&r stored t’ragmcnt. Thercfwc, we placed the
Occlusion Unit behind the Depth Buffer Test unit, as it is demon-
strated in Figure 3.

The Occlusion Unit tests the .I’, y screen space address of the
fragment against the user defined occlusion tile. If the fragment
rcsidcs within the tilt. the projection hit counter (PHC) is incrc-
mcntcd. Further. the non-occlusion hit counter (NOHC‘) is in-
crcascd, if the depth huffcr test was successful, which signifies the
f’rnpmcnt contributes to the framcbuffcr. To trigger the increment of
the non-occlusion hit counter, WC LISC: an AND operation. Besides
increasing hit counters, WC test whether the screen bounding box
defined by the already found non-occlusion hits is increased due to
the newly found hit. So far, the list of hits has yet not hcen up-
dated. As long as the number of hits is smaller than the provided
cntrics of the list, the .r, !, coordinates of the fragments are stored in
the occlusion buffers which resides in main memory. To send data
from the Occlusion Unit to the main memory, the OccU Control is
introduced. This unit operates similar to Selection Control of the
OpcnGL selection mode. Its purpose is to synchronize memory ac-
ccss of the Occlusion linit in case that multiple Occlusion Engines

to Framebuffer

i 1 LJpdatc tcff,,

Figure 4: Schcmatical description of one Occlusion Engine

detect non-occlusion hits.
A schematic overview of an Occlusion Engine is given in Figure

4. Note, the Occlusion Engine shown in this Figure illustrates the
schematic structure necessary to test for a user defined occlusion
tile. Since the user can instantiate multiple tilts, e.g. a tile hicrar-
thy, the Occlusion Engine has to he capable of updating all by the
user instantiated tiles. This can he accelerated by assigning the tiles
to multiple Occlusion Engines, using a round robin strategy.

4 Implementing the Occlusion Unit on
two different Architectures

In this Section, we investigate the integration of our proposal in
two existing architectures. We use for this two well known and
described architectures of Silicon Graphics (see [13, I I]).

The SGI 02 is an example for a medium performance graphics
pipeline, which is comparable to many current PC graphics accelcr-
ators. It has a single rasterizing unit and a monolithic fi-amehuffcr.
In Figure 5, WC show details of the Memory and Rendering En-
gine of the SGI Oz.

This unit is connected to previous pipeline stages and to the main
memory of the system. Its main part is the Pixel Pipeline, which
performs all OpenGL rasterization, texturing, and per-fragment op-
crations. Since no dedicated framebuffer is used, this implemen-
tation of the OpenGL pipeline uses an extensive pre-fetching algo-
rithm to hide memory latency. The framebuffer itself is located in
the main memory of the system.

To integrate our proposed extension, we need to place the
Occlusion Unit into the Pixel Pipeline, where all the information
ncccssary for the occlusion test is present. Address information
is provided by the Rasterizer, while the write enable signal of
the depth buffer test is provided by the Depth/Stencil Pipeline.
Each Occlusion Engine which processes multiple tiles introduces
additional cycles for each further tilt. Since this is the case for
OpenGL light sources too, we do not consider this as a serious
drawback for mid-range graphics hardware.

I00

graphic primitives Rasterizer

i Pixel ; Pipeline .

Memory Sr Rendering Engine

Figure 5: Memory and Rcndcring Engine of a SGI 02 including
Occlusion Unit.

the

In contrast to the SGI 02, the InfiniteReality system is used as
exponent for a high end graphics system. Its pipeline has a highly
parallel architccturc, containing multiple rasterizing units and an
intcrlcaved and distributed framebuffer 1131, as it is illustrated in
Figure 6.

The pixel operating part of the system is composed of the so
called Raster Memory Boards. Each board has one rastcrizcr,
called Fragment Generator, and an interleaved framebuffer which
is accessible via special interfaces, the Image Engines.

Since our extension computes occlusion on a pixel basis, our Oc-
clusion Units need to be integrated at the Image Engine level. In all
Occlusion Units, Occlusion Engines are configured in the same way
as their respective occlusion tilt of the viewport. Consequently,
each Occlusion Engine handles only hits of the part of the framc-
buffer to which its Image Engines belong to. In order to optimize
occlusion performance, it is desirable to have an Occlusion Engine
for each occlusion tile.

The evaluation process for an occlusion test has to respect the
distributed nature of the system. Therefore, we propose a two
stage synchronization process. First, the hits of one Raster Mcn-
ory Board arc synchronized locally. Thereafter, the result of the
diffcrcnt boards are merged to form one occlusion report. Dur-
ing the latter synchronization process, detected non-occlusion hits
which belong to the occlusion tile which is partioned between dif-
fcrcnt Raster Memory Boards or different Image Engines needs to
bc merged to form a single occlusion report for this tile. This pro-
cess can bc either implemcntcd in hardware or software.

The integration ofour Occlusion Unit has been shown on two differ-
cnt graphic architectures. For a rather simple system as the 331 02.
the Occlusion Unit can easily be integrated into the Pixel Pipeline.
Although the integration into a InfiniteReality system is much more
complicated, it is still feasible and not more difficult than the or-
ganization of the Image Engines themselves. Nevertheless, some
latency will bc Introduced, due to necessary synchronization.

graphic primitives

Figure 6: Schematic for implementing the Occlusion Unit on an
InfiniteReality system.

5 Further Applications

Adaptive Occlusion Culling

Adaptive occlusion culling was first proposed by Zhang in [171.
The basic idea is that objects which only have a small number of not
occluded pixels have a small visual contribution to the final image.
Thcrcfore, if those ob.jccts are skipped, the visual impression of the
rendered sccnc will not be jeopardized.

To quantify the contribution of the not occluded pixels of’ nn
object to the final image, we need to know their portion of the
complete scan-converted object. This data is provided by the non-
occlusion hits and the prqjection hits (pixels of the complctc scan-
converted ob.jcct). Example: IE only five pixels of 1000 stall-
converted pixels of an object are not occluded, they might not have
a significant contribution to the final image. Therefore, they can bc
skipped and vnluable render time will be reduced (set Figure IO).

However, this feature needs to be used carefully in case the scene
is very sparse, Furthermore, few pixels can have a strong impact on
dynamic scenes. Skipping those pixels might result in flickering.
On the other hand, missing interactivity usually has a stronger vi-
sual impact than flickering.

Support for Collision Detection

In virtual environments, it is a non trivial task to detect collisions
of the user with objects. The process is highly demanding, since it
requires a collision test with all objects. Currently, collision can bc

101

detected in VRML by introducing collision nodes. Each time the
user changes its position, a collision test is applied to all collision
nodes. Due to the time consuming collision test, the frame rate
drops and people tend to switch the collision detection mode off.

Our proposed extension for OpenGL can be used for this purpose
to a certain degree. For a given position of the user, an image of
the scene is gcncrated. A mostly valid assumption is that the user
changes its position and direction incrementally. Hence, in case
the user heads in viewing direction - c.g. straight. straight-left - a
subdivision of screen space can be determined which rcprcscnts the
posaiblc collision areas within the viewport. This is illustrated in
Figure 7

stratght-
up-right

stralgh-right

straipht-
down-right

Figure 7: Subdivision of screen space into areas which correspond
to the heading direction of the user.

To check whether a certain step will cause a collision, a cus-
tomized view-frustum covering the check area of the screen is rcn-
dercd in GLBRIEF-OCCLUSION mode. The far plane of this
view-frustum depends on the step size of the user, near plant is
idcntical to the view plant. Information whether a step can bc
taken without causing a collision is indicated by the non-occlusion
hits and the projection hits. If the number of non-occlusion hits
is different from the number of projection hits, some pixels of the
customized view-frustum are occluded, which means that a colli-
sion can be expected. In contrast to our occlusion test, backfacc
culling must be disabled, in order to detect intersections with the
backfacing polygons of the view-frustum To get mom detailed in-
formation, screen space can be subdivided further.

So far. collision detection can only be indicated and depends on
the given vicwport. Unfortunately, testing backward stepping does
require two-pass rendering since no image of the scene behind the
user is available in the framebuffer.

Support for Ray Casting

One of the results of the GL BRIEF-OCCLUSION and
GL.-VERBOSE-OCCLUSIONmodes% a list of not occluded pixels
of the tested subdivision entity. Besides usual statements on occlu-
sion or non-occlusion of that entity, this information can be used
to accelerate ray casting in a mixed volume graphics and polygon
model. Considering a hierarchical ray casting approach, we ren-
der the subdivision entities in an occlusion mode. All computed
non-occlusion hits for this entity mark pixels which are not oc-
cluded. Consequently, these pixels are image plane parts to cast
rays through, because the content represented by the subdivision
entity may be still visible. In other words, all pixels without an
non-occlusion hit are not visible and therefore, rays casted through
those pixels ofthe image plant have no contribution.

6 Conclusion and Future Work

In this paper, we proposed a hardware extension for occlusion
qucrics. Although. WC focused only on OpenGL, this extension

can be adapted to other graphic API’s as well. Based on a hicr-
archical occlusion strategy, first subdivision entities arc rendcrcd
in a special occlusion mode to determine occlusion of a 3D sccnc.
Thereafter, the actual scene primitives are rendered with rcspcct to
the occlusion information of the first step.

Aspects of the OpenGL API and hardware were discussed to
specify an Occlusion Unit as rather small extension to the OpenGL
pipeline. This Occlusion Unit is located in the “Per Fragment Op-
erations” stage of the pipeline to catch write enable signals of the
depth buffer test.

Depending on the actual number of Occlusion Engines in the
rendering pipeline, multiple occlusion tilts, which subdivide the
vicwport, can bc processed in parallel.

Future work will focus on an implementation of this unit in hard-
ware, to determine the real-time occlusion query performance. Fur-
thcrmorc, advanced features such as occlusion support for ray cast-
ing in a mixed polygonivolumc model will be cxamincd.

Acknowledgments

This work has been supported by the MedWis program of the Gcr-
man Federal Ministry for Education, Science, Research and Tcch-
nology. by DFG project SFB 382, and by the state of Baden
Wurttcmberg.

We like to thank Urs Kanus and Anders Kugler for useful discus-
sions, Michael Doggett for proof-reading, and Ralf Sondcrshaus for
the tree models of the forest scene.

References

[I] J. Airey, J. Rohlf, and F. Brooks, Towards image realism with
interactive update rates in complex virtual building environ-
mcnts. In $mposium on Interactive 30 Graphics, pages 41
50, 1990.

[2] R. Brcchner. Interactive walkthroughs of large geometric
databases, In SIGGRAPH ‘96 ~‘ourse notes. 1996.

[3] E. Catmull. A Subdivision Algorithm,fi,r Computer Displa)x of’
Curved Surfbces. PhD thesis, University of Utah, 1974.

[4] J. Foley, A. Van Dam, S. Feiner, and J. Hughes. Computrt
Graphic:s: Principles und Practice. Addison Wesley, Read-
ing, Mass., 2nd edition, 1996.

[5] B. Garlick, D. Baum, and J. Winget. lntcractive viewing
of large geometric databases using multiprocessor graphics
workstations. In SIGGRAPH ‘90 ~‘our.w notes: Parallel Al-
gorithms and Atr.hitL’c.turL’.s,/~tt. 32) Image Generatior~. 1990.

[6] N. Greene. Hierarchical Rendering of‘ Cotnple.w Envit.ott-
menfs. PhD thesis, Computer and Information Science, Uni-
versity of California, Santa Cruz, 1995.

[7] N. Greene, M. Kass, and G. Miller, Hierarchical z-buffer vis-
ibility. In Prac. q/‘ACM SZGGRAPH, pages 23 I-238, 1993.

[X] Hewlett-Packard, Occlusion test, preliminary.
http://www.opengl.org/Developers/Documcntation/Versjon I .2/
HPspecs/occlusiontest.txt, 1997.

[9] L. Hong, S. Muraki, A. Kaufman. D. Bartz, and T. He. Virtual
voyage: Interactive navigation in the human colon. In Ptw.
of’ACM SIGGRAPH, pages 27 -34, 1997.

[IO] T. Hiittner, M. MeiBner. and D. Bartz. Open&l-assisted visibil-
ity queries of large polygonal models. Technical Report WSI-
9X-6, ISSN 0946-3X52, Dept. of Computer Science (WSI),
University of Tiibingcn, 199X.

102

[I I] M. Kilgard. Realizing opengl: Two implementations of one
architecture. In 1997 EGBIGGRAPH Workshop on Graphics
Hardauw. I 997.

[121 D. Lucbkc and C. Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. In Proc. of ACM Inter-
uctiw 3D Gtuphic.T Confkwce. 1995.

[I .\I J. Montrym, D. Baum, D. Dignam, and C. Migdal. Infinite-
reality: A real-time graphics system. In Proc. cfACM SIG-
GRAPH. pages 293~~302, 1997.

[141 W. StraBcr. Sihnelle Kurven- und Fliichendarstellung agf
graphi.schen Sichtgeriiten. PhD thesis, Technische Universitlt
Berlin, 1974.

[IS] S. Tcllcr and C.H. Sequin. Visibility preprocessing for in-
teractive walkthroughs. In Proc. qfACM SIGGRAPH, pages
61~x59, 1991.

[IO] M. Woo, J. Neider, and T. Davis. OpenGL Programming
Guide. Addison-Wesley, 2nd edition, 1997.

[171 H. Zhang, D. Manocha, T. FIudson, and Kenneth E. Hoff. Vis-
ibility culling using hierarchical occlusion maps. In Pmt. q/
ACM SIGGRAPH, pages 77-88, 1997.

103

Figure I : City model is rendered using a hierarchical occlusion strategy: Bounding volumes are rendered in an occlusion mode to determine
occlusion. All yellow bounding volumes are found occluded; only 0.2% of the geometry is actually rendered. (a) Visitor’s perspective. (b)
Bird’s perspective of visitor’s view

Forest Scene

(a)

Figure 2: Forest Scene - (a) Front view. (b) Overview - all culled bounding volumes are marked yellow.

Forst Scene: Up Close and Personal

Figure 3: For exploiting ratios of projections and occlusion hits, adaptive occlusion culling can bc used. The forest scent is rendered using
adaptlvc occlusion culling, where blocks are considered occluded if only a small number of occlusion hits is found (with respects to the
number of projection hits). Alley of trees - bounding volumes of culled objects arc marked yellow: (a) Adaptive Occlusion culling. (b)
Occlusion culling.

104

