Performance Issues of a Distributed Frame Buffer
on a Multicomputer

Bin Wei, Douglas W. Clark, Edward W. Felten, and Kai Li*
Princeton University

Gordon Stoll
Stanford University

Abstract b DFB
A multiple-port, distributed frame buffer has been recently pro-
posed to support parailel rendering on multicomputers. This pa- -1 SubFB
per describes an implementation of such a distributed frame buffer
for the Intel Paragon routing network, and reports its performance P ° ;
results. We have conducted several experiments with the system o 000
we have developed. Our results indicate that placing a multiple- : °
port, distributed frame buffer directly on the host internal routing .
network can provide high throughput to eliminate the bottleneck of ~ SubFB
merging a final image from multiple processors to a frame buffer. P
This architectural approach can also effectively support image com-
position for sort-last. The synchronization algorithm we have de-
veloped requires only one-way communication and minimizes re- Figure 1: High-level architecture of a multiple-port Distributed

ceive overhead for message passing to the frame buffer.

CR Categories: B.4.3 [Input/Output]: Subsystems—Parallel /O;
[.3.1 [Computer Graphics]: Hardware Architecture—Parallel Pro-
cessing; C.4 [Performance of Systems]: Design Studies.

Keywords: multiple-port distributed frame buffer, parallel render-
ing, multicomputers, synchronization.

1 Introduction

Many large computing problems require not only high computa-
tional power and huge memory resources to perform the compu-
tations, but also need interactive visualization capabilities in order
to examine and validate their results. Multicomputers provide the
computation power and memory resources needed for large-scale
computing and simulations, but lack adequate support for real-time
rendering. The traditional approach to this problem is to perform
the computation on a multicomputer and store the resultant data sets
on disks, which are then transferred to a high-performance graphics
machine for retrieving and rendering. This approach requires very
high I/O performance and it is difficult to get visual feedback in-
teractively. Furthermore, it requires the graphics machine to have

* {bw,doug,felten,li} @cs.princeton.edu, 35 Olden Street, Princeton, NJ
08544
t gws @graphics.stanford.edu, Gates Hall 3B, Stanford, CA 94395

Pernission to make digital or hard copies of all or part of this work for
personal or classroom use s granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1998 Workshop on Graphics Hardware Lisbon Portugal
Copynglht ACM 1998 1-38113-097-x/98/8...$5.00

87

Frame Buffer, composed of several Sub Frame Buffers that are di-
rectly connected to the routing network.

enough rendering power and memory space to render the huge re-
sultant data sets. For very large problems such as the ASCI simula-
tion problems [3], this approach is not viable.

Another approach is to connect a frame buffer to a multicom-
puter via a high-bandwidth channel such as HiPPI [14], and perform
both computation and parallel rendering on the same machine. Al-
though this approach does not require a separate graphics machine
and avoids storing resultant data sets to disks and then retrieving
them, the HiPPI frame buffer connection forms a performance bot-
tleneck in the parallel rendering pipeline. This is because a paral-
lel renderer generates image pixels on multiple compute nodes and
needs to merge these distributed pixels to the node that has a con-
nection to the frame buffer in order to form a final image. Another
problem is that the single channel frame buffer has a limited frame
rate, especially for high-resolution displays.

A challenging question is what kind of architectural support for
3-D graphics on a multicomputer one should provide in order to
perform interactive visualization. Qur approach is to partition a
frame buffer into several disjoint parts, or subframes, and connnect
each subframe to the routing network directly. Thus an entire
frame buffer has multiple ports on the network which can be ac-
cessed in parallel through the network routing, as shown in Fig-
ure 1. This approach has several advantages over the HiPPI frame
buffer approach. It relieves the bottleneck of merging and transfer-
ring frames through a single channel. It takes advantage of high-
bandwidth routing networks to provide scalable performance. It
also allows the parallel renderer to perform hidden-surface removal
(Z-buffering) at the frame buffer instead of using software sorting
among compute nodes.

On the other hand, this approach also poses several design chal-
lenges and performance issues. In a previous paper we used traces
from the photorealistic RenderMan rendering system [22] to evalu-
ate the potential benefits of using a distributed frame buffer. In this

update datapath (inside one PCB)

network »|network | __|a ® o
interface| |2 i O i O
@ @ 7]
o o o
e e 2
® o) o
= = date =
2 Z 2 enabl 3 RGB
|3l buffer al enable = buffer O
logic
Figure 2: RAIN update datapath.
network conducted several experiments to evaluate the design and perfor-
p 2
port _ Q mance issues on a 64-node Paragon platform. In the rest of the
— 090 g paper, we first describe the system structure and the experimen-
-8 Tl S tal environment. We then present performance analysis and results
> 8 < concerning each of the design and performance issues in turn.
master board T 500
2 RAIN: A Distributed Frame Buffer
network
E)V;I‘t We have implemented a four-port distributed frame buffer for the
__E_» Paragon routing network. The prototype system is called RAIN,
o which stands for a Randomly Addressable Image Bufter on Multi-
o computer’s Networks.
O
o . . -
® 2.1 Design Considerations
network 8 - ,
= The purpose of designing a prototype system is to demonstrate the
port o p
> i idea of a multiple-port frame buffer for general-purpose multicom-
. puters and study performance issues. We considered several factors
. in designing the system:
slave board , ,) .
e High bandwidth. The fundamental goal of a multiple-port
network frame buffer is to provide high bandwidth for frame buffer
" access. High sustained bandwidth is achieved when the frame
po] buffer is able to process incoming data at the rate that the net-
work can generate. This implies that the network interface of
, the frame buffer can handle input data as fast as the rate of
slave board data arrival and that the frame buffer can always have enough
memory to hold the incoming data.

Figure 3: RAIN display datapath.

paper, we extend those discussions and study the real system.
In particular, we are interested in understanding the following
performance issues:

¢ how to provide an efficient synchronization among multiple
compute nodes and frame buffer ports; and

e how to improve parallel rendering with a distributed frame
buffer.

We have designed and implemented a multiple-port, distributed
frame buffer prototype for the Intel Paragon multicomputer. We

88

e Image composition. One of features we considered is to sup-
port hidden surface removal with Z-buffering. This enables
an architecture for sort-last {16] on multicomputers. This ap-
proach takes advantage of the existing high-speed networks to
provide scalable performance needed for image composition.

e Network oriented design. The frame buffer is connected to the
routing network of a multicomputer. If the network is used by
different systems, the frame buffer should be able to support
all of them. In other words, the design is network oriented,
rather than machine oriented. In our implementation, we use
the Intel Paragon mesh-routing network. Because the Prince-
ton SHRIMP {5] uses the same routing network to connect
commodity PCs together, the frame buffer can also be used
for SHRIMP.

In addtion, our design is based on simplicity. Since the hardware
design is from the scratch, it is important to reduce the complex-
ity of the system design and make implementation feasible with the
constraints of time and resources. The goal is to investigate and val-
idate the methodology of placing a multiple-port, distributed frame
buffer directly on the routing network.

2.2 Features
RAIN has the following features:

e Multiple ports.

e 200MBytes/sec per port

o Double buffering

¢ Pixel update for finished frame transfer.

s Z-buftering

e Subpacket concatenations

o Buffer memory clearing.

e Subframe interleaving.

o True color display of 1280 by 1024 at refresh rates up to 76Hz.

The frame buffer is partitioned into four ports, though the archi-
tecture allows more than four ports. Each port has memory for a
quarter of the screen, which consists of 1280 by 256 pixels. Each
port is implemented with one printed circuit board and occupies one
slot on the Paragon backplane. One of the ports, called the master
port, has the video control to generate analog signals to drive a CRT.
The remaining ports are slave ports. All ports have two buffers for
holding images. One is a “display buffer” used for output to the
screen. The other is an “update buffer” exported to compute nodes
for storing the current rendered image. When a frame is finished,
a synchronization is performed and a compute node tells the frame
buffer to swap buffers. After swapping, the two buffers exchange
their roles for a new frame.

Each port can accept pixel data, either RGB color or RGB
color with depth Z, and write to its local memory at the speed of
200MBytes/sec, the maximum data rate provided by the network
interface of the backplane. To reduce the communication overhead,
multiple packets can be concatenated into one network packet, and
the frame buffer will automatically decompose the multiple packets
and put the pixels into the corresponding memory locations. There
are 8 modes of Z comparisons to perform Z-buffering. The mode
can be set by the application using the frame buffer.

RAIN can also clear its frame buffer memory to specified back-
ground values. The clearing is performed at all memory modules
in parallel. The background values, both RGB color and depth Z
values, can be set by a host processor on a per frame basis.

The mapping of the port memory to the screen can be interleaved
in units of horizontal scanlines. The number of consecutive scan-
lines coming from one port memory can be 2* for i = 8,7, , 1.

2.3 Datapath

Because the frame buffer is used for both update and display at the
same time, there are two datapaths in the RAIN system: update
datapath and display datapath.

The update datapath consists of four pipeline stages: interface
control, Z buffer, write enable logic, and RGB buffer, as shown
in Figure 2. All four frame buffer boards use the identical update
datapath. Only the master board has the video control and output
circuitry assembled.

89

Figure 4: PCB of the master port. Network interface is at the right
side. Video control is at the upper left corner.

Figure 5: The four-port frame buffer (connected by two sets of rib-
bon cables) in a Paragon cabinet. The black cable is RGB video
output.

The interface control is the logic to process incoming packets
and transfer data to memory for updates accordingly. It consists
of an Intel Network Interface Chip (NIC) and a Xilinx FPGA. The
NIC Chip is a standard-cell ASIC that was designed to interface a
router on the backplane to a 64-bit processor bus {24].

The Xilinx FPGA controls the access to the NIC for incoming
packets from the network. It checks if there is a complete packet in
the NIC or the amount of incoming data at the NIC reaches a thresh-
old'. It then reads data out of the NIC, interprets header informa-
tion, and transfers data to the following pipeline stages as needed.
The internal logic in the FPGA is a synchronous state machine.
Data coming out of the FPGA is 64 bits wide, containing two RGB
values (24 4 24), one RGB and one Z values (24 + 32), or two Z
values (32 + 32).

Because the incoming data from the network is 8-byte aligned
and pixel can start at any memory location, multiplexing and
word enabling logic is needed throughout the pipeline stages to
route/combine data to the right memory modules.

The Z buffer memory is a place to hold the depth information
for every pixel in the update buffer. It can perform a read and a
write on different memory locations in one cycle. Memory modules
arc arranged so that there is no conflict for a read of the current Z
location and a possible write of the previous Z location.

The update enable logic takes another pipeline stage to deter-
mine whether an update of Z buffer and RGB buffer needs to be
performed for the current pixel. The conditional updates on the val-
ues of Z can be programmable in 8 options: less than, less-than-or
equal, greater than, greater-than-or equal, equal, always, and never.

INIC has a 2KB incoming FIFO

eod 63 0 __
0 type l addr l size
: subpacket
M data
| 0 |
O \ L XX}
Ay
. v
. . \ data
A
| O | Ye padding
0
: || subpacket
1

Figure 6: Packet format.

Two other signals, Z_write_enable and RGB_write_enable, can be
used to disable either Z or color update even if the comparison is
successful.

The RGB buffer is in the final stage of the update pipeline. It
has two access ports: a write port for data from the update pipeline,
and a read port for data to the video control circuitry. For an RGBZ
unsorted pixel, the updates of the Z buffer and RGB buffer memory
depend on the output of the write enable logic from the previous
pipeline stage. The updates are performed at the same pipeline cy-
cle. RGB pixels go through the same pipeline stages as RGBZ pix-
els, and unconditionally write the color values to the RGB update
buffer (RGB buffer 0 in Figure 2). In one cycle, there can be one
RGBZ pixel or two RGB pixels processed.

The display datapath consists of display memories, a video con-
trol and a RAMDAC, as shown in Figure 3. The video control part
is to collect pixel data from the display buffers of all the ports. It
also contains a video clock generator which provides the clock that
all video control timing is derived from, and video timing circuitry
which generates sync and blank signals for a monitor. A RAMDAC
is used to handle digital to analog conversion.

Figure 4 is a picture of the printed circuit board of the mas-
ter port. A case when all frame buffer boards are plugged into a
Paragon cabinet is shown in Figure 5.

2.4 Packet Format

Because message passing in Paragon involves in significant soft-
ware overhead, concatenating multiple packets into one network
packet with one network send request can tolerate latency. Thus a
generic network packet for the RAIN frame buffer packet consists
of one or more subpackets, as shown in Figure 6.

Each subpacket has the same format: a 64-bit header, data of
variable length, and a 64-bit padding for the tail. The header con-
tains the packet type, the memory address of the pixel in the sub-
packet if applicable, and the packet size. The size information can
be used to determine the boundary of each individual subpacket, so
that the header of the succeeding subpacket can be identified. This
packet format supports both Paragon and SHRIMP to communicate
with the RAIN frame buffer.

Because the actual data can be any number of 32-bit words and a
network packet is always 64-bit aligned, a 64-bit padding is used
to provide the adjustment. If the t bit in the padding field is 1
(shown in Figure 6), the low 32 bits of the padding contain valid
data; otherwise the padding contains no valid data and is ignored
when receiving it at the frame buffer.

The ‘eod’ is a separate signal indicating the end of the packet is
reached. Thus when eod is set, the incoming 64-bit data is the last
64 bits of the current network packet.

90

2.5 System Support and Graphics Library

We added a new system call to the OSF operating system for the
Paragon multicomputer to provide a simple, protected communica-
tion mechanism for compute nodes to send data and commands to
the distributed frame buffer. Unlike the NX message-passing mech-
anism, which uses a debit-credit algorithm to manage send and re-
ceive buffers [19], the simple communication mechanism for the
distributed frame buffer manages no buffers. This is because the
distributed frame buffer injects no messages into the routing net-
work and consumes inputs at the data transfer rate of the routing
network.

With this simple message-passing mechanism, we designed and
implemented a low-level library for graphics libraries or user pro-
grams to conveniently access the distributed frame buffer. The li-
brary consists of four types of calls:

e Data Transfer:

Provide synchronous and asynchronous messaging for com-
pute nodes to transfer pixel data (RGB or RGBZ) to a frame
buffer port. We can concatenate multiple packets into a one
larger packet and make one call to send all.

e Control:

Set control registers for different control modes and submit
requests for buffer swapping. A swapping request will auto-
matically perform a synchronization among compute nodes
and frame buffer ports.

¢ Flushing:

Flush the network links along the paths that a packet went
through. The frame buffer will ignore the flushing packets.

e Miscellaneous:

Includes auxiliary functions such as initialization and termi-
nation.

Instead of developing a graphics rendering library for the frame
buffer from scratch, we modified a portable Parallel Graphics Li-
brary (PGL) [7] by Tom Crockett at the Institute for Computer Ap-
plications in Science and Engineering at the NASA Langley Re-
search Center. PGL is a parallel graphics library for distributed
memory applications, available on Intel Paragon and IBM SP2. It
includes basic functionality for describing, rendering, and display-
ing three-dimensional scenes.

We have done three main modifications to PGL:

e Tune several time-critical procedures to improve the rendering
performance by taking advantage of the graphics pipeline and
dual instruction mode of the Intel 1860 processors. The tuning
effort was mostly through assembly coding in order to use
the special features on the i860 processors. We were able to
improve the original rendering performance on a uniprocessor
by a factor of between 2 and 5.

e Modity PGL to perform sort-middle with the RAIN frame
buffer. The original PGL merges finished pixels to form a
frame and then sends the frame data through stream sockets to
a frame buffer on a workstation. We add a new display format
to PGL and send finished pixels (RGB) to the RAIN frame
buffer directly. The rasterization directly uses the graphics
pipeline of 1860 graphics pipeline for scan conversion and Z-
buffering through hand-written assembly code.

¢ Modify PGL to perform sort-last with the RAIN frame buffer.
When rasterizing horizontal spans, we store both RGB and
Z values for the current span to the send buffer according

to which port the span falls in. Multiple spans are concate-
nated and sent to the corresponding frame buffer port when
the buffer is filled up. Upon receiving RGBZ data, the RAIN
frame buffer performs Z-buffering for hidden-surface removal
automatically in the update datapath. The rasterization pro-
cedure is also modified with assembly code. The original
PGL performs Z-buffering in software at each processors’ lo-
cal memory.

These modifications allow us to conduct various experiments to
study performance issues.

2.6 Experimental Environment

The platform used in our experiments is a Paragon multicomputer
with 64 compute nodes configured in a 16 x 4 2-D mesh. The four
frame buffer ports are placed in a 2 x 2 mesh on the right side of
the mesh of the compute nodes because of the available empty slots
in the machine. Each port contributes 256 consecutive scanlines of
the screen. The operating system is OSF version R1.4.3b with our
modifications to access the distributed frame buffer.

We used four applications to drive the modified PGL in our ex-
periments. The first is a triangle application from the PGL package.
The application generates a list of randomly oriented triangles in a
unit cube, and renders and displays them, as shown in Figure 7. By
changing the number of triangles, we can change the complexity of
the scene. We ran the program for two different scenes.

Another application captures a typical way of using PGL for vi-
sualization. The application generates a 2-D triangular grid with a
special Z coordinate, forming spheres in 3-D, as shown in Figure 8.
Selecting different numbers of grid cells in each direction will af-
fect the number and the size of triangles. We ran the program with
two different grid sizes.

Figure 7: Random triangles.

Table | shows the number of triangles and the average size of
triangles in pixels of the four scenes at display resolution 1280 x
1024.

Scenes Tri-1 | Tn-1II | Grid-l | Gnd-1I
Triangles 8192 | 16384 [5800 9800
Avg. Size || 7872 | 79.27 | 239.45 | 102.95

Table 1: Triangle information of four scenes.

In the following sections, we use these applications for dis-
cussing the synchronization issue and the contributions of the dis-
tributed frame butfer for parallel rendering.

91

Figure 8: Grids.

3 Synchronization

An important design issue is the synchronization among compute
nodes and the multiple-port, distributed frame buffer. Most frame
buffer control commands require synchronization. For example, to
swap buffers, one must make sure that all pixels to be displayed
have arrived at the frame buffer memory. The synchronization al-
gorithm [25] we have presented takes advantage of the property [8]
of deterministic routing in the Paragon network. It is similar to the
network flushing techniques used for synchronizing a snapshot of
computations [{5]. The implementation of the synchronization on
RAIN is slightly different from [25] in how to handle the notifica-
tions among compute nodes. The only hardware support needed for
synchronization is to have the distributed frame buffer recognize a
special “flush™ packet and drop it when it arrives.

The critical information for synchronization is that compute
nodes as senders need to know that data they have sent to the frame
buffer has all arrived at the destinations. A possible way to sofve
the synchronization problem is to let the hardware inform compute
nodes about its state. This method can be efficient but very com-
plex for two reasons. First, the frame buffer needs to know which
compute nodes are communicating with the frame buffer, since it is
common that an application uses only a fraction of the multicom-
puter. Second, the frame buffer needs to have reserved memory
buffers on compute nodes if it sends them messages. If it uses the
same messaging mechanism as the compute nodesm, it needs to
understand the buffer management and flow control algorithms.

We choose 1o have a simple distributed frame buffer design and
implement synchronization in software. The frame buffer can only
receive data. This one-way communication requirement makes the
frame buffer interface simple and clean as we have seen in the Sec-
tion 2.

Because routing on the Paragon network is wormhole and
dimension-deterministic, packet buffering in the network is lim-
ited and the packet routing path from a sender to a receiver is pre-
dictable.

Consider a packet which is big enough that it can cover all the
network links along the path from a sender to a receiver. If the tail
of the packet is leaves the sender’s outgoing FIFO, the header of the
packet must have arrived at the receiver’s incoming FIFO because
the network has no place to hold the entire packet. Thus all data
previously blocked along the path has been driven into the receiver.

Our synchronization algorithm uses this property to flush pixel
data out of the network with dummy “flushing” messages of the
appropriate size sent from compute nodes to the frame buffer. Qur
synchronization selects a proper subset of the compute nodes (flush
nodes) such that the paths for these nodes to the frame buffer ports
will cover all the possible links from a compute node to a frame

1. horizontal flush request notification,
2. network flush;

3. vertical flush finish notification;
synchronization message;

vertical sync finish notification;

o w s

horizontal sync finish notification.

Figure 9: The synchronization algorithm.

buffer port. Because of the X-Y routing policy, the flush nodes are
the end nodes along the X dimension.

When compute nodes need synchronization with the frame
buffer, they first notify the flush nodes. These flush nodes send
flush packets to the frame buffer ports. After sending flush packets,
the flush nodes can notify a particular node, the coordinator. When
this coordinator receives the notifications from all the flush nodes,
it knows that all valid data sent from all compute nodes prior to
the synchronization must have arrived at the frame buffer. It then
sends global control messages (e.g. swapping requests) to the frame
buffer ports, followed by flush packets to make sure the synchro-
nization messages will get into the destinations. After sending the
synchronization messages with flush packets, the coordinator sends
notification messages to inform all the rest of compute nodes that
the synchronization is finished.

Thus this algorithm maintains the invariant that a synchroniza-
tion message is always received by the frame buffer after any data
sent prior to the synchronization and before any data sent after the
synchronization. There is no deadlock as long as frame buffer ports
can always receive data from the network, which is satisfied by the
one-way communication interface of the frame buffer.

Figure 9 is the list of the steps for the synchronization. For the
X-Y routing, the X axis is in the horizontal direction, the Y axis is
in the vertical direction.

Step 1 starts the synchronization process by requesting a network
flush. This is different from [25] in that we are not using a global
two-way synchronization for notifications among compute nodes.
Step 2 performs the network flush. Step 3 notifies the coordinator
for synchronization. The coordinator sends synchronization mes-
sages in Step 4. This is control information concatenated with flush
subpackets. Step 5 and Step 6 are used to inform all the compute
nodes that the synchronization is over.

Both horizontal and vertical notifications are one-dimensional
many-to-one short packets. For these short packets, merging in a
binary tree fashion performs better than merging in a linear fashion.

The synchronization cost consists of two parts: notifications and
flushing of network links. If the mesh of compute nodes is R rows
and C columns, and the frame buffer has M ports, the time for
synchronization is O(log C +log R+ M), or O(log N+ M), where
N is the number of the compute nodes.

Besides the synchronization operation, it is also important that
when compute nodes start sending the pixel data of a new im-
age to the frame buffer, they must know if the previous display
buffer and update buffer have been swapped. Instead of waiting
for a whole frame time (conservatively) to elapse during the syn-
chronization, each node remembers the time when synchronization
was performed. When it starts sending the first packet to the frame
buffer, it checks to see if enough time has been elapsed after the
swap request was issued. If the elapsed time is not enough, it will
then wait. The deferred wait can start the rendering of a new frame
at each compute node without waiting for the frame buffer to finish
the swapping operation.

92

Table 2 shows the elapsed time spent on synchronization with
four frame buffer ports in the four scenes.

[#ofnodes | 8 [16 | 32 | 64 |
Tri-1 482 | 606 | 746 | 865
Tri-11 481 | 645 | 815 | 939
Grid-1 455 | 613 | 760 | 893
Grid-11 504 | 611 | 819 | 893

Table 2: Synchronization time in ps of the four scenes.

As the number of compute nodes increases, the synchronization
cost increases because of more notification and flush packets. As
notifications dominate the total cost, the synchronization cost in-
creases as the logarithm of the number of compute nodes.

The synchronization time is less than 1 ms when the number of
compute nodes is 64. For 30 frames per second, this is 3.3% of the
frame time.

4 Performance for Screen Subdivision

To understand the contribution of the distributed frame buffer to
parallel rendering, there are two cases we need to consider for the
distributed frame buffer: screen subdivision and image composi-
tion. In screen subdivision, a final image needs to be merged into
a frame buffer. This approach happens when the rendering method
is sort-first or sort-middle [16]. In image composition, each rasteri-
zation processor processes all its primitives. A step of compositing
all these partial full-screen images is needed to form a final im-
age at the frame buffer based on visibility. This approach happens
when the rendering method is sort-last. Depending on whether it
is sort-last sparse or sort-last full, each rasterization processor ei-
ther outputs the rasterized primitives or its partially composited full
screen for the composition at the frame buffer.

For comparison, consider the case when a HiPPI frame buffer
is attached to the system through an /O node in the performance
analysis.

Table 3 lists the terms that we are going use in the following sec-
tions for the discussion of the performance issues of the distributed
frame buffer for parallel rendering.

4.1

Merging a final image through an I/O node is a many-to-one mes-
sage passing. It has two communication properties:

Image Merging through an I/O Node

e Data is sent in parallel from multiple senders, but received in
serial at the one receiver.

Definition
The resolution of the screen, in pixels.
The number of processors.
The number of frame buffer ports.
n The number of primitives.
a The average size, in pixels, of a primitive.
c The size of a finished pixel in bytes.
z The size of an unsorted pixel in bytes.
B, ..y, (s) The bandwidth for receiving packets of size S.
Bygend, sy The bandwidth of the external link for size S.
Bysysy The bandwidth of sending to one port packets of size S.

Term
A

N

M

Table 3: Terms used in performance evaluation

¢ Data from each processor has the same size.

Although the time spent for the communication is the maximum
of the time spent on senders, receivers, and the network, because
multiple senders send packets in parallel and there is only one re-
ceiver, the receiver becomes a bottleneck for the whole communi-
cation process.

Since the packet size is the same over the multiple senders, the
total communication cost can be estimated if the effective band-
width achieved at the receiver to handle the incoming packets of
this particular size is known. Thus the total data divided by the
bandwidth would be the time spent on the many-to-one message
passing.

The merging of a final image to a frame buffer through an I/O
node takes two steps: merging to an /O node and transferring to
a frame buffer. The two steps have to be serialized because of one
memory system on the [/O node. As the total data is the product of
the screen resolution and bytes per pixel, the time is:

Axece
Biena, (s2)

Axc

T =
Brecui(Sl)

where 51 = A x ¢/Nand S2 =4 x c.

Considering a screen of 1280 x 1024 with each pixel is repre-
sented in four bytes, the total data, A x ¢, is SMBytes. For a 64-node
Intel Paragon, each processor has data of

Axce
N

to send, so the packet size is

5M
— =80K
64 8
The effective bandwidth at the receiver for this packet size is
75MBytes/sec for Paragon with the kernel R1.4.4a. All data will
be then combined together and sent to a HiPPI frame buffer. The
unblocked data rate is 96Mbytes/sec [14].
Thus the time is
5M 5M
T=—"+—
75 96
This overhead to merge and transfer a finished image to a frame
buffer is over the time budget for achieving real time frame rate?.
As the number of processors increases, the merging overhead is not
decreasing and the percentage time spent display for each frame is
increasing.

= 70 + 55 = 125ms

4.2

For a multiple-port, distributed frame buffer on the network, each
frame buffer port receives the portion of data corresponding to its
region of the screen. We assume that there are more processors
than the number of frame buffer ports so that receivers become bot-
tlenecks of the communication process as in the arguments of the
previous section.

If each processor can send data directly to the frame buffer, the
time taken for merging a final image is:

image Merging with a DFB

T = Axce/M
Bagys1y

Considering the 64-node Paragon with a four-port distributed
frame buffer. Each port receives a quarter of the final frame
data which is 5M /4. Each compute node has 5M/64 = 80K

1By real time, we mean 30 frames per second.

93

data to send to the frame buffer. One frame buffer port provides
188MBytes/sec effective bandwidth to receive data coming from
all 64 nodes. The communication time is:

5M/4 _
188

In this case, transferring a finished frame to the frame buffer is
well below the time budget for the real time frame rate.

T =

4.3 Sort-middle Rendering with RAIN

0.6 —

3 display
M redistribution
3 rasierization
B geometry processing
& buffer clearing
- 0.4
&
@
£
[g
< 02 i‘:
/
/ Y
oy L
0.0 HAAA4 . .
8 16 32 64

number of compute nodes

Figure 10: Sort-middle rendering with RAIN. The four columns in
each group are four scenes (from left to right): Tri-I, Tri-II, Grid-I,
and Grid-II.

We use a sort-middle rendering package to examine the behavior of
the frame buffer for screen subdivision.

Most software-based parallel rendering on multicomputers uses
the sort-middle rendering pipeline. This class of methods dis-
tributes geometry primitives to multiple nodes to perform geometry
processing and then redistributes (or sorts) display primitives to cer-
tain nodes to perform rasterization according to the partitioning of
the screen space.

The original PGL uses the sort-middle approach. Objects from
the applications are distributed among compute nodes. Each com-
pute node traverses the scene structure to transform, light, and clip
locally-defined instances, generating primitives of horizontal spans
to be rasterized. According to the locations of the spans on the
screen, primitives are sent (redistributed) to the appropriate proces-
sor for rasterization.

In other words, each processor is assigned a portion of the screen.
It receives incoming primitives, rasterizes them, and sends the fin-
ished subframe to its corresponding frame buffer port when the dis-
tributed frame buffer is used. For bundling redistribution messages,
each node uses a 64KB buffer. In an N-node application, this buffer
is further divided into N parts of size 64KB/N, where N-1 buffers
are used for sending data to other nodes and one buffer is used for
receiving data. For the N buffers, each is also partitioned into two
units, so that when one unit is used for the network communication,
the other one is still available to the processor to process data.

Figure 10 show the results of the sort-middle rendering with a
four-port frame buffer. The total elapsed time consists of 5 parts:
clearing processor’s local frame buffer memory, geometry process-
ing, rasterization, redistribution, and display for merging image to
the frame buffer.

From Figure 10, we can see that the rendering performance im-
proves as the number of processors increased. The time taken for

image merging to the frame buffer stays stable for different numbers
of the processors. This indicates the message passing time is depen-
dent on the total amount of data and the available bandwidth of the
four ports. In this experiment, the display time is about 17ms, so

th ta handuidth Af tha £
the aggregate bandwidth of the frame buffer is 308MBytes/sec. Be-

cause the frame buffer is placed in a 2 x 2 mesh, the aggregate
bandwidth achieved for four ports is restricted by the less than op-
timal bisection bandwidth.

The percentage of the time spent on display increased as the
number of processors increased. For the scene of 8K triangles, the
display time is 42% of total elapsed time.

5 Performance for Image Composition

In this section, we only consider sort-last sparse for image compo-
sition, in which there is no local Z-buffering at processors. Since
sort-last full needs every processor to send a partially constructed
whole frame to the frame buffer, it is only benefitial if the scene is
very large and complex.

Let’s assume that primitives are evenly distributed and processors
have the same amount of data to send to the frame buffer for image
composition. The total data depends on the scene size and bytes per
unsorted pixel, which is,

Dg=nxaxz

If there is no memory restriction and each processor sends its
final results in one packet, the time taken for the image composition
through an /O node is:

Dsl
Brecvi (S3)
where S3 = Dy /N and 54 = Dy

Consider a screen of 1280 x 1024 with 8 bytes per unsorted pixel.
If a scene consists of 30K primitives and the size of each primitive

is 100 pixels on average, in a 64-node Paragon, the time for sending
unsorted pixels is:

Dsl

T =
Bsende (S4)

30K x 100 x 8 30K x 100 x 8
87 + 96
= 282 + 256 = 538ms
We can see that sort-last approach is less practical for a multi-

computer with a HiPPI frame buffer. The communication cost is
too high to achieve a good frame rate.

T =

5.2

Suppose data is evenly distributed among processors and each pro-
cessor can send data directly to the frame buffer. The time for im-
age composition with a multiple-port, distributed frame buffer be-
comes:

Image Compositing with a DFB

Dy /M

T = —i—
Bysy(ss)

where S5 = Dy /(N x M).
Consider a four-port frame buffer on the 64-node Paragon and
following the same assumption as the previous section, the time is:

30K x 100 x 8/4
188

Since sort-last has more data to be sent to the frame buffer, the
time for image composition can restrict the frame rate when a scene
becomes complex.

T= = 32.7ms

94

5.3 Sort-last Rendering with RAIN

Our distributed frame buffer has the ability to perform hardware
Z-buffering. This ability allows rendering programs to composite
images for hidden-surface removal by sending unsorted pixels to
the frame buffer. We modified PGL to enable sort-last rendering
with RAIN.

To use hardware Z-buffering for sort-last, each node has, for each
frame buffer port, two 8K send buffers so that while the communi-
cation processor is sending packets to the network, there is still a
buffer to put spans in for the compute processor. The total buffer
space on each node is 64KB. After performing geometry processing
and getting horizontal spans rasterized locally, each node will put
the color and Z values into the appropriate send buffer according to

whinh
WIHUIL PUIL Ul Spalt 1ails 1.

be concatenated. When data in a send buffer reaches a threshold,
it will initiate a send request and the data in the buffer will be sent
to the frame buffer. When rasterization is finished for all objects,
all send buffers which still contain spans will be flushed out to the
frame buffer.

M
Multiple spans to the same port will

nort the enan falle 1n

jw! = pixel flush and sync
©3 pixel transfer
0.4 4 03 rasterization
’ @ geometry
I
&
@
£
=]
¥ 024
-3
8
Y
///
0.0 1 T }
8 16 32 64
number of compute nodes
Figure 11: Sort-last rendering with RAIN. The four columns in

each group are four scenes (from left to right): Tri-I, Tri-1I, Grid-I,
and Grid-IL

[#ofnodes | 8 [16 | 32 | 64 |
Tri-1 54 27 15 7
369.9 | 178.1 90.0 399
Tri-I1 102 51 26 13
719.8 | 356.4 | 175.1 80.4
Grid-1 127 64 31 16
904.4 | 450.5 | 220.3 | 106.8
Grid-I1 137 69 34 17
977.5 | 486.6 | 237.7 | 113.9

Table 4: Number of packets (the Ist row in each entry) and total
packet size in KB (the 2nd row) of a node on average to transfer
pixel data to the frame buffer for each of the four scenes in sort-
last.

Figure 11 show the timing of the sort-last rendering. The total
elapsed time consists of 4 parts: geometry processing, rasterization,
transferring unsorted pixels to the frame buffer, and final pixel flush
and synchronization. Since processors do not have to maintain a
local frame buffer in sort-last sparse, there is no buffer clearing op-
eration at the processor. Instead, each frame buffer port clears it

buffer memory upon swapping buffers. This operation is in parallel
with any other processor’s operation.

For sort-last rendering, the rendering performance also improves
as the number of the processors increases. Because we use 8K
buffer for each network packet, data to the frame buffer is diver-
sified in the rendering process. When the number of processors
increases, each processor has less data to send to the frame buffer.

receive data at the maximum n

Twavy ot
dXIHIUII e

Since the frame buffer can always receive data at the
work rate, the total time for pixel transfer to the frame buffer is also
reduced.

Table 4 shows the number of packets and the total packet size of

one node per frame in sort-last rendering.

6 Related Work

Obtaining high bandwidth and low latency for frame buffer access
is always one of the targets for graphics hardware, ranging from
high-end graphics machines, graphics workstations, and graphics
support for PCs.

PixelFlow [17, 11], a high-end graphics machine built with the
knowledge and techniques of its predecessors Pixel-Planes [13, 10,
12], has a dedicated network for image composition to generate the
final image to the frame buffer. PixelFlow also heavily uses en-
hanced memory chips which associates every sample in memory
with some power of computation. These features provide signifi-
cant bandwidth to the frame buffer for image update.

AT&T’s Pixel Machine [20] has a pipeline of pipe nodes and
an array of pixel nodes. The back-end pixel nodes are used for
rasterization and a frame buffer is distributed among them. Pixel
nodes may communicate with their four neighboring processors,
allowing messages to be transferred across the array. Output from
the pipeline of pipe nodes is broadcast to pixel nodes. This is an
architecture for sort-middle rendering.

High-performance rendering engines on graphics workstations,
such as RealityEngine [1] and its successor, InfiniteReality [18],
use, for each raster memory board, tens of Image Engines which
comprise portions of the frame buffer. For higher speed, multiple
raster boards can be configured into the system. With so many im-
age engines, tremendous aggregate bandwidth is available for frame
buffer memory.

3D graphics on PCs [23, 6] uses chunk rendering techniques. In
chunk rendering, a frame buffer is partitioned into multiple tiles,
where each tile can be rendered individually to achieve high perfor-
mance.

Because of the increasing gap between CPU and memory speed,
combining logic with memory into a single chip has recently been
drawn great attention. Examples are FBRAM [9] and Texram [21].
This on-chip connection significantly improves the access to frame
buffer memory.

Using supercomputers for graphics rendering gives parallel ap-
plications a unique opportunity for interactive processing. High
CPU speed and huge memory resources are also what graphics
rendering needs. In the NCUBE/ten [4], 16 graphics nodes are
used, among which a frame buffer is distributed. This approach
provides a general mechanism to access a frame buffer in parallel.
But the system performance suffers from the shortage of memory
and message buffers on the graphics nodes and the limited intercon-
nect for communication and synchronization among these graphics
nodes. A different approach is to put the frame buffer to the main
memory to achieve fast access such as the Stellar Supercomputer
GS1000 [2]. This would slow down the general access to the main
memory and may require additional memory copies to move pixel
data from other areas to the frame buffer.

Our approach is to use minimal hardware support and take ad-
vantage of the high computation power, huge memory, and fast
communication network of existing multicomputers. Exploiting

95

general-purpose muiticomputers for computer graphics also pro-
vides a powerful and flexible platform for diverse rendering meth-
ods.

7 Conclusions

This paper reports experimental results from a four-port distributed
frame buffer we have built on a 64-node Intel Paragon multicom-
puter with a modified parallel rendering library.

Our results show that a multiple-port distributed frame buffer
has several attractive properties. Connecting the distributed frame
buffer directly to the host routing network offers high throughput.
This high throughput is achieved not merely through the aggre-
gation of multiple ports but also because of the negligible receive
overhead of frame buffer ports. The negligible receive overhead is
achicved through one-way message passing which is enabled by the

lel\zhl uliitLauiuvil
tion algorithm provides a simple interface for frame buffer design
and is also efficient.

The multiple-port frame buffer can relieve the bottleneck for
merging final images from multiple compute nodes to a (HiPPI)
frame buffer through an I/O channel for sort-middle rendering. It
also provides an architecture for sort-last rendering and achieves
good performance.

Our experiments have several limitations. First, we have only ex-
perimented with the scan-line based rendering. Tiling has not been
examined for sort-middle rendering. Subpacket concatenations can
be used to support tile-based rendering with the RAIN frame buffer
for efficiency. Second, we have not addressed load balancing issues
and investigated different interleaving factors of the frame buffer for
unbalanced scenes. Third, in the current system, there is no over-
sampling support at the distributed frame buffer. When antialiasing
is taken into consideration, it must be handled by compute nodes.

1 ith na. 170~
algorithm we have developed. The synchroniza

Acknowledgments

We would like to thank Patrick Hanrahan for his initiation of the
project, Tom Crockett of ICASE for providing the PGL source
code and suggestions for modification, Cezary Dubnicki and Yuqun
Chen for the help of implementing the OS support for the RAIN
frame buffer, and Paul Messina, Heidi Lorenz-Wirzba, Chip Chap-
man and Sharon Brunett at the Caltech Center for Advanced Com-
puting Research for their support for the use of Paragon machines.
Thomas Funkhouser read the draft of this paper carefully and pro-
vided many good suggestions.

This project is sponsored in part by the Scalable I/O project
under DARPA grant DABT63-94-C-0049, by DARPA grant
DABT63-92-C-0053 and DA AH04-96-1-0212, and by Intel Corpo-
ration. Ed Felten is supported by NSF National Young Investigator
Award.

References

[1] Kurt Akeley. RealityEngine Graphics. SIGGRAPH’93, Com-
puter Graphics, pages 109-116, 1993.

[2] Brian Apgar, Bret Bersack, and Abranham Mammen. A Dis-
play System for the Stellar Graphics supercomputer model
GS1000. Computer Graphics, 22(4):255-262, July 1988.

[3] ASCL Appliations Overview.

http://www.llnl. gov/asci/applications.

[4] Robert Benner.
Processor Hypercube.

Parallel Graphics Algorithms on a 1024-
In Proc. of the 4th Conference on

{71

[8]

[9

—_—

[10]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

[18]

(19]

Hypercubes, Concurrent Computers, and Applications, pages
133-140, March 1989.

Matthias Augustin Blumrich. Network Interface for Protected
User-Level Communication. PhD thesis, Princeton Univer-
sity, June 1996.

Michael Cox and Narendra Bhandari. Architectural Implica-
tions of Hardware-Accelerated Bucket Rendering on the PC.
In Proc. 1997 Siggraph/Eurographics Workshop on Graphics
Hardware, pages 25-34, August 1997.

Thomas Crockett. Design Considerations for Parallel Graph-
ics Libaraies. In Proc. Intel Supercomputer Users Group
North American Annual Conference, pages 3-14, 1994,

William Dally and Charles Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks. IEEE
Trans. on Computers, C-36(5):547-553, May 1987.

Michael Deering, Stephen Schiapp, and Michael Lavalle.
FBRAM: A New Form of Memory Optimized for 3D Graph-
ics. Computer Graphics, 28(3):167-174, July 1994,

J. Eyles, J Austin, H. Fuchs, T. Greer, and J. Poulton. Pixel-
Planes 4: A Summary. In Advances in Computer Graphics
Hardware 1, pages 138-208. Springer-Verlag, 1988.

J. Eyles, S. Molnar, J. Poulton, T. Greer, A.Lastra, N. Eng-
land, and L. Westover. PixelFlow: The Realization. In Proc.
1997 Siggraph/Eurographics Workshop on Graphics Hard-
ware, pages 57-68, August 1997.

H. Fuchs, J. Poulton, H. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Is-
rael. Pixel-Planes 5: A Heterogeneous Multiprocessor Graph-
ics System Using Processor-Enhanced Memories. Computer
Graphics, 23(3):79-88, July 1989.

Henry Fuchs and John Poulton. Pixel Planes: A VLSI-
Oriented Design for a Raster Graphics Engine. VLSI Design,
2(3):20-28, 1981.

Vineet Kumar. A Host Interface Architecture for HIPPI.
In Proc. Scalable High Performance Computing Conference,
pages 142~149, May 1994.

Kai Li, Jeffrey F. Naughton, and James S. Plank. An Efficient
Checkpointing Method for Multicomputers with Wormhole
Routing. Intl. J. of Parallel Programming, 20(3):159-180,
June 1991.

S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Computer Graph-
ics and Applications, 14(4):23-31, July 1994.

S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Spped
Rendering Using Image Composition. SIGGRAPH 92, Com-
puter Graphics, pages 231-240, July 1992.

J.S. Montrym, D.R. Baum, D.L.Dignam, and C.J.Migdal. In-
finiteReality: A Real-Time Graphics System. SIGGRAPH'97,
Computer Graphics, pages 293-303, August 1997.

Paul Pierce and Greg Rengier. The Paragon Implementation
of the NX Message Passing Interface. In Proc. Scalable High
Performance Computing Conference, pages 184-190, May
1994.

96

[20]

(21]

[22]

(23]

[24]

[25]

Micheal Potmesil and Eric Hoffert. The Pixel Machine: A
Parallel Image Computer. Computer Graphics, 23(3):69-78,
July 1989.

A. Schilling, G. Knittel, and W. Strasser. Texram: A Smart
Memory for Texturing. Computer Graphics and Applications,
15(1):32—41, January 1989.

Gordon Stoll, Bin Wei, Douglas Clark, Edward Felten, Kai Li,
and Patrick Hanrahan. Evaluating Multi-Port Frame Buffer
Designs for a Mesh-Connected Multicomputer. In Proceed-
ings of the 22nd Annual International Symposium on Com-
puter Architecture. (Santa Margherita Ligure, Italy, June 22-
24, 1995), pp. 96-105.

Jay Torborg and James T. Kajiya. Talisman: Commodity Re-
altime 3D Graphics for the PC. SIGGRAPH’96, Computer
Graphics, pages 353-364, August 1996.

Roger Traylor and Dave Dunning. Routing Chip Set for Intel
Paragon Parallel Supercomputer. In Proceedings of Hot Chips
'92 Symposium. (Standford, California, August 9-11, 1992),
[slide] 7.1.1-7.1.3.

Bin Wei, Gordon Stoll, Douglas Clark, Edward Felten, Kai
Li, and Patrick hanrahan. Synchronization for a Multi-Port
Frame Buffer on a Mesh-Connected Multicomputer. Paraliel
Rendering Symposium, pages 8§1-88, October 1995.

