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Abstract 

We present a purullel 2D mesh connected architecture with 
SIML) processing elements. The design allows for real-time 
volume rendering as well as interactive 30 segmentation and 
.1D feature extraction. Thas zs possible because the SIMD 
processing elements are programmable, a feature which also 
ullows the use of many different rendering algorithms. We 
present an algorithm which, with the addition of hardware 
re,sources, provides conflict free access to volume slices along 
any of the three major axes. The volume access conflict 
bus been the main reason why previous similar architectures 
could not perform real-time volume rendering. We present 
the performance of preliminary algorithms on a software 
simulator of the architecture design. 

CR Categories: C.1.2 [Processor Architectures]: Mul- 
t,iple Data Stream .4rchitectures (Multiprocessors)-Single- 
irlst,rllc:tion-streanl, multiple-data-stream processors (SIMD) 
; 1.3.1 [Computer Graphics]: Hardware Architecture- 
Graphics processors, Parallel processing; 1.4.6 [Image Pro- 
c.rssillg And Computer Vision]: Segmentation; 
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1 Introduction 

Real-time and near real-time rendering of volumetric 
tlatasets is finally becoming possible. Recent advances pro- 
vide users with different choices depending on the require- 
ments and resources of the application. Near real-time vol- 
ume rendering systems are now available in software for 
users with access to parallel SMP computers such as the 
SC1 Challenge [27] or multiple processor Intel machines with 
3D graphics accelerator cards [3]. Recent special-purpose 
architccturc> designs that have actually been built include 
VIRIM [13] and VIZARD [22]. For higher quality render- 
ing, real-time performance, and commercial availability, Mit- 
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subishi Electric Research Labs plans to release a PC1 bus 
plug-in card for performing volume rendering [31] which is 
based on Cube-4 [32]. Finally, users everywhere will be able 
to afford to add an accelerator card to their PC which will 
enable them to view their volumetric datasets in real-time. 
This advancement has the potential to greatly increase the 
productivity of scientists, medical professionals and techni- 
cians who analyze three dimensional data. The user will be 
able to interactively explore the volume, adapt the data-to- 
color mapping function, and manipulate other viewing pa- 
rameters to more quickly analyze and interpret their data. 

Now that high quality real-time volume visualization is 
on the horizon, the users will, of course, begin to demand 
more functionality. For example, researchers are already be- 
ginning to explore segmentation of volume data and feature 
extraction. We call this volume processing. If the volumetric 
data is static, it can be pre-processed one time on a general- 
purpose machine and the user can visualize the processed 
datasets. However, if the data is being collected in real-time 
or the user desires to interactively adapt the segmentation 
parameters, general-purpose processors cannot perform this 
process at the desired rate. In fact, it is reported that “seg- 
mentation of volume data will always require a high degree 
of user interaction” [4]. For this reason architectures arc 
needed that will provide, at the least, sub-second runtimes 
for common volume processing algorithms. Meanwhile, pro- 
posed hardware rendering architectures are ASIC pipelines 
for performing volume rendering only. They have not been 
configured to perform such volume processing tasks. 

Segmentation is the process of dividing a volume into two 
subsets, one of which contains all the voxels possessing a 
certain property and the other being the rest of the voxels. 
A simple example of a property is “all voxels whose density 
value are above a certain threshold”. It would be trivial t,o 
compute these two sets. Add the requirement that all of the 
voxels must also be either 6 or 26 connected to some seed 
voxel and it gets more complicated. Now attempt to perform 
this operation robustly on data collected from a noisy sensor 
and it becomes quite a challenge [34]. 

We propose a programmable architecture for performing 
volume processing and viewing that we call PAVLOV -- 
Parallel Array for VoLume processing and Viewing. The 
PAVLOV machine is a two-dimensional array of SIMD --- 
Single Instruction Multiple Data - Processing Elements 
that would operate as a coprocessor for performing vol- 
ume operations and rendering. This architecture is pro- 
grammable for a variety of tasks. In [8] de Boer et al. pre- 
sented lessons which they learned from building and testing 
the first ever operable volume rendering accelerator, VIRIM. 
They reported that the most important feature in the eyes 
of the user was that of segmentation. They went on to state 
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that the main benefit of their system was its flexibility to 
perform various volume rendering algorithms. 

SIMD computer architectures have experienced a decline 
in popularity over the last couple of years, reasons being the 
gCIltTiL1 downswing of massively parallel architectures (most, 
SIMD machines are massively parallel), and SIMD proccss- 
ing elements not taking advantage of the multitude of recent 
work on micro-processors. Since one of the prevailing the- 
ories in most SIMD machine design is to highly replicate 
very simple processing elements, very few contain the com- 
plex processing elements associated with the recent advances 
in niicroproccssor design. Another reason is that SIMD ar- 
chitectures provide a worst-case approach to algorithm per- 
formance instead of an average case approach because, by 
design. they must also work on portions of the dataset that 
don’t require processing. 

Despite this, SIMD machines have been holding ground in 
t,he image processing field. Researchers in image processing 
have discovered that, the advantages of SIMD architectures 

110 synchronization delay and no communication over- 
llt’ild provide tradeoffs and outweigh the disadvantages 
for the t,ypes of fine grain data parallel processing found 
in image processing algorithms and, as we show, volume 
processing. In fact, most recent image processing architec- 
tures are designed either entirely SIMD or with a SIMD 
core for performing the low-level portions of the algorithms 
[l, 12, 6, 5, 18, 21, 241. Volume processing contains many 
of t,hc same inherent low-level features of image processing. 
‘l’hey both contain fine grain data parallelism ~ where algo- 
rithms perform the exact same processing on each and every 
data element ~ and the data is represented as a regular ar- 
ray of scalar data. Furthermore, the processing of each data 
item not only requires minimal information from other data 
items, but also what it, does require is confined to a localized 
neighl~orliood. 

Additionally, some researchers still believe that there is 
a fut,ure for SIMD arrays because they offer the following 
bent:fit,s: 

l SIMD arra,ys, almost by definition, maximize computa- 
tional capability per unit hardware (chip, board, etc.). 

l SIMD arra,ys are inherently easy to build and code. 

l SIMD arrays provide the power of an ASIC implemen- 
tat,ion with the flexibility of a solution on a general- 
purpose machine for many applications (especially ones 
with fine-grain data parallelism) [15]. 

2 Previous SIMD volume rendering Work 

Schroder and Stoll proposed an algorithm for the Connection 
Machine CM2 where the volume is stored one beam per pro- 
ccssi~~g element. However, the inherent latency of the CM2 
limit,ed t,heir performance to 4 frames per second for a 1283 
volunn~ [33]. Yoo et al. presented a method to perform vol- 
ume rendering on the Pixel Planes 5 machine partly utilizing 
the 2D SIMD mesh pixel processors and partly the MIMD 
Graphics Processors [39]. They achieved 20 frames per sec- 
ond for a 128x128~56 volume. Hsu designed a segmented 
Ray Casting approach for the DECmpp SIMD mesh [16]. 
However it, distributed the volume in sub-blocks and only 
achieved 4-5 frames/second. Both Vezina et al. [35] and 
Witt.enbrink and Somani [38] pronosed algorithms for the 
MASPAR MP-1 (a SIMD 8-COUI 2~ ted mesh). Yet, neither 
achieved frame rates better that 2-5 frames per second. All 
of t,llcsc, methods suffered because of the latency inherent 
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Figure 1: System level PAVLOV design. 

in large general-purpose machines. Doggett [9] presented 
a special-purpose architecture with a 2D array of process- 
ing elements for volume rendering. However, his processing 
elements are ASICs, not programmable SIMDs. Also, the 
machine is a shared memory design and the volume data 
flows from a single memory buffer through the array. 

3 PAVLOV Architecture 

We propose a SIMD parallel architecture for performing vol- 
ume processing. The processing elements are arranged in a 
2D mesh with a RISC based controller processor. PAVLOV 
utilizes a distributed memory design. This means that a 
portion of the memory is associated with each processing 
element as shown in Figure 1. Processing elements commu- 
nicate with each other through direct connections with the 
nearest processing elements in each of the two dimensions 
of the array. The processing elements on the edges of the 
array are connected with the associated processing element 
on the opposite edge as shown in Figure 1. This topology 
can be considered as either a 2D plane with wraparound, 
or as a torus (picture rolling the 2D plane to make a tube, 
then rolling the tube to make a donut) [17]. For volume pro- 
cessing applications we consider the topology as a 2D plane 
with wraparound (we sometimes utilize the wraparound and 
sometimes not). A 2D array of SIMD processing elements 
inherently processes slice order algorithms [2, 11, 20, 28, 301 
very efficiently, since an entire slice of the volume is pro- 
cessed at one time. Therefore, proven slice-order algorithms 
can be easily ported to the PAVLOV system. 
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1;igul.c’ 2: Moppi7~g u 30 volume onto a 2D array such that a 

complete beam, of ~oscl,s along the Z-axis are stored on each 
p7uwm71~~ elcmf:7~t 

To a<‘<‘ess slices of a volume stored in the distributed mem- 
ory of a 2D arra,y, WC propose storing the volume as follows. 
Each processing c+ment, in the 2D array of size N2 has an 
(:I;, !/) index. Since a 3D volume of size N3 contains voxels 
with (zI:, ?,, 2) indexes, the volume can be easily mapped onto 
t,ho 2D array in such a way that all N voxels which have z 
in&:x X’ and :y index Y’ are stored in a processing element 
with index (X’,Y’). This approach, shown in Figure 2, is 
used by [33, 35, 371. Mapping the volume in this manner 
allows conflict free access to any Z-slice ~~~ plane of voxels 
with t,ho same z index -~ by the plane of processing elements. 
Howc~cr. slice-order algorithms sometimes require accessing 
t,he volume in X-slices or Y-slices. Previous attempts to al- 
low conflict free access to these slices of the volume required 
cithtlr t,hrcc copies of the volume data or some mechanism 
to transpose the volume before beginning processing. We 
propost’ thr following algorithm and architectural enhance- 
ment,s t,o provide conflict free access to slices of the volume 
in any of the t,hree major viewing directions. 

Assuming the volume is stored as above, accessing the Z- 
slices conflict fret> is trivial. A 2D example is shown in Fig- 
ure 3a for slice, 0 and 3b for slice 2. Each case re 

1 
uires only 

one t.imc: step to load the entire slice since the N voxels in 
each slice are distributed among all N” processing elements. 

When accessing an X-slice of the volume, the entire slice 
of data is stored in one column of t,he 2D array. Thus, only 
one column of the slice can be read at one time. It requires 
N iterations of reading N voxels each to access the entire 
slice. Also, t,he data needs to bc shifted across the array to 
align the slice with the Iv2 processing elements. For exam- 
ple, in Figure 3c, slice 0 is being loaded. It is read one beam 
at a t,ime, and only the processing elements on column 0 are 
reading voxel data. Between reading each beam, the slice is 
shif~,c~tl to the left by one column of processing elements uti- 
lizing wraparound communication at the edges of the array. 
Thcrcfore, there are two steps associated with each column 
of data being read. Time steps 1 and 2 show these two steps 
for thcl first, column of data. The remaining 7 columns of 
data art: read similarly, so that at time step 14 the entire 
slice is loaded, and one more shift operation aligns the slice 

J- X 

Y (cl 

lb) 

1 101 1 1 1 I 1 ] t=1 

1 ~0~1~ 1 1 1 1 I t=2 

1011121 1 1 1 1 ] t=4 

fll2l3l I I I loI t=6 

1213141 1 1 1011 t=8 

[314151 1 lOlll2l t=10 

1415161 101112131 t=12 

t516171011[213141 t=14 

[617101112]314151 t=15 

1710111213141516 t=16 

10111213j41516171 t=17 

(d) 

Figure 3: 2D view of loading volume slices. (a) Z-slice 0 ,(b) 
Z-slice 2 ,(c) X-slice 0 ,(d) X-slate 2. 

with the processing element array. Similarly for slice 2 in 
Figure 3d the slice is loaded column by column so that the 
entire slice is read at time step 14. Now, however, it requires 
t,hree ext,ra shift, operations to align the slice with the pro- 
cessing elements. For slices from a column numbered greater 
t,han than $, the slice is shifted the opposite direction after 
it is loaded. Therefore, this algorithm accesses slices along 
any axis of an N3 volume in 2N + $ steps. This works the 
same for Y-slices by accessing the volume in a row by row 
fashion. 

The 2N + q latency involved with the previous algorithm 
is too large to enable real-time volume rendering. Simply in- 
creasing the clock rate would only decrease the latency, not 
remove it, and the latency would still be the same percentage 
of the overall runtime. This occurs because of the volume 
rc-distribution required when processing is decomposed in 
image-order. Neumann has shown in [29] that dissect,ing 
the processing and storage this way creates greater commu- 
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I<‘igurc 4: PAVLOV cnllanced SIMD mesh array to proGdc 
am:,s.s to vol7~7rse slrces along any of the three axes. 

ni(.at ion requirements than object decomposition process- 
iug. However, image decomposition allows simpler, and 
r,hus more efficient,, processing once the data is redistributed. 
‘l‘hc~rc~fort~, WC propose the following architectural improve- 
rncrns which completely hides the volume access latency by 
allowing each volume slice t,o be loaded while the previous 
slice is being processed. 

l IZdd a register to each processing elcmcnt which is uti- 
lized for volume I/O (VOLIO). Interconnect the VO- 
LIO registers separately from the interconnections asso- 
ciated wit,11 t,he normal processing elements. With sep- 
arat,c interconnections, the VOLIO registers can shift 
data without, interrupting t,he processing element per- 
forming it,s normal inst,ructions (see Figure 4). 

. l’rovitlc a mechanism to allow only one row/column of 
t,he processing elements to perform an instruction. This 
is rnumall,y done with an activity flag on SIMD arra,ys. 

One can visualize the proposed VOLIO enhancements as 
a layor of volume memory access elements which lie undcr- 
neat h the regular processing elements as shown in Figure 4. 
The extra PEs must be arranged this way, simply laying out, 
ii mesh that. is t,wicc as large only increases the memory ac- 
cess lat,ency. Also, one could consider the enhancements as 
simply increasing the interproccssor bandwidt,h - a solution 
t,hat has been shown to increase the communication perfor- 
mance of mesh connected arra,ys with minimal VLSI costs 
[7, 261. Alt,ernat,ively, the array plane of VOLIO registers can 

bc envisioned as a fully associative volume memory cache. 
This cache utilizes the regular access patterns of slice-order 
algorit,hms 1.0 eliminate memory latency by prefetching the 
dar,it that is about t,o be used. 

lsing t,hc c~nhancemcnts, Algorithm 1 loads the VOLIO 
rcgisl~crs (there is actually a 2D plane of registers since every 
processing element contains its own VOLIO register) with 
X-slices iu 2N + $ st,eps. Additionally, it does this without 
affecting the normal functioning of the processing clement. 
Therefore. as long as it takes at least 2N + $ steps to pcr- 
forni the normal processing on each slice of the volume, the 
next slice is available for the algorithm to use with no de- 
lav. The speedup achieved by the addition of the VOLIO 
(‘rlllilIl(.rrrlr:rlt,s ranges as a function of the number of cycles 
spent processing each slice. Specifically, the enhancements 
product ii sprcdup of 2 (over a normal 2D SIMD mesh) when 
the per-slice processing is exactly 2 N + p. If there are more 
or I(ss:, cycle:, processed per s1ic.e. t.he specdup is less. The 
t.irnc> to perform one slice of an algorithm which has C cycles 
lier slice without the VOLIO enhancements is 

for i = 1 to N 
Set CO~LI~~[CURRSLICEI active 
load VOLIO with VOLUMEMEMORY [i] 
Set all columns active 
shift VOLIO by 1 row 

endfor 
if c’rJRRSLICE< > NUMSLICES/z 

for i = 1 to CURRSLICE 
shift VOLIO back 1 row 

endfor 
else 

for i = CIJRIISLICE to NIJMSLICl3S 
shift VOLIO by 1 row 

endfor 
endif 

Algorithm 1: provides access to X-slices of the volurr~ using 
the VOLIO enlaancements. Since this 7'2171s concurrently with 

the processzng of the previous slice, the slates are uvailahlt 
with, no delay 

while the time with the VOLIO enhancements is 

Ti = MAX((2N + ;), C) 

Notice that if C is much smaller than 2N + 9, then 2N + $ 
dominates both Ti and TZ and therefore produce minimal 
speedup. The effect is similar when C is very large and C 
itself dominates both runtimes. Only when C is close to 
2N + $ will Ti be 2 times larger than T2. An altcrnativc 
option would be doubling the VOLIO resources t,o provide 
better speedup at the maximum point as well as providing 
a larger range where speedup is achieved. 

3.1 PE Architecture 

Figure 5 shows all of the components of each of the SIMD 
processing elements. At the heart of the processor is an 
8bit .4LU with multiply capability. Two registers, RA and 
RB are the inputs to the ALU. There is a 256x8bitj working 
memory. The Counter register can be loaded with a value 
from the processing element. The counter can be decre- 
mented and its value used to perform conditional loads. The 
most common mechanism for performing conditional execu- 
tion with SIMD arrays is using such conditional loads. III 
essence, both branches of a condition are computed and only 
the correct results of the processing are loaded into result 
registers (or memory locations). Two registers are used for 
communication. The RV register provides access to the pro- 
cessing elements above and below each processor. The RH 
register provides left and right access. The VOLIO register, 
connections and Volume Memory provide the access to the 
volume in slice order along any of the three axes as described 
in the previous section. There is also a shader unit assoc- 
ated with each processing clement. Currently, the shader is 
implemented as a reflectance vector shader [36]. We have not 
finalized the shader implementation yet. We have focused on 
the rest of the design since we wish to provide volume pro- 
cessing in addition to rendering and there are many good 
shader designs already proposed in the literature which we 
could incorporate [lo, 19, 36, 231. For the amount of shader 
hardware included we are considering the following tradeoffs: 

l Shader LUT performed in software. The controller 
stores the reflectance vector table and loads the va- 
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Figure 5: PAVLOV SlMD Processing Elemenl 

ucs into the instruction stream. It takes 3 clock-cycles 
pc’r table clement, t,o implement this. 

. One shader unit, per processing element. This approach 
rc,quires a lXgf! amount of VLSI resources. 

. One shader per chip. Assuming multiple PEs per chip, 
WC’ mihy require soft,ware pipelining. This approach al- 
lows tllo shading unit a whole slice time to sequence 
t,hrough all of the processing elements on the chip at 
1,1le rxpt~nse of increased working memory. 

11crbortlt. provides a very good analysis of design tradeoffs 
for tll:signing 21~ SIMD mesh arrays in [14]. He analyzed 
IIM~U~S for performing image: processing t,asks. Since volume 
proc.cssing utilize‘s many of the same processing features as 
imag(x processing, wc used two of Hcrbordt’s conclusions in 
our fff3igrl. 

l Incrc,asing the> datapath width to 8 bits provides enough 
spoedup to rationalize the added VLSI requirements. 
IHowever, increasing the width past 8 bit,s provides lit,- 
I lo spc~dup. if any, regardless of the increased VLSI 
rc~f~uirerrifmts 

l Thr~ inclusion of Mult,iply circuit, also provides signif- 
i(.aIlt, spec~lup to warrant its inclusion despite its in- 
c~rc~asc:d \‘LSI requirsmcnts. (Many of thr SIMD mesh 
;arravs tlcxsigned for image processing include a Wallace 
t rc(‘ muhiply circ.uit. sincr it comput,cs an 8hit. x shit, 
Irlultiply in 1 cyc,lc.) 

The Proc,cGng clcments also contain activation lines. There 
art’ row anti columr~ lines for the entire array that are set, by 
I 11~~ controller processor. Each Processing clement, logically 
AN115 its ilctivatifm lines togctlicr t,o 1151’ as an active flag 

for that processing element. Currently this is only used for 
thr VOLIO register to allow rows or columns of the volume 
memory to bc read independently. 

3.2 Instruction set 

In keeping with the sam~~le ~~rocessing cZcmr/,r.nt idea of 
SIMD architectures, we have designed the processing tlc- 
~rlcwt,s to utilize a microcode instruction format, similar to 
many of the SIMD arrays designed for image processing 
[5, 6, 241. What this means is that the processing clernents 
arc designed such that, the control point,s (select lines on 

Muxes, rcad/writ,e lines on memory, etc.) become the bit. 
fields in the instruction. Instructions then set every con- 
t.rol point for c~~zr,y cycle. Becausr of this, every instruction 
runs on the processing element is a l-cycle instruction. This 
is advantageous because the programmer has Inorc control 
of the processing element. For example, multiple operations 
<:an bc performed in each cycle as long as they do not require: 
;LII~ of the same resources. The VLSI costs of achieving this 
wit,11 regular microprocessors superscaler, pipelining the 
instruction fetch/decode/execute would be prohibitive to 
placing many processing elementas on each chip. 

Table 1 shows all of the fields in a mic:roinstructit,n 
(grouped where multiple points control one function) along 
wit,11 thr action performed for the values placed in the field. 
Since most fields are independent of each other, the process- 
ing elcmcnt, can be programmed to perform many different 
functions at one time. With this configuration, there arc 25 
control 1)it.s in the instruction (plus 8 address/constant, bits) 
which yields 225 or 33 million possible diRerent instructions. 

The example instructions in Figure 6 arc from the, grad- 
cnt. calculat,ion portion of a rendering algorithm WC wrot,(‘. 
7’11~ code segment picks up where G,7 is being calculatc~tl. 
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I 0 . . . 3 4 . . . 7 * . . . 11 12 13 14 l l 016 17. l =19 20 21 22. l -24 25 l -' 32 
Address/ 

m-MUX RB-MUX Operation 

0000 00 010 000 01 011 00000100 MEM[4]<=WRITE-RA; K"<=DOvm; "OLIO~=DOwN 

0000 00 001 000 10 001 00000101 MEM[S]<-WRITE-m; Fa<=R"; R"<="P: "OLIO<="OLMEM 

0000 00 001 000 00 011 00000000 R"<="P; VOLIO<=DOWN 

0000 00 000 000 00 001 00000000 RB<=RV; VOLIO<=VOLMEM 

Figurc 6: PAVLOV .“1’3bzt microin..struction format and example code from the glndient portion of a rendering algorithm 

‘I’ablr 1: PAVLOV processing element microcode instructzon 

RA+RA 
RA&MEM 
RA+RV 
RAeRH 
RA+=ALU 
RA+ALU-IF-C 
RA+VOLIO 
RAeO 
RA+LUT-R 
RA+LUT.G 
RA+=LUT-B 
RA+LUT-A 
RA+CONST 
RA+CONTR-VA 
RA+=RB 
RAe=255 
iiVt=RV 
RV+UP 
RVeDOWN 
RVe=RA 
RV+RB 
RVeMEM 
RV-+RH 
ALU+ADD 
ALUe=SUB 
ALU+AND 
ALUe=OR 
ALU+=XOR 
ALU+MULT 
ALUeNOT 
ALU+CMP 
ALUt;RB 
ALU+C ADD 
MEM NO-OP 
MEMeWRITE I 
MEM-kWRITE I - 

0000 RBe=RB 
0001 RBeMEM 
0010 RBeRV 
0011 RB+RH 
0100 RB+ALU-HI-BYTE 
0101 RB+ALU-IF-CTR 
0110 RB+RA 
0111 RBeO 
1000 RBe=PHONG-1R 
1001 RBePHONG2R 
1010 RBt=PHONG-1G 
1011 RB+PHONG_2G 
1100 RB+PHONG-1B 
1101 RB+PHONG_2B 
1110 RB+CONST 
1111 RBe255 

000 RH+RH 
001 RH+LEFT 
010 RH+RIGHT 
011 RH+=RA 
100 RH+RB 
101 RH+MEM 
110 RH+RV 

0000 CTR+CTR 
0001 CTR+DEC 
0010 CTReCONST 
0011 CTReRA 
0100 voLIo~voLIo 
0101 VOLIOeVOLMEM 
0110 VOLIO~UP 
0111 VOLIO+DOWN 
1000 VOLIOeLEFT 
1001 VOLIO+RIGHT 

00 VOLIO-+RA 

::, 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

000 
001 
010 
011 
100 

10 
11 
00 
01 
10 
11 

000 
001 
010 
011 
100 
101 
110 
111 

The left and the right samples have already been collected 
and stored in RA and RB. In the first instruction, the left. 
sample is subtracted from the right sample and the result is 
stored in RA; the high-order byte of the output is stored in 
RB (we need to store the sign of the output, since the range 
of 8 bits minus 8 bits is -255..255). Concurrently with this 
operation, the current plane of samples is loaded into the 
vertical communication register, RV. The next instruction 
stores the output of the gradient calculation into memory 
and shifts the plane of samples up by one processing element. 
The third instruction stores the sign information from the 
gradient calculation into memory, stores the shifted sample 
plane in RA and shifts the sample plane back down to its 
original position. The fourth instruction shifts the sample 
plane down by one more processing element. Finally in the 
fifth instruction, the shifted sample plane is stored in RB. 
Now, in each processing element, the G, has been computed, 
RA contains the sample below the current sample, and RB 
contains the sample above the current sample. The process- 
ing would continue by computing G,, etc. Notice how the 
mathematical operation for G, was performed concurrently 
with some of the communication required for G,. Addition- 
ally, the VOLIO enhancement registers are busy loading the 
next Y-slice of the data without effecting the normal corn 
putations in the processing element. 

WC propose to utilize an off-the-shelf micro-processor for 
the controller. The row and column activate lines are 
mapped into the memory space of the micro-processor. 
There is also a memory mapped register whose value is 
broadcast to every processing element in the 2D array. This 
allows the controller to load a scalar value into the array. 
Finally the microcode instructions are loaded, one for each 
clock cycle, into another memory mapped location which is 
also broadcast to every processing element each cycle. The 
controller handles overlaying the instruction sequences from 
Algorithm 1 on top of the code that is being run. This cre- 
ates a dual instruction stream for the PEs. Additionally, 
the controller ensures that it has finished loading each slice 
before the algorithm requires it. 

4 Performance 

Most of the current designs of SIMD arrays for image pro- 
cessing applications being fabricated today utilize 50 MHz 
clock frequencies [5, 18, 21, 241 (all from Computer Archi- 
tectures for Machine Perception, 1997 and 1995). The fu- 
ture designs normally count on 100MHz. We analyze the 
performance of the PAVLOV design for performing a Rq, 
Casting algorithm with a clock frequency of 50 MHz. To 
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Tabk 2: Required subslice sizes to perform parallel projec- 
tions at 3OHz on PAVLOV. Assuming 50 MHz clock yields 
1.6 mallion cycles/frame and the algorithm utilizes 405 cy- 
c:h per slice. 

F 

Volume Size c2/cles 1lCP 1 Sub-Slices 1 array size 
128j 1 13020 1 32 1 16x32 
256” 

I I 
6510 16 64x64 

512” 3255 8 128x256 
1024” 1627 4 512x512 

pc,rform real-time rendering at 30 frames/second, each frame 
<‘an ut,ilize 1.6 million clock cycles. For a 2563 volume, that, 
InflanS that, 6510 instructions can be executed for each vol- 
um(’ slice:. We have developed a simulation of the PAVLOV 
arra,y and written a parallel ray casting algorithm which uti- 
lixcs slice-order object-access. The algorithm requires 405 
clock cycles per volume slice to render an image. Therefore, 
we <:an provide 30Hz rendering of a 2563 volume with only a 
64” PAVLOV array and processing 16 different subvolumes. 
(Of course with sub-slice processing there is both processing 
and storage overhead which needs to be addressed in the fi- 
nal system.) With a 642 Pavlov array, the sub-slices of the 
volume can be loaded in 160 cycles according to our previous 
analysis. This shows how our VOLIO enhancements and Al- 
gorithm 1 provide conflict-free access to volume slices along 
any of’ the three major directions with no delay. Table 2 
prclst%nts the same analysis for different volume sizes. 

To show how this design can be used to implement various 
rcndcring algorithms, we have coded a Shear-Warp projec- 
t,ion algorithm which requires 409 clock cycles per slice and 
a 1)ort of the Cube-4-Light [2] perspective algorithm which 
uses 313 clock cycles per volume slice. The previous analysis 
rm be similarly applied to the runtime of these algorithms. 

Figure 7(also in Color Section) shows three views of the 
skull from the CT head dataset projected along each of the 
major axes of the volume on a software simulator of the 
PAVLOV system. The volume is 128x128~113 and the sim- 
ulat,or is configured as 128x128 processing elements. Both 
the> X and the Y projections were computed in 52K cycles, 
iLlId the 2 projection was computed in 45K cycles (because 
t.hc:rct are only 113 Z-slices). The X and 2 projections are 
from viewpoints centered directly in the front and above the 
volume while the Y projection 1s rendered from slightly to 
t,hc, left of center. 

Wfa have extracted the common primitives used in volume 
segmentation and analyzed the speed of computing them 
on iI general-purpose computer versus the PAVLOV array. 
&imrk [34] reports that it takes approximately 10 seconds 
1.0 perform Thresholding, Median Filtering, Erosion or Dila- 
tzon for a 2563 volume on an HP9000. We notice that for all 
of these operations that the direction of the slices does not 
matt,c:r when we process the volume, so we can utilize the 
main storagt, direction. Therefore, the next volume slice is 
;~lways available wit,hin 1 cycle. This is important because of 
that small cycle count of these opera,tions. The 2N + G st,eps 
required to access norl-storage-direction slices would domi- 
nat,c the runt imr and cause the extra VOLIO enhancements 
to provicle minimal advantage. 

Specifically, the number of cycles to perform each of these 
operations 011 tllc~ PAVLOV architecture ranges from 4 cy- 
c+s llcr slice for t,hresholding to 29 for erosion and dilation. 
Ac~corcling to Sriimek, these operations are usually repeated, 

possibly requiring many erosion, dilation and floodfill oper- 
ations to perform a robust segmentation. Additionally, de- 
riving the order to perform the primitives is an interactive 
process taking substantial human input. 

For example, in Figure 8(also in Color Section) the meat 
of a 128x128x29 lobster volume is segmented from the shell. 
Figure 8a shows the entire volume rendered with a translu- 
cent shell making the meat visible. In Figure 8b, the meat, 
is segmented by simply performing a threshold above the 
$$ density level. Clearly, the segmentation achieved is of 
low quality. Notice the pieces of the shell that are marked 
as part, of the lobster meat as well as antenna around the: 
head. To perform a more robust segmentation, we spent 2 
hours testing different combinations of the previous primi- 
tives (it took 5 to 10 minutes per segmentation attempt on 

a HP9000). We developed the following primitive sequence 
as the best segmentation from 13 different attempts: 

Threshold - Dilate - Erode - Median-Filter - 
- Erode - Dilate 

Figure 8c shows the results of our effort to develop a robust, 
primitive sequence for segmenting the meat from the lobster. 
Unfortunately, this sequence is most likely a one of a kind, 
and the same process must be repeated whenever another 
volume is to be segmented. 

It would take 4 cycles per slice to perform the segmenta- 
tion, 29 per slice for the erodes and dilates, and 25 per slice 
for the median filter. This means that the PAVLOV sys- 
tem is able to perform the sequence of segmentation prim- 
itives in 4205 cycles (29 slices times 145 to perform all the 
primitives) or 80 milliseconds at 50MHz. Furthermore, the 
PAVLOV system is capable of producing real-time rendering 
of the segmented data, immediately, so the user can examine 
the segmentation performance and re-adjust the parameters 
and primitive operation ordering. 

The most challenging segmentation primitive to imple- 
mcnt on a SIMD architecture is floodfill. While a naive 
sequential algorithm performs floodfill with a simple recur- 
sive call to all connected neighbors, the worst case SIMD 
algorithm (here is one of the trade-off areas where SIMD 
performs worse) may take 54 million instructions to com- 
pletely floodfill a 2563 volume if the portion to be filled is 
the perfect 3D snake. This, however, is still in the 1 sec- 
ond range, still faster than on a general-purpose processor. 
Therefore, the PAVLOV system can still produce true inter- 
active segmentation. 

5 Resource Estimates 

To get an idea of the VLSI costs of a system based on the 
PAVLOV design, we compared our design to SIMD array 
designs recently presented in the image processing commll- 
nity. For example, at the recent Computer Architectures 
for Machine Perception conference the following Chips were 
presented. 

l NEC has built a chip based on the IRAM [25] design. It 
includes 32 8bit processors (each with 1KByte of RAM) 
per chip with 208 pins on a chip [12]. 

l The SLIM-II will be built with 64 8bit processors (each 
with 256 bytes of R.AM and each includes a multiplier 
circuit) per chip and also 208 pins on a chip [5]. 

l Komuro et al. submitted a design for fabrication with 
64x64 lbit ALU’s on 1 chip [24]. 
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Usillg estimates  based  on these, we propose  to put 8x8 pro-
cussing elements on each chip.  With 8 processing elements
along each side of a chip,  there will  be 32 required connec-
t,ions  to the,  neighboring  chips.  Additionally,  because of our
proposed  cnhanccments,  each  connection  is actually  2 lines.
With 8bit data-paths,  PAVLOV  will  require 512 pins just
for c.ornrllullic;Lt,ion  in addition  t,o t,he  required power,  in-
st,ruct,ion  and row/column  activation  pins.  This design  will
rc>quircl  t,irllc:-nlrllt,iplexing  communication  pins or the next,
gc>nclration  of chip with sufficient  pin resources to be feasi-
bl~. Beyond this, to create  t,he  64x64  processing element
fray &scribed  in Table  2 for real-time  rendering of a 256”
volume:  will  require 64 chips  in an 8x8 layout.

An alt,rrnativt~  implementation  along  the line of Komuro
(>I al.‘5 wit,11  Ibit, datapaths  may provide  a more  efficient,  de-
sign. Assunling  that a lbit rendering  algorithm  would take
X I irncts  as man,~  cycles as the algorithm  with 8bit  datap-
ilt,llh.  the,  rc?nticGlg  algorithm  would then take 3240 cycles
p(tr  slices.  With this count, only two subslices may  be pro-
c(~sht~d using t h(, same  5OMHz  clock  and 30Hz frame rate  for
a 256” volumc~.  However,  following  Komuro et al.‘s design
with 64x64 processing elements  per chip,  a 256x128  arra,y
(‘an bet built with only 8 chips  in a 4x2 layout, 8 times fewer
chips than with 8bit  datapaths.

6 Conclusions

tVt>  have>  proposed  architectural  improvements  to 2D mesh
architcxcturcs  which allow  conflict-free  access  to volume  slices
along arbitrary  axes.  Overcoming this  restriction  allows 2D
mc~h  archit,cctures to achieve  true real-time  volume  render-
ing rates for the first time. We have proposed a SIMD  design
for t.hc~ PEs that, enjoys the innate  advantages  of no synchro-
Iliz.;itiorl  tlelay and no communication  overhead.  We have
dcrrlorIst,rat,c:d  that the fine grain data  parallelism inherent
in volume  rendering and processing utilizes  these advantages
t,o such a degrctl that they overcome  the SIMD  disadvantage
of requiring worst-cast  processing. The design  can perform
variouh  volume rendering algorithms  in real-time.  Addition-
allv.  t,hr design  is capable  of accelerating  volume  processing
t,asks.  WC believe  that,  with the advent of real-time  volume
rentlcring archit,ectures, that int,eractive  volume  processing
will  bccomcl tlt,sirable.  We show segmentation  as an exam-
ply of volume  processing, but feel  that future applications  of
volurnc~  proc:rGng  are unpredictable  and therefore  wanted
t,o provit10  a programmable  solution.

\\To arc’ currcantly  analyzing the performance  of the pro-
c.trssing  c~leruc~nt  (lcsign. For example,  the current  design
cant ains t.wo  rc,gistcrs  as inputs  t,o the ALU and two reg-
istc>rs  for c:orrlrIlunic:ation.  These  could  be combined.  We
would  need t,o amlyze the impact  m algorithm  runtimes.

We need t,o complet,e  a study of t,he  tradeoffs on algorithms
t,o process  volumes  larger  than the processing element  array
(sir1c.c  our design  ut,ilizes  it). For instance,  the volume  can
1~1  storctl. and snlwc~uc~~~tl,y  processed as subblocks  or int,er-
I~~ilV~~tl.

Finally,  the 8x8 layout,  of 64 chips  is not as concise  as
such st.at.cl  of thcl  art,  volume  rendering architectures  as the
KM (:III)c tl&gn  that Mitsubishi  Electric  Research  Labs is
currr:nt,ly  building  [31].  However,  because PAVLOV  is pro-
griLlllI1lilt)l~,  it provides  more  functionality.  It allows mu-
t ipk rendering algorithms  and, more  importantly,  it allows
volurr~c~  pro(,essing  such as segmentation  and feature extrac-
t,ion. Thercforc:,  it, would have a different  market  than as a
I’(: phlg-in  (.;LI.c~.

Figure  7: Parallel  projections  of 128x128~113  CT head
three  axes from our software simulator  using parallel  p
taons.  X and Y projections were  computed in 52K cyc
projectam in 45K cycles  (only  113 Z-slices).  The  Y 1
taon  shows  non-orthogonal  parallel rendering.
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