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Abstract 

For intcractivc rendering of large polygonal objects, fast visibil- 
ity qucrics arc ncccssary to quickly decide whether polygonal ob- 
jccts arc visible and need to bc rcndcrcd. None of the numerous 
published algorithms provide visibility pcrthrmancc for interactive 
rcndcring of large models. 

In this paper, wc propose an OpcnGI> extension for fast occlu- 
sion queries. Added after the depth test stage of the OpenCiL rcn- 
derillg pipclinc. our algorithm provides fast queries to establish the 
occlusion of polygonal ob.jccts. Furthermore, hardware aspects of 
this proposal are discussed and possible implementations on two 
diffcrcnt graphics architectures arc presented. 

CCS Categories: 1.3. I [Hardware Architectures]: Graphics pro- 
ccssors, Raster Display Devices; 1.3.3 [Pictureilmage Generation]: 
View Algorithms; 1.3.7 [Three-Dimensional Graphics and Rcal- 
ism]: Hidden LinciSurfacc Removal; 

Keywords: Visibility. occlusion culling, hierarchical data struc- 
tures, Opcn(jl.. 

1 Introduction 

I lidtlcn-lint-rclnoval and visibility are among the classic topics in 
computer graphics [4]. A large variety of algorithms are known 
to solve these visibility problems, including the z-buffer approach 
[ 14, 31, the painter algorithm 141, and many more. 

Recently. visibility has been of special interest for walkthroughs 
of architectural scenes [I, 151 and rendering of large polygonal 
models 19, 5, 171. IJnfortunatcly. these approaches arc limited 
to cave-like sccncs 191, require not commonly available hardware 
support [7], or do not provide interactive rendering (more than IO 
framcs/sccond) of large models on mid-range graphics hardware 
[171. 

Wc bclicvc that an cxtcnsion to graphic API’s like OpcnGL is 
csscntial to deal economically with large polygonal models in an 
interactive way. 
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In [IO], WC proposed a new visibility algorithm. This algorithm 
exploits basic OpenGL functionality for fast visibility queries of 
large polygonal models. Frcqucntly, 90% of a sccnc were culled 
due to occlusion at no losses in visual quality. Considering large 
scenes of millions of polygons, the achicved speed-up is significant 
and enables interactive handling of thcsc scenes. In Figure X, a 
scene of I 1 056. 2X0 polygons was rcndcrcd at approximately I .X 
frames per second on a SGI 02, where almost 9X% of the polygons 
were culled, due to occlusion. llsing view-frustum culling only, on 
average 0.6 frames per second were achieved. 

Following the hierarchical z-buffer approach 171, a spacc- 
partitioning scheme (sloppy n-ary space-partitioning tree) was used 
to acccleratc the queries. In contrast to 171, wc did not USC a 
z-pyramid as an image space hierarchy to accelerate occlusion 
queries. Instead, standard OpcnGL buffers were exploited to imple- 
ment a virtual occlusion buffer, which improved the performance of 
occlusion qucrics. Still, query pcrformancc was limited by scarch- 
ing the virtual occlusion buffer for changes. Consequently, an ex- 
tension for visibility qucrics within OpcnGL was proposed. In this 
paper, we prcscnt a detailed discussion of our extension and outline 
two possible hardware implementations. 

Our paper is organized as follows: In Section 2. WC briefly out- 
line previous work that has been done in the field of hardware sup- 
port for occlusion culling. Section 3 presents details of our pro- 
posed extension to the OpenGL rendering pipeline. Section 4 dis- 
cusses implementations on different hardware platlhrms. In Scc- 
tion 5, we outline different additional applications of the proposed 
extension. Finally, we state our conclusion and briefly describe fu- 
ture work. 

2 Related Work 

There arc several papers which provide a survey of visibility al- 
gorithms. In [l7], Zhang provides a brief recent overview with 
some comparison. Hrechner surveys methods for interactive walk- 
throughs [2]. Howcvcr, WC focus on papers which propose visibility 
algorithms using special hardware support. 

In 1993, Greene et al. proposed the hierarchical z-buffer algo- 
rithm 17, 61. After subdividing the sccnc into an octrec, each of 
the octants is culled to the view-frustum as proposed in [5]. Thcrc- 
after, the silhouettes of the remaining octants are scan-converted 
into the framebuffer to check if these blocks arc visible. If they 
arc visible, their content is assumed to be visible too; if they arc 
not visible, nothing of their content can bc visible. The visibil- 
ity query itself is performed by checking a z-value-image-pyramid 
for changes. Usually, the respcctivc levels of the z-value-imagc- 
pyramid are searched for z-value changes, a feature which is con- 
monly not supported in hardware. In [7]. a hardware implemcnta- 
tion of this query on a Kubota Pacific Titan 3000 workstation using 
a Denali GH graphics hardware is discussed. Still, most time of the 
visibility query is spent performing this “Z query”. 

Hong et al. [9] proposed a fusion between the hierarchical Y- 
buffer algorithm [7] and the PVS-algorithm in [ 121. In this z-buffer- 
assisted visibility algorithm, a human colon is first subdivided into 
a tube of cells in a pre-process. Thereafter, the visibility is dctcr- 
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mined on-the-fly by checking the connecting portals between these 
colon cells, exploiting the hardware z-buffer and temporal coher- 
cncc to obtain high culling performance Unfortunately, this ap- 
proach is closely connected to the special tube-like topology of the 
colon and thcrcforc, is not suited for general visibility problems. 

In 1997, occlusion culling using hierarchical occlusion maps was 
prcsenled [ 171. An occluder database is sclccted from the scene 
database. Using these occludcrs, screen bounding boxes of the po- 
tcntial occludees ofthe scene database are tested for overlaps, using 
an image hierarchy of the projected occluders (hierarchical occlu- 
sions maps). Basically. two features of this algorithm were sup- 
ported in hardware; first, the construction process of the hierarchi- 
cal occlusion maps can be supported by modern texture-mapping 
hardware. Second, the alternative use of a z-buffer as the depth 
estimation buffer for the overlap test. 

Last year, Hewlett-Packard proposed an OpenGL extension for 
occlusion culling [Xl. Similar to the hierarchical z-buffer approach, 
graphic primitives, which represent a more complex geometry, are 
rcndcrcd within an occlusion test mode to determine their visibility. 
Dcpcnding on the result, all underlying geometry is rendered or 
skipped. 

3 Embedding Occlusion Queries in the 
OpenGL pipeline 

The main source of performance problems of visibility algorithms 
like the hierarchical z-buffer [7] is the framebuffer-like design of 
the z-buffer. Most of the effort is spent tracking down the changes 
due to non-occlusion. This information would be easily obtained 
by directly catching the write enable signals of the depth buffer 
test. In contrast to the z-buffer, this information is data-sensitive 
and straightforward to process. 

Generally, our strategy for occlusion-driven rendering of a given 
hierarchical subdivided scene is based on three steps. For each sub- 
division entity, we first render the entity (e.g. an octree block) in 
a special occlusion mode, which dots not affect the content of the 
framebuffer, similar to the OpcnGL selection mode. Second, we 
establish occlusion of the individual subdivision entity by using our 
occlusion extension. Finally, depending on the occlusion informa- 
tion, the actual graphic primitives, which are represented by the not 
occluded subdivision entity are rendered into the framebuffer. 

Please note, for the correct computation of occlusion, backface 
culling must be enabled. Furthermore, the necessary counting of 
pixels of the subdivision entities is only correct, if the objects com- 
pound of these polygons are convex. 

In this Section, we describe an extension to the OpenGL pipeline 
and API of step two. Basically, three features arc provided by the 
extension. 

l Non-Occlusion Hit Counter (NOHC). This is used to quan- 
tify all not occluded pixels of the scan-converted subdivision 
entity. This provides simple analysis of the non-occlusion 
hits; how many, on which area of the viewport (we call this 
a occlusion tile). 

l Projection Hit Counter (PHC). This counts the number of 
pixels of the projection of the object to be rendered. Projec- 
tion hits together with non-occlusion hits can provide infor- 
mation about how much of the projection of an object is not 
occluded. 

Further discussion on the use of the PHC can be found in Sec- 
tion 5. 

l Multiple Occlusion Tiles. The complete viewport can be 
limited to smaller portions, or refined into a hierarchy of 

tiles. Alternatively to run a hierarchy of occlusion tests. mul- 
tiple occlusion tiles can split the area of interest into a multi- 
resolution non-occlusion hit representation, e.g. a quadtrec- 
like representation of occlusion in a given scene (see Fig I). 

As another application of multiple occlusion tilts, visibility 01 
portals in a PVS approach can be determined [ 121. 

Figure I: Quadtree of occlusion tiles t0..tlz are used. 

3.1 An OpenGL API extension for Occlusion 
Queries 

In order to exploit hardware extensions as proposed in Subsec- 
tion 3.2 within OpenGL, we need to extend the OpenGL API. Ba- 
sically, this extension takes place in three different ways: 

Dual-use of already existing OpenGL calls 

void glScissor( GLint x, Glint y, 
GLint width, Glint height) 

To specify the occlusion tile, which limits the viewport for the 
occlusion test, the glscissor call is used. Within the view- 
port, only the tile, starting at .r,y with width ~vidtl~ and height 
heiyht is considered for the occlusion test. This command is used 
to limit a test to the neighborhood of a certain area. By default, the 
whole viewport is used as occlusion test tile. 

Adding new OpenGL calls 

void glScissors( GLint numTiles, 
GLint *tiles) 

Jncontrastto glscissor, glScissors specifiesmultiple 
tiles as occlusion test tiles. Depending on the occlusion hardware 
below, the various occlusion test tiles are distributed to different 
Occlusion Engines (see Subsection 3.2). 

The parameter ~~urn7’ilr~s and files specify the number of tiles 
and a pointer to an array of nttrttrl’iles tile specifications. Each of 
these array entries contains .I‘, u, ulidth, height of one tile. 

void glOcclusionBuffers( GLsizei *sizes, 
GLuint **buffers) 

Similar to the glSelectBuffer call of OpenGL, buffers 
for non-occlusion hits are specified occlusion tile-wise. All non- 
occlusion hits are stored into the occlusion buffers b~r/frrs of 
the sizes specified in si:es, Minimum size of each occlu- 
sion buffer is tight, due to the minimal requirements of the 
GL-BRIEF-WCLUSION~~~~, which is introduced in the next 
paragraph. 
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Adding new parameters to existing OpenGL calls 

void glGet(...) 

GL-MAX-OCCLUSION-TILES returns the maximal number 
of occlusion tiles. This information is important in case multiple 
occlusion tiles arc used. 

GLint glRenderMode(GLenum mode) 

. GL-BRIEF.-OCCLUSION is used to specify a fast occlu- 
sion mode. In this mode, the number of non-occluded hits 
and the number of projection hits arc returned. Furthermore, 
to provide information on position and size of the various not 
occluded pixels. X,,,,,, . X,,,,, ).. Y,,,,,, , and Y,,,,,,. of the screen 
bounding box, and Z ,,,,,, , and Z,,, ,,., as minimal and maximal 
depth values ofthc non-occlusion hits arc returned. 

. GL-VERBOSE-OCCLUSION. In addition to the features 
of the GL-BRIEF-OCCLUSION mode, a list ofthc actual 
not occluded pixels of the occlusion tiles is returned, up to 
the maximum size of the occlusion buf‘fer, specified with 
qlOcclusionBuffer0. 

If' glRenderMode (GL-RENDER) is called, the respective 
occlusion information is returned into the buffers specified with 
glOcclusionBuf f ers. The syntax depends on the previous 
occlusion mode and enumerates the information tile-wise. If we 
encountered buffer overflows, the number of the respective tilt 
buffers is returned. However, the buffers are still set with non- 
occlusion hits up to its maximum size - which is specified by 
glOcclusionBuf f ers -and terminates with a -I entry. Conse- 
quently, some occlusion measure up to a user controllable limit is 
returned, without completely computing the potential costly occlu- 
sion information. 

Note. similar to the GL-SELECT mode, all occlusion render 
modes do not change the content of the framcbuffer, 

3.2 Hardware-assisted Occlusion Culling 

‘The implementation of the proposed extension to the OpenGL API 
does require a few modification within the OpenGL pipeline. To 
delineate our modifications, we will first give a brief overview of 
the OpenGL pipclinc. 

OpenGL rendering pipeline 

OpcnGL processes graphic data using a pipeline of several distinct 
stages [ 161. In Figure 2, an abstract, high-level block diagram of 
this pipeline is given. Commands cntcr from the left and proceed 
through what can be thought of as functional units for the specific 
operations. Some commands specify the geometry ofobjects, while 
others control how the objects are processed during the various pro- 
cessing stages. 

OpenGL operates in two modes. In immediate mode, all com- 
mands are exccutcd directly when they are stated. Alternatively, 
a Display List can be used, where commands are compiled and 
stored for later execution. 

In contrast to objects specified by vertices, parametric curves and 
surfaces are approximated by the Evaluator unit. Polynomial com- 
mands are evaluated to generate a vertex based description of the 
ob.jects. 

During the next stage, Per Vertex Operations and Primitive 
Assembly, OpenGL processes geometric primitives. These are 
points, line segments, and polygons, all of which are described by 

b Display List 

OpenCL 
commands 

I + Evaluator + Per Vertex Opcratlons 
Primitive Assembly 

TextureMemory 

t 

1-4 Framebuffer 1 
I I 

Figure 2: Schematic of the OpenGL rendering pipeline. OccU dc- 
notes where to fit in the proposed Occlusion Unit. 

vertices. The vertices of the primitives are transformed and illumi- 
nated. Furthermore, the primitives are clipped to the viewport in 
preparation to the next stage. 

The Rasterization unit produces framebuffer addresses for the 
rasterizing of the primitives. It interpolates associated values using 
two-dimensional descriptions of points, line segments, or polygons. 
The resulting fragments arc then fed into the last stage, the Per 
Fragment Operations. 

This stage performs the final operations on the data before the 
fragtncnts arc stored as pixels in the framebuffer. Since the frame- 
buffer update depends on some conditions, some tests which evalu- 
ate arriving and previously stored z-values (for z-buffering) have to 
be carried out. Also, blending of incoming pixel colors with stored 
colors, as well as masking and other logical operations on pixel 
values arc done in this stage of the pipeline. 

Input can be in the form of pixels rather than vertices to describe 
two dimensional image data. This data skips the first stage of pro- 
cessing described above. Instead, it processes data as pixels in the 
Pixel Operations stage. The resulting pixels of this stage are either 
stored in Texture Memory, for use in the Rasterization stage, or 
merged directly into the Framebuffer just as if they were generated 
from geometric data. 

The New Occlusion Unit 

Many per fragment operations exist in the current OpenGL rcnder- 
ing pipeline. Some of the most important are scissoring, alpha test, 
stencil test, and depth buffer test, as shown in Figure 3. 

Testing for occlusion is a “per fragment” operation since every 
pixel has to be tested. Therefore, our Occlusion Unit is part of the 
functional Per Fragment Operations block as illustrated in Figure 
2. 

WC differentiate between the Occlusion Unit (OccU), which is 
logically responsible for the overall occlusion, and the Occlusion 
Engine, which is the actual implementation of the Occlusion Unit. 
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Figure 3: Per Fragment Operations and Framebuffer. 

In order to accclcratc the processing of multiple tiles, the Occlusion 
Engine can be replicated within the Occlusion Unit. All Occlusion 
Engines of the Occlusion Unit are synchronized at the Occlusion 
Control (Occll Control). 

To enable our proposed Occlusion IJnit, we need to provide the 
unit with the .I’, !I screen space address of the fragment, its depth 
value :. and the write cnablc signal of the depth buffer test, which 
is used to write and update the framebuffer with the fragment which 
IS closer than Ihc so f&r stored t’ragmcnt. Thercfwc, we placed the 
Occlusion Unit behind the Depth Buffer Test unit, as it is demon- 
strated in Figure 3. 

The Occlusion Unit tests the .I’, y screen space address of the 
fragment against the user defined occlusion tile. If the fragment 
rcsidcs within the tilt. the projection hit counter (PHC) is incrc- 
mcntcd. Further. the non-occlusion hit counter (NOHC‘) is in- 
crcascd, if the depth huffcr test was successful, which signifies the 
f’rnpmcnt contributes to the framcbuffcr. To trigger the increment of 
the non-occlusion hit counter, WC LISC: an AND operation. Besides 
increasing hit counters, WC test whether the screen bounding box 
defined by the already found non-occlusion hits is increased due to 
the newly found hit. So far, the list of hits has yet not hcen up- 
dated. As long as the number of hits is smaller than the provided 
cntrics of the list, the .r, !, coordinates of the fragments are stored in 
the occlusion buffers which resides in main memory. To send data 
from the Occlusion Unit to the main memory, the OccU Control is 
introduced. This unit operates similar to Selection Control of the 
OpcnGL selection mode. Its purpose is to synchronize memory ac- 
ccss of the Occlusion linit in case that multiple Occlusion Engines 

to Framebuffer 

i 1 LJpdatc tcff,, 

Figure 4: Schcmatical description of one Occlusion Engine 

detect non-occlusion hits. 
A schematic overview of an Occlusion Engine is given in Figure 

4. Note, the Occlusion Engine shown in this Figure illustrates the 
schematic structure necessary to test for a user defined occlusion 
tile. Since the user can instantiate multiple tilts, e.g. a tile hicrar- 
thy, the Occlusion Engine has to he capable of updating all by the 
user instantiated tiles. This can he accelerated by assigning the tiles 
to multiple Occlusion Engines, using a round robin strategy. 

4 Implementing the Occlusion Unit on 
two different Architectures 

In this Section, we investigate the integration of our proposal in 
two existing architectures. We use for this two well known and 
described architectures of Silicon Graphics (see [ 13, I I]). 

The SGI 02 is an example for a medium performance graphics 
pipeline, which is comparable to many current PC graphics accelcr- 
ators. It has a single rasterizing unit and a monolithic fi-amehuffcr. 
In Figure 5, WC show details of the Memory and Rendering En- 
gine of the SGI Oz. 

This unit is connected to previous pipeline stages and to the main 
memory of the system. Its main part is the Pixel Pipeline, which 
performs all OpenGL rasterization, texturing, and per-fragment op- 
crations. Since no dedicated framebuffer is used, this implemen- 
tation of the OpenGL pipeline uses an extensive pre-fetching algo- 
rithm to hide memory latency. The framebuffer itself is located in 
the main memory of the system. 

To integrate our proposed extension, we need to place the 
Occlusion Unit into the Pixel Pipeline, where all the information 
ncccssary for the occlusion test is present. Address information 
is provided by the Rasterizer, while the write enable signal of 
the depth buffer test is provided by the Depth/Stencil Pipeline. 
Each Occlusion Engine which processes multiple tiles introduces 
additional cycles for each further tilt. Since this is the case for 
OpenGL light sources too, we do not consider this as a serious 
drawback for mid-range graphics hardware. 
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Figure 5: Memory and Rcndcring Engine of a SGI 02 including 
Occlusion Unit. 

the 

In contrast to the SGI 02, the InfiniteReality system is used as 
exponent for a high end graphics system. Its pipeline has a highly 
parallel architccturc, containing multiple rasterizing units and an 
intcrlcaved and distributed framebuffer 1131, as it is illustrated in 
Figure 6. 

The pixel operating part of the system is composed of the so 
called Raster Memory Boards. Each board has one rastcrizcr, 
called Fragment Generator, and an interleaved framebuffer which 
is accessible via special interfaces, the Image Engines. 

Since our extension computes occlusion on a pixel basis, our Oc- 
clusion Units need to be integrated at the Image Engine level. In all 
Occlusion Units, Occlusion Engines are configured in the same way 
as their respective occlusion tilt of the viewport. Consequently, 
each Occlusion Engine handles only hits of the part of the framc- 
buffer to which its Image Engines belong to. In order to optimize 
occlusion performance, it is desirable to have an Occlusion Engine 
for each occlusion tile. 

The evaluation process for an occlusion test has to respect the 
distributed nature of the system. Therefore, we propose a two 
stage synchronization process. First, the hits of one Raster Mcn- 
ory Board arc synchronized locally. Thereafter, the result of the 
diffcrcnt boards are merged to form one occlusion report. Dur- 
ing the latter synchronization process, detected non-occlusion hits 
which belong to the occlusion tile which is partioned between dif- 
fcrcnt Raster Memory Boards or different Image Engines needs to 
bc merged to form a single occlusion report for this tile. This pro- 
cess can bc either implemcntcd in hardware or software. 

The integration ofour Occlusion Unit has been shown on two differ- 
cnt graphic architectures. For a rather simple system as the 331 02. 
the Occlusion Unit can easily be integrated into the Pixel Pipeline. 
Although the integration into a InfiniteReality system is much more 
complicated, it is still feasible and not more difficult than the or- 
ganization of the Image Engines themselves. Nevertheless, some 
latency will bc Introduced, due to necessary synchronization. 

graphic primitives 

Figure 6: Schematic for implementing the Occlusion Unit on an 
InfiniteReality system. 

5 Further Applications 

Adaptive Occlusion Culling 

Adaptive occlusion culling was first proposed by Zhang in [ 171. 
The basic idea is that objects which only have a small number of not 
occluded pixels have a small visual contribution to the final image. 
Thcrcfore, if those ob.jccts are skipped, the visual impression of the 
rendered sccnc will not be jeopardized. 

To quantify the contribution of the not occluded pixels of’ nn 
object to the final image, we need to know their portion of the 
complete scan-converted object. This data is provided by the non- 
occlusion hits and the prqjection hits (pixels of the complctc scan- 
converted ob.jcct). Example: IE only five pixels of 1000 stall- 
converted pixels of an object are not occluded, they might not have 
a significant contribution to the final image. Therefore, they can bc 
skipped and vnluable render time will be reduced (set Figure IO). 

However, this feature needs to be used carefully in case the scene 
is very sparse, Furthermore, few pixels can have a strong impact on 
dynamic scenes. Skipping those pixels might result in flickering. 
On the other hand, missing interactivity usually has a stronger vi- 
sual impact than flickering. 

Support for Collision Detection 

In virtual environments, it is a non trivial task to detect collisions 
of the user with objects. The process is highly demanding, since it 
requires a collision test with all objects. Currently, collision can bc 
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detected in VRML by introducing collision nodes. Each time the 
user changes its position, a collision test is applied to all collision 
nodes. Due to the time consuming collision test, the frame rate 
drops and people tend to switch the collision detection mode off. 

Our proposed extension for OpenGL can be used for this purpose 
to a certain degree. For a given position of the user, an image of 
the scene is gcncrated. A mostly valid assumption is that the user 
changes its position and direction incrementally. Hence, in case 
the user heads in viewing direction - c.g. straight. straight-left - a 
subdivision of screen space can be determined which rcprcscnts the 
posaiblc collision areas within the viewport. This is illustrated in 
Figure 7 

stratght- 
up-right 

stralgh-right 

straipht- 
down-right 

Figure 7: Subdivision of screen space into areas which correspond 
to the heading direction of the user. 

To check whether a certain step will cause a collision, a cus- 
tomized view-frustum covering the check area of the screen is rcn- 
dercd in GLBRIEF-OCCLUSION mode. The far plane of this 
view-frustum depends on the step size of the user, near plant is 
idcntical to the view plant. Information whether a step can bc 
taken without causing a collision is indicated by the non-occlusion 
hits and the projection hits. If the number of non-occlusion hits 
is different from the number of projection hits, some pixels of the 
customized view-frustum are occluded, which means that a colli- 
sion can be expected. In contrast to our occlusion test, backfacc 
culling must be disabled, in order to detect intersections with the 
backfacing polygons of the view-frustum To get mom detailed in- 
formation, screen space can be subdivided further. 

So far. collision detection can only be indicated and depends on 
the given vicwport. Unfortunately, testing backward stepping does 
require two-pass rendering since no image of the scene behind the 
user is available in the framebuffer. 

Support for Ray Casting 

One of the results of the GL BRIEF-OCCLUSION and 
GL.-VERBOSE-OCCLUSIONmodes% a list of not occluded pixels 
of the tested subdivision entity. Besides usual statements on occlu- 
sion or non-occlusion of that entity, this information can be used 
to accelerate ray casting in a mixed volume graphics and polygon 
model. Considering a hierarchical ray casting approach, we ren- 
der the subdivision entities in an occlusion mode. All computed 
non-occlusion hits for this entity mark pixels which are not oc- 
cluded. Consequently, these pixels are image plane parts to cast 
rays through, because the content represented by the subdivision 
entity may be still visible. In other words, all pixels without an 
non-occlusion hit are not visible and therefore, rays casted through 
those pixels ofthe image plant have no contribution. 

6 Conclusion and Future Work 

In this paper, we proposed a hardware extension for occlusion 
qucrics. Although. WC focused only on OpenGL, this extension 

can be adapted to other graphic API’s as well. Based on a hicr- 
archical occlusion strategy, first subdivision entities arc rendcrcd 
in a special occlusion mode to determine occlusion of a 3D sccnc. 
Thereafter, the actual scene primitives are rendered with rcspcct to 
the occlusion information of the first step. 

Aspects of the OpenGL API and hardware were discussed to 
specify an Occlusion Unit as rather small extension to the OpenGL 
pipeline. This Occlusion Unit is located in the “Per Fragment Op- 
erations” stage of the pipeline to catch write enable signals of the 
depth buffer test. 

Depending on the actual number of Occlusion Engines in the 
rendering pipeline, multiple occlusion tilts, which subdivide the 
vicwport, can bc processed in parallel. 

Future work will focus on an implementation of this unit in hard- 
ware, to determine the real-time occlusion query performance. Fur- 
thcrmorc, advanced features such as occlusion support for ray cast- 
ing in a mixed polygonivolumc model will be cxamincd. 
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Figure I : City model is rendered using a hierarchical  occlusion  strategy: Bounding  volumes  are rendered in an occlusion  mode to determine
occlusion.  All  yellow bounding  volumes  are found occluded;  only 0.2% of the geometry  is actually rendered.  (a) Visitor’s perspective. (b)
Bird’s  perspective of visitor’s  view

Forest  Scene

(a)

Figure 2: Forest  Scene - (a) Front view. (b) Overview - all culled bounding  volumes are marked yellow.

Forst Scene:  Up Close and  Personal

Figure 3: For exploiting  ratios of projections  and occlusion  hits, adaptive  occlusion  culling  can bc used.  The forest scent is rendered using
adaptlvc occlusion  culling,  where blocks are considered occluded if only a small number of occlusion  hits is found (with respects  to the
number of projection hits). Alley of trees - bounding  volumes  of culled  objects arc marked yellow: (a) Adaptive Occlusion  culling. (b)
Occlusion  culling.
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