PAVLOV: A Programmable Architecture
for Volume Processing

Kevin Kreeger and Arie Kaufman!

Center for Visual Computing (CVC)
and Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11749-4400, USA

Abstract

We present a parallel 2D mesh connected architecture with
SIMD processing elements. The design allows for real-time
volume rendering as well as interactive 3D segmentation and
3D feature extraction. This is possible because the SIMD
processing elements are programmable, o feature which also
allows the use of many different rendering algorithms. We
present an algorithm which, with the addition of hardware
resources, provides conflict free access to volume slices along
any of the three major azes. The volume access conflict
has been the main reason why previous similar architectures
could not perform real-time volume rendering. We present
the performance of preliminary algorithms on a software
stmulator of the architecture design.

CR Categories: C.1.2 [Processor Architectures): Mul-
tiple Data Stream Architectures (Multiprocessors)—Single-
instruction-stream, multiple-data-stream processors (SIMD)
; 1.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors, Parallel processing; 1.4.6 [Image Pro-
cessing And Cowputer Vision]: Segmentation,;

Keywords: Volume Rendering, Volume Processing, Seg-
mentation, SIMD, 2D Mesh Array

1 [Introduction

Real-time and near real-time rendering of volumetric
datasets is finally becoming possible. Recent advances pro-
vide users with different choices depending on the require-
ments and resources of the application. Near real-time vol-
ume rendering systems are now available in software for
users with access to parallel SMP computers such as the
SGI Challenge [27] or multiple processor Intel machines with
3D graphics accelerator cards [3]. Recent special-purpose
architecture designs that have actually been built include
VIRIM {13] and VIZARD [22]. For higher quality render-
ing, real-time performance, and commercial availability, Mit-

t{kkreeger,ari}@cs.sunysb.edu

Permission 1o make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for protit or commercial advantage and that

copres bear this nouce and the tull citation on the first page. To copy
othenwase. to republish. to post on servers or to redistribute to lists,
requires prior spectfic permission and/or a fee.

1998 Workshop on Graphies Hardware Lisbon Portugal
Copyright ACM 1998 1-38113-097-x/98/8...$5.00

77

subishi Electric Research Labs plans to release a PCI bus
plug-in card for performing volume rendering [31] which is
based on Cube-4 [32]. Finally, users everywhere will be able
to afford to add an accelerator card to their PC which will
enable them to view their volumetric datasets in real-time.
This advancement has the potential to greatly increase the
productivity of scientists, medical professionals and techni-
cians who analyze three dimensional data. The user will be
able to interactively explore the volume, adapt the data-to-
color mapping function, and manipulate other viewing pa-
rameters to more quickly analyze and interpret their data.

Now that high quality real-time volume visualization is
on the horizon, the users will, of course, begin to demand
more functionality. For example, researchers are already be-
ginning to explore segmentation of volume data and feature
extraction. We call this volume processing. If the volumetric
data is static, it can be pre-processed one time on a general-
purpose machine and the user can visualize the processed
datasets. However, if the data is being collected in real-time
or the user desires to interactively adapt the segmentation
parameters, general-purpose processors cannot perform this
process at the desired rate. In fact, it is reported that “seg-
mentation of volume data will always require a high degree
of user interaction” [4). For this reason architectures are
needed that will provide, at the least, sub-second runtimes
for common volume processing algorithms. Meanwhile, pro-
posed hardware rendering architectures are ASIC pipelines
for performing volume rendering only. They have not been
configured to perform such volume processing tasks.

Segmentation is the process of dividing a volume into two
subsets, one of which contains all the voxels possessing a
certain property and the other being the rest of the voxels.
A simple example of a property is “all voxels whose density
value are above a certain threshold”. It would be trivial to
compute these two sets. Add the requirement that all of the
voxels must also be either 6 or 26 connected to some seed
voxel and it gets more complicated. Now attempt to perform
this operation robustly on data collected from a noisy sensor
and it becomes quite a challenge [34].

We propose a programmable architecture for performing
volume processing and viewing that we call PAVLOV —
Parallel Array for VoLume prOcessing and Viewing. The
PAVLOV machine is a two-dimensional array of SIMD -—
Single Instruction Multiple Data — Processing Elements
that would operate as a coprocessor for performing vol-
ume operations and rendering. This architecture is pro-
grammable for a variety of tasks. In [8] de Boer et al. pre-
sented lessons which they learned from building and testing
the first ever operable volume rendering accelerator, VIRIM.
They reported that the most important feature in the eyes
of the user was that of segmentation. They went on to state

that the main benefit of their system was its flexibility to
perform various volume rendering algorithins.

SIMD computer architectures have experienced a decline
in popularity over the last couple of years, reasons being the
genceral downswing of massively parallel architectures (most
SIMD machines are massively parallel), and SIMD process-
ing elements not taking advantage of the multitude of recent
work on micro-processors. Since one of the prevailing the-
ories in most SIMD machine design is to highly replicate
very simple processing elements, very few contain the com-
plex processing elements associated with the recent advances
in microprocessor design. Another reason is that SIMD ar-
chitectures provide a worst-case approach to algorithm per-
formance instead of an average case approach because, by
design, they must also work on portions of the dataset that
don’t require processing.

Despite this, SIMD machines have been holding ground in
the image processing field. Researchers in image processing
have discovered that the advantages of SIMD architectures

no synchronization delay and no communication over-
head - - provide tradeoffs and outweigh the disadvantages
for the types of fine grain data parallel processing found
in image processing algorithms and, as we show, volume
processing. In fact, most recent image processing architec-
tures are designed either entirely SIMD or with a SIMD
core for performing the low-level portions of the algorithms
(1, 12, 6, 5, 18, 21, 24]. Volume processing contains many
of the same inherent low-level features of image processing.
They both contain fine grain data parallelism — where algo-
rithms perform the exact same processing on each and every
data element — and the data is represented as a regular ar-
ray of scalar data. Furthermore, the processing of each data
item not only requires minimal information from other data
items, but also what it does require is confined to a localized
neighborhood.

Additionally, some researchers still believe that there is
a future for SIMD arrays because they offer the following
benefits:

e SIMD arrays, almost by definition, maximize computa-
tional capability per unit hardware (chip, board, etc.).

e SIMD arrays are inherently easy to build and code.

e SIMD arrays provide the power of an ASIC implemen-
tation with the flexibility of a solution on a general-
purpose machine for many applications (especially ones
with fine-grain data parallelism) [15].

2 Previous SIMD volume rendering Work

Schroder and Stoll proposed an algorithm for the Connection
Machine CM2 where the volume is stored one beam per pro-
cessing element. However, the inherent latency of the CM2
limited their performance to 4 frames per second for a 128°
volume {33]. Yoo et al. presented a method to perform vol-
ume rendering on the Pixel Planes 5 machine partly utilizing
the 2D SIMD mesh pixel processors and partly the MIMD
Graphics Processors [39]. They achieved 20 frames per sec-
ond for a 128x128x56 volume. Hsu designed a segmented
Ray Casting approach for the DECmpp SIMD mesh [16].
However it distributed the volume in sub-blocks and only
achieved 4-5 frames/second. Both Vezina et al. [35] and
Wittenbrink and Somani [38] proposed algorithms for the
MASPAR MP-1 (a SIMD 8-cour ¢cted mesh). Yet, neither
achiceved frame rates better that 2-5 frames per second. All
of these methods suffered because of the latency inherent

78

Controller
RISC
CPU
|
Controller Memory

IlController Micro=
Code
Program Program
L Memory
Curr InstrjiRl Reg.
| I
Pﬁ:}:ive—» Col?2 Col3
ines r r r
™ Mem Mem Mem
Z1] < > < > <h
n? PE PE == PE =i
TT [7 W y mnlll|
| 1 |
4 4 v
N} Mem Mem Mem
Zl ~ > ~ > <
o PE s PE = PE :
[Wi A | A
| | |
v \ 4 47
A Mem Mem Mem
g ~ > < > <
mr PE = P*E = P*E[I
2 [

Figure 1: System level PAVLOV design.

in large general-purpose machines. Doggett [9] presented
a special-purpose architecture with a 2D array of process-
ing elements for volume rendering. However, his processing
elements are ASICs, not programmable SIMDs. Also, the
machine is a shared memory design and the volume data
flows from a single memory buffer through the array.

3 PAVLOV Architecture

We propose a SIMD parallel architecture for performing vol-
ume processing. The processing elements are arranged in a
2D mesh with a RISC based controller processor. PAVLOV
utilizes a distributed memory design. This means that a
portion of the memory is associated with each processing
element as shown in Figure 1. Processing elements commu-
nicate with each other through direct connections with the
nearest processing elements in each of the two dimensions
of the array. The processing elements on the edges of the
array are connected with the associated processing element
on the opposite edge as shown in Figure 1. This topology
can be considered as either a 2D plane with wraparound,
or as a torus (picture rolling the 2D plane to make a tube,
then rolling the tube to make a donut) [17}. For volume pro-
cessing applications we consider the topology as a 2D plane
with wraparound (we sometimes utilize the wraparound and
sometimes not). A 2D array of SIMD processing elements
inherently processes slice order algorithms [2, 11, 20, 28, 30}
very efficiently, since an entire slice of the volume is pro-
cessed at one time. Therefore, proven slice-order algorithms
can be easily ported to the PAVLOV system.

/i
A

Figure 2: Mapping a 3D volume onto a 2D array such that a
comnplete beam of vozels along the Z-axis are stored on each
processing element

To access slices of a volume stored in the distributed mem-
ory of a 2D array, we propose storing the volume as follows.
Each processing element in the 2D array of size N? has an
(z,y) index. Since a 3D volume of size N?® contains voxels
with (x,y, 2) indexes, the volume can be easily mapped onto
the 2D array in such a way that all N voxels which have x
index X’ and y index Y’ are stored in a processing element
with index (X', Y"). This approach, shown in Figure 2, is
used by [33, 35, 37]. Mapping the volume in this manner
allows conflict free access to any Z-slice -— plane of voxels
with the same z index — - by the plane of processing elements.
However, slice-order algorithms sometimes require accessing
the volume in X-slices or Y-slices. Previous attempts to al-
low conflict free access to these slices of the volume required
cither three copies of the volume data or some mechanism
to transpose the volume before beginning processing. We
propose the following algorithm and architectural enhance-
ments to provide conflict free access to slices of the volume
in any of the three major viewing directions.

Assuming the volume is stored as above, accessing the Z-
slices conflict free is trivial. A 2D example is shown in Fig-
ure 3a for slice 0 and 3b for slice 2. Each case re%uires only
one time step to load the entire slice since the N7 voxels in
cach slice are distributed among all N? processing elements.

When accessing an X-slice of the volume, the entire slice
of data is stored in one column of the 2D array. Thus, only
one column of the slice can be read at one time. It requires
N itcrations of reading IV voxels each to access the entire
slice. Also, the data needs to be shifted across the array to
align the slice with the N? processing elements. For exam-
ple, in Figure 3¢, slice 0 is being loaded. It is read one beam
at a time, and only the processing elements on column 0 are
reading voxel data. Between reading each beam, the slice is
shifted to the left by one column of processing elements uti-
lizing wraparound communication at the edges of the array.
Therefore, there are two steps associated with each column
of data being read. Time steps 1 and 2 show these two steps
for the first column of data. The remaining 7 columns of
data are rcad similarly, so that at time step 14 the entire
slice is loaded, and one more shift operation aligns the slice

79

01112]3]4]5]6]7

0l1]2]3]4]5]¢6]7

A T

[oTaT2[3T4]516]7] oJ1]2]3]4]5[6]7] t=0
(a) (b)

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

v]

CTTTTITT] [TToTTTTTI] e=0

CLTTTTT o] LTI &=t

LT TTTTTol CTo[af P T T[] e=2

LT T 1101 (effaT T T T t=4

BLTTTJofal2] (EI2f3] T [T o] t=6

[l T T [of1f2]3] 34l [] fo]i] t=8

(5] T ToT1[2]314] [3[afs] T Jof2]2f c=10

(6] Jo[1]2]3T4]5] [4]5Te] Tof1J2[3] =12

[7ToTaT2]3T4{5]6] [sTel7[0]2]2]3]4] t=14

[oTiT2T3T4]5]6]7] [6]7]ol1]2]3]4[5] t=15

[7To]1]2]3]4]5]6] t=16

X lA2[3T4]5]6]7] t=17

Y (c) (d)

Figure 3: 2D view of loading volume slices. (a) Z-slice O ,(b)
Z-slice 2 ,(c) X-slice 0 ,(d) X-slice 2.

with the processing element array. Similarly for slice 2 in
Figure 3d the slice is loaded column by column so that the
entire slice is read at time step 14. Now, however, it requires
three extra shift operations to align the slice with the pro-
cessing elements. For slices from a column numbered greater
than than —g’—, the slice is shifted the opposite direction after
it is loaded. Therefore, this algorithm accesses slices along
any axis of an N volume in 2N + % steps. This works the
same for Y-slices by accessing the volume in a row by row
fashion.

The 2N + —’2! latency involved with the previous algorithm
is too large to enable real-time volume rendering. Simply in-
creasing the clock rate would only decrease the latency, not
remove it, and the latency would still be the same percentage
of the overall runtime. This occurs because of the volume
re-distribution required when processing is decomposed in
image-order. Neumann has shown in [29] that dissecting
the processing and storage this way creates greater commu-

fip
et

iy At
AR R

]
g

A~ (T
i

il g

b il il

-

pesi IR
it

WN(!K’HMI Processing Elemort
VOL IO Kohancements

Figure 41 PAVLOV enhanced SIMD mesh array to provide

access to wolume slices along any of the three azes.

nication requirements than object decomposition process-
ing. However, image decomposition allows simpler, and
thus more efficient, processing once the data is redistributed.
Therefore, we propose the following architectural improve-
ments which completely hides the volume access latency by
allowing cach volume slice to be loaded while the previous
slice 1s being processed.

e Add a register to each processing element which is uti-
lized for volume I/O (VOLIQO). Interconnect the VO-
LIO registers separately from the interconnections asso-
ciated with the normal processing elements. With sep-
arate interconnections, the VOLIO registers can shift
data without interrupting the processing element per-
forming its normal instructions (see Figure 4).

e Provide a mechanism to allow only one row/column of

the processing elements to perform an instruction. This
is normally done with an activity flag on SIMD arrays.

Omne can visualize the proposed VOLIO enhancements as
a layer of volume memory access elements which lie under-
neath the regular processing elements as shown in Figure 4.
The extra PEs must be arranged this way, simply laying out
a mesh that is twice as large only increases the memory ac-
cess latency. Also, one could consider the enhancements as
simply increasing the interprocessor bandwidth -— a solution
that has been shown to increase the communication perfor-
mance of mesh connected arrays with minimal VLSI costs
[7,26]. Alternatively, the array plane of VOLIO registers can
be envisioned as a fully associative volume memory cache.
This cache utilizes the regular access patterns of slice-order
algorithms to eliminate memory latency by prefetching the
data that is about to be used.

Using the enhancements, Algorithm 1 loads the VOLIO
registers (there is actually a 2D plane of registers since every
processing element contains its own VOLIO register) with
X-slices in 2N + % steps. Additionally, it does this without
affecting the normal functioning of the processing element.
Therefore, as long as it takes at least 2N + & 5 steps to per-
form the normal processing on cach slice of the volume, the
next slice is available for the algorithm to use with no de-
lay. The speedup achieved by the addition of the VOLIO
enhancements ranges as a function of the number of cycles
spent processing each slice. Specifically, the enhancements
produce a specdup of 2 (over a normal 2D SIMD mesh) when
the per-slice processing is exactly 2N + —'2! If there are more
or less cycles processed per slice. the speedup is less. The
time to perform one slice of an algorithm which has C cycles
per slice without the VOLIO enhancements is

N
T :(2N+’7)+C

80

fori=1toN
Set column[CURRSLICE] active
load VOLIO with VOLUMEMEMORY(i]
Set all colummns active
shift VOLIO by 1 row
endfor
if CURRSLICE > NUMSLICES/2
for i = 1 to CURRSLICE
shift VOLIO back 1 row
endfor
clse
for 1 = CURRSLICE to NUMSLICES
shift VOLIO by 1 row
endfor
endif

Algorithi 1: provides access to X -slices of the volume using
the VOLIO enhancements. Since this runs concurrently with
the processing of the previous slice, the slices are available
with no delay

while the time with the VOLIO enhancements is

Ty = MAX((2N + =) C)

Notice that if C is much smaller than 2N + %, then 2N + %
dominates both T} and T> and therefore produce minimal
speedup. The effect is similar when C is very large and C
itself dominates both runtimes. Only when C is close to
2N + % will T1 be 2 times larger than T5. An alternative
option would be doubling the VOLIO resources to provide
better speedup at the maximum point as well as providing
a larger range where speedup is achieved.

3.1 PE Architecture

Figure 5 shows all of the components of each of the SIMD
processing elements. At the heart of the processor is an
8bit ALU with multiply capability. Two registers, RA and
RB are the inputs to the ALU. There is a 256x8bit working
memory. The Counter register can be loaded with a value
from the processing element. The counter can be decre-
mented and its value used to perform conditional loads. The
most common mechanism for performing conditional execu-
tion with SIMD arrays is using such conditional loads. In
essence, both branches of a condition are computed and only
the correct results of the processing are loaded into result
registers (or memory locations). Two registers are used for
communication. The RV register provides access to the pro-
cessing elements above and below each processor. The RH
register provides left and right access. The VOLIO register,
connections and Volume Memory provide the access to the
volume in slice order along any of the three axes as described
in the previous section. There is also a shader unit associ-
ated with each processing element. Currently, the shader is
implemented as a reflectance vector shader [36]. We have not.
finalized the shader implementation yet. We have focused on
the rest of the design since we wish to provide volume pro-
cessing in addition to rendering and there are many good
shader designs already proposed in the literature which we
could incorporate [10, 19, 36, 23]. For the amount of shader
hardware included we are considering the following tradeoffs:

e Shader LUT performed in software. The controller
stores the reflectance vector table and loads the val-

M t ot i

Column Active

M e

16 1 Muxl 16--1 Mux

Shading
Unit

ALU

] [L;_l HHFR’V | o]

Reflectance
Vector OQutput

256x8
Work
Memory

A Y
ALU if ALU
CI

ALU

8-1 Mux [8-1 Mux

A

256x%x8
Volume
Memory

RV

Right PE

Normal Procesing Element

VOLIO Enhancements

Y
Down PE

Figure 5: PAVLOV SIMD Processing Element.

ues into the instruction stream. It takes 3 clock-cycles
per table element to implement this.

e One shader unit per processing element. This approach
requires a large amount of VLSI resources.

e Omne shader per chip. Assuming multiple PEs per chip,
we may require software pipelining. This approach al-
lows the shading unit a whole slice time to sequence
through all of the processing elements on the chip at
the expense of increased working memory.

Herbordt provides a very good analysis of design tradeoffs
for designing 2D SIMD mesh arrays in {14]. He analyzed
meshes for performing image processing tasks. Since volume
processing utilizes many of the same processing features as
image processing, we used two of Herbordt’s conclusions in
our design.

e Increasing the datapath width to 8 bits provides enough
speedup to rationalize the added VLSI requirements.
However, increasing the width past 8 bits provides lit-
tle speedup, if any, regardless of the increased VLSI
requirements

e The inclusion of Multiply circuit also provides signif-
icant specdup to warrant its inclusion despite its in-
creased VLSI requirements. (Many of the SIMD mesh
arrays designed for image processing include a Wallace
tree multiply cireunit since it computes an 8bit x 8bit
multiply in 1 cycle.)

The Processing elements also contain activation lines. There
are row and column lines for the entire array that are set by
the controller processor. Each Processing element logically
ANDs its activation lines together to use as an active flag

81

for that processing element. Currently this is only used for
the VOLIO register to allow rows or columns of the volume
memory to be read independently.

3.2

In keeping with the simple processing eclement idea of
SIMD architectures, we have designed the processing cle-
ments to utilize a microcode instruction format similar to
many of the SIMD arrays designed for image processing
[5, 6, 24]. What this means is that the processing elements
are designed such that the control points (select lines on
Muxes, recad/write lines on memory, etc.) become the bit
fields in the instruction. Instructions then set every con-
trol point for every cycle. Because of this, every instruction
runs on the processing element is a 1-cycle instruction. This
is advantageous because the programmer has more control
of the processing element. For example, multiple operations
can be performed in each cycle as long as they do not require
any of the same resources. The VLSI costs of achieving this
with regular microprocessors superscaler, pipelining the
instruction fetch/decode/execute - would be prohibitive to
placing many processing elements on each chip.

Table 1 shows all of the fields in a microinstruction
(grouped where multiple points control one function) along
with the action performed for the values placed in the field.
Since most fields are independent of each other, the process-
ing element can be programmed to perform many different
functions at one time. With this configuration, there are 25
control bits in the instruction (plus 8 address/constant bits)
which yields 2*° or 33 million possible different instructions.

The example instructions in Figure 6 are from the gradi-
ent calculation portion of a rendering algorithm we wrote.
The code segment picks up where G, is being calculated.

Instruction set

¢ .o 3 4 oo 7 8 M 11 12 13 14 ®* <16 17®**19 20 21 22* **24 25 ¢ 32
ALU Ctr MEM Address/
RB-Mux Operation l oper I RV-Mux RH-Mux | Oper VOLIO-Mux Constant J

0100 000 001100000011

0000 000 |01 J011[{00000100

0010 000 |10 00100000101

0000 000 |00 1011100000000 [RV<=UP;

0000 10010 000 1000100 (001100000000 IRB<=RV;

sS

ALU<=RA~RB; RA<=ALU; RB<=ALU_HI_BYTE; RV<=MEM[3];
MEM[4]<=WRITE_RA; RV<=DOWN;

MEM[5] <=WRITE_RB; RA<=RV; RV<=UP;

VOLIO<=VOLMEM

VOLIO<=DOWN

VOLIO<=VOLMEM

VOLIO<=DOWN

VOLIO<=VOLMEM

Figure 6: PAVLOV 33bit microinstruction format and ezample code from the gradient portion of a rendering algorithm.

Table 1. PAVLOV processing element microcode instruction
Op-codes.

RA<RA 0000 || RB<RB 0000
RA<=MEM 0001 RB<MEM 0001
RA<=RV 0010 RB<=RV 0010
RA<=RH 0011 RB<RH 0011
RA<=ALU 0100 RB<=ALU_HI_BYTE | 0100
RA<=ALU_IF_CTR | 0101 RB<ALU_IF CTR 0101
RA<VOLIO 0110 RB<=RA 0110
RA<=0 0111 RB<=0 0111
RA<=LUT R 1000 RB<=PHONG_1iR 1000
RA<LUT.G 1001 RB<=PHONG_2R 1001
RA<=LUT B 1010 RB<«=PHONG_1G 1010
RA«<LUT._A 1011 RB<=PHONG_2G 1011
RA<CONST 1100 RB<=PHONG_1B 1100
RA<=CONTR_VAL 1101 RB<«<PHONG.2B 1101
RA<=RB 1110 RB<=CONST 1110
RA<=255 1111 RB<=255 1111
RV<«=RV 000 || RH<=RH 000
RV<«<UP 001 RH<LEFT 001
RV<DOWN 010 RH<RIGHT 010
RV<4=RA 011 RH<=RA 011
RV<«=RB 100 RH<=RB 100
RV<=MEM 101 RH<=MEM 10
RV<=RH 110 || RH<=RV 11
ALU<=ADD 0000 CTR<=CTR 00
ALU<=SUB 0001 CTR<=DEC 01
ALU<=AND 0010 CTR<=CONST 10
ALU<=0R 0011 CTR<=RA 11
ALU<«=X0R 0100 VOLIO<=VOLIO 000
ALU<MULT 0101 VOLI0<=VOLMEM 001
ALU<=NOT 0110 VOLIO<«=UP 010
ALU<«=CMP 0111 VOLIO<DOWN 011
ALU<=RB 1000 VOLIO<LEFT 100
ALU<«=C ADD 1001 VOLID<«<RIGHT 101
MEM NO-OP 00 VOLIO<=RA 110
MEM<=WRITE RA 01 || VOLID<«RB 111
MEM<WRITE RB 10

82

The left and the right samples have already been collected
and stored in RA and RB. In the first instruction, the left
sample is subtracted from the right sample and the result is
stored in RA; the high-order byte of the output is stored in
RB (we need to store the sign of the output, since the range
of 8 bits minus 8 bits is -255..255). Concurrently with this
operation, the current plane of samples is loaded into the
vertical communication register, RV. The next instruction
stores the output of the gradient calculation into memory
and shifts the plane of samples up by one processing element.
The third instruction stores the sign information from the
gradient calculation into memory, stores the shifted sample
plane in RA and shifts the sample plane back down to its
original position. The fourth instruction shifts the sample
plane down by one more processing element. Finally in the
fifth instruction, the shifted sample plane is stored in RB.
Now, in each processing element, the G has been computed,
RA contains the sample below the current sample, and RB
contains the sample above the current sample. The process-
ing would continue by computing G, etc. Notice how the
mathematical operation for G, was performed concurrently
with some of the communication required for G,. Addition-
ally, the VOLIO enhancement registers are busy loading the
next Y-slice of the data without effecting the normal com-
putations in the processing element.

We propose to utilize an off-the-shelf micro-processor for
the controller. The row and column activate lines are
mapped into the memory space of the micro-processor.
There is also a memory mapped register whose value is
broadcast to every processing element in the 2D array. This
allows the controller to load a scalar value into the array.
Finally the microcode instructions are loaded, one for each
clock cycle, into another memory mapped location which is
also broadcast to every processing element each cycle. The
controller handles overlaying the instruction sequences from
Algorithm 1 on top of the code that is being run. This cre-
ates a dual instruction stream for the PEs. Additionally,
the controller ensures that it has finished loading each slice
before the algorithm requires it.

4 Performance

Most of the current designs of SIMD arrays for image pro-
cessing applications being fabricated today utilize 50 MHz
clock frequencies [5, 18, 21, 24] (all from Computer Archi-
tectures for Machine Perception, 1997 and 1995). The fu-
ture designs normally count on 100MHz. We analyze the
performance of the PAVLOV design for performing a Ray
Casting algorithm with a clock frequency of 50 MHz. To

Table 2: Required subslice sizes to perform parallel projec-
tions at 30Hz on PAVLOV. Assuming 50 MHz clock yields
1.6 mullion cycles/frame and the algorithm utilizes 405 cy-
cles per slice.

cycles

Volume Size | 2£%£2 | Sub-Slices | array size
128° 13020 32 16x32
2563 6510 16 64x64
5123 3255 8 128x256
1024° 1627 4 512x512

perforin real-time rendering at 30 frames/second, each frame
can utilize 1.6 million clock cycles. For a 256% volume, that
means that 6510 instructions can be executed for each vol-
ume slice. We have developed a simulation of the PAVLOV
array and written a parallel ray casting algorithm which uti-
lizes slice-order object-access. The algorithm requires 405
clock cycles per volume slice to render an image. Therefore,
we can provide 30Hz rendering of a 256® volume with only a
64 PAVLOV array and processing 16 different subvolumes.
(Of course with sub-slice processing there is both processing
and storage overhead which needs to be addressed in the fi-
nal system.) With a 64 Pavlov array, the sub-slices of the
volume can be loaded in 160 cycles according to our previous
analysis. This shows how our VOLIO enhancements and Al-
gorithmn 1 provide conflict-free access to volume slices along
any of the three major directions with no delay. Table 2
presents the same analysis for different volume sizes.

To show how this design can be used to implement various
rendering algorithms, we have coded a Shear-Warp projec-
tion algorithm which requires 409 clock cycles per slice and
a port of the Cube-4-Light [2] perspective algorithm which
uses 313 clock cycles per volume slice. The previous analysis
can be similarly applied to the runtime of these algorithms.

Figure 7(also in Color Section) shows three views of the
skull from the CT head dataset projected along each of the
major axes of the volume on a software simulator of the
PAVLOV system. The volume is 128x128x113 and the sim-
ulator is configured as 128x128 processing elements. Both
the X and the Y projections were computed in 52K cycles,
and the Z projection was computed in 45K cycles (because
there are only 113 Z-slices). The X and Z projections are
from viewpoints centered directly in the front and above the
volume while the Y projection is rendered from slightly to
the left of center.

We have extracted the common primitives used in volume
segmentation and analyzed the speed of computing them
on a general-purpose computer versus the PAVLOV array.
Srdmek [34] reports that it takes approximately 10 seconds
to perform Thresholding, Median Filtering, Eroston or Dila-
tion for a 256° volume on an HP9000. We notice that for all
of these operations that the direction of the slices does not
matter when we process the volume, so we can utilize the
main storage direction. Therefore, the next volume slice is
always available within 1 cycle. This is important because of
the small cycle count of these operations. The 2N + % steps
required to access non-storage-direction slices would domi-
nate the runtime and cause the extra VOLIO enhancements
to provide minimal advantage.

Specifically, the number of cycles to perform each of these
operations on the PAVLOV architecture ranges from 4 cy-
cles per slice for thresholding to 29 for erosion and dilation.
According to Sramek, these operations are usually repeated,

83

possibly requiring many erosion, dilation and floodfill oper-
ations to perform a robust segmentation. Additionally, de-
riving the order to perform the primitives is an interactive
process taking substantial human input.

For example, in Figure 8(also in Color Section) the meat
of a 128x128x29 lobster volume is segmented from the shell.
Figure 8a shows the entire volume rendered with a transltu-
cent shell making the meat visible. In Figure 8b, the meat
is segmented by simply performing a threshold above the
;gf) density level. Clearly, the segmentation achieved is of
low quality. Notice the pieces of the shell that are marked
as part of the lobster meat as well as antenna around the
head. To perform a more robust segmentation, we spent 2
hours testing different combinations of the previous primi-
tives (it took 5 to 10 minutes per segmentation attempt on
a HP9000). We developed the following primitive sequence
as the best segmentation from 13 different attempts:

Threshold - Dilate - Erode - Median_Filter -
- Erode - Dilate

Figure 8¢ shows the results of our effort to develop a robust
primitive sequence for segmenting the meat from the lobster.
Unfortunately, this sequence is most likely a one of a kind,
and the same process must be repeated whenever another
volume is to be segmented.

It would take 4 cycles per slice to perform the segmenta-
tion, 29 per slice for the erodes and dilates, and 25 per slice
for the median filter. This means that the PAVLOV sys-
tem is able to perform the sequence of segmentation prim-
itives in 4205 cycles (29 slices times 145 to perform all the
primitives) or 80 milliseconds at 50MHz. Furthermore, the
PAVLOV system is capable of producing real-time rendering
of the segmented data, immediately, so the user can examine
the segmentation performance and re-adjust the parameters
and primitive operation ordering.

The most challenging segmentation primitive to imple-
ment on a SIMD architecture is floodfill. While a naive
sequential algorithm performs floodfill with a simple recur-
sive call to all connected neighbors, the worst case SIMD
algorithm (here is one of the trade-off areas where SIMD
performs worse) may take 54 million instructions to com-
pletely floodfill a 256% volume if the portion to be filled is
the perfect 3D snake. This, however, is still in the 1 sec-
ond range, still faster than on a general-purpose processor.
Therefore, the PAVLOV system can still produce true inter-
active segmentation.

5 Resource Estimates

To get an idea of the VLSI costs of a system based on the
PAVLOV design, we compared our design to SIMD array
designs recently presented in the image processing commu-
nity. For example, at the recent Computer Architectures
for Machine Perception conference the following Chips were
presented.

e NEC has built a chip based on the IRAM [25] design. It
includes 32 8bit processors (each with 1IKByte of RAM)
per chip with 208 pins on a chip [12].

e The SLIM-II will be built with 64 8bit processors (each
with 256 bytes of RAM and each includes a multiplier
circuit) per chip and also 208 pins on a chip [5].

e Komuro et al. submitted a design for fabrication with
64x64 1bit ALU’s on 1 chip [24].

Using estimates based on these, we propose to put 8x8 pro-
cessing elements on each chip. With 8 processing elements
along each side of a chip, there will be 32 required connec-
tions to the neighboring chips. Additionally, because of our
proposed enhancements, each connection is actually 2 lines.
With 8bit data-paths, PAVLOV will require 512 pins just
for communication in addition to the required power, in-
struction and row/column activation pins. This design will
require time-multiplexing communication pins or the next
generation of chip with sufficient pin resources to be feasi-
ble. Beyond this, to create the 64x64 processing element
array described in Table 2 for real-time rendering of a 256°
volume will require 64 chips in an 8x8 layout.

An alternative implementation along the line of Komuro
et al.’s with 1bit datapaths may provide a more efficient de-
sign. Assuming that a 1bit rendering algorithm would take
8t imes as many cycles as the algorithm with 8bit datap-
aths, the rendering algorithmm would then take 3240 cycles
per slice. With this count, only two subslices may be pro-
cessed using t he same 50MHz clock and 30Hz frame rate for
a 256% volume. However, following Komuro et al.’s design
with 64x64 processing elements per chip, a 256x128 array
can be built with only 8 chips in a 4x2 layout, 8 times fewer
chips than with 8bit datapaths.

6 Conclusions

We have proposed architectural improvements to 2D mesh
architectures which allow conflict-free access to volume slices
along arbitrary axes. Overcoming this restriction allows 2D
mesh architectures to achieve true real-time volume render-
ing rates for the first time. We have proposed a SIMD design
for the PEs that enjoys the innate advantages of no synchro-
nization delay and no communication overhead. We have
demonstrated that the fine grain data parallelism inherent
in volume rendering and processing utilizes these advantages
to such a degree that they overcome the SIMD disadvantage
of requiring worst-case processing. The design can perform
various volume rendering algorithms in real-time. Addition-
ally, the design is capable of accelerating volume processing
tasks. We believe that with the advent of real-time volume
rendering architectures, that interactive volume processing
will become desirable. We show segmentation as an exam-
ple of volume processing, but feel that future applications of
voluiie processing are unpredictable and therefore wanted
to provide a programimable solution.

We are currently analyzing the performance of the pro-
cessing element design. For example, the current design
cont ains two registers as inputs to the ALU and two reg-
isters for communication. These could be combined. We
would need to analyze the impact on algorithm runtimes.

We need to complete a study of the tradeoffs on algorithms
to process volurnes larger than the processing element array
(since our design utilizes it). For instance, the volume can
be stored. and subsequently processed as subblocks or inter-
leaved.

Finally, the 8x8 layout of 64 chips is not as concise as
such state of the art volume rendering architectures as the
EM- Cube design that Mitsubishi Electric Research Labs is
currently building [31]. However, because PAVLOV is pro-
grammable, it provides more functionality. It allows mul-
t iple rendering algorithms and, more importantly, it allows
volume processing such as segmentation and feature extrac-
tion. Therefore, it would have a different market than as a
PC plug-in card.

84

Figure 7: Parallel projections of 128z128x118 CT head along
three azes from our software simulator using parallel projec-
tions. X and Y projections were computed in 52K cycles, Z
projection in 45K cycles (only 113 Z-slices). The Y projec-
tion shows non-orthogonal parallel rendering.

Acknowledgements

This work was supported by the National Science Founda-
tion under grant MIP9527694, Office of Naval Research un-

Figure 8: Segmenting the lobster. (a) Original dataset, (b)
meat segmented by performing ;22 threshold, (c) meat seg-
mented by performing Threshold - Dilate - Erode - Median
Filter - Erode - Dilate.

der grant N000149710402, Mitsubishi Electric Research Lab,
Japan Radio Corp., Hewlett-Packard, and Intel Corp. The
CT head dataset is from the UNC database. The lobster
dataset is courtesy of AVS Inc.

85

References

(1]

(4]

(8]

(9]

[10)

[13]

[16]

7]

P. Baglietto, M. Maresca, and M. Migliardi. Euclidean Distance
Transform on Polymorphic Processor Array. In Proceedings of
the Third IEEE International Workshop on Computer Archi-
tectures for Machine Perception, pages 288-293, Como, Italy,
Sept. 1995. IEEE.

I. Bitter and A. Kaufman. A Ray-Slice-Sweep Volume Render-
ing Engine. In Proceedings of the 1997 Siggraph/Eurographics
Workshop on Graphics Hardware, pages 121-130, Los Angeles,
CA, Aug. 1997. ACM.

M. Brady, K. Jung, H. Nguyen, and T. Nguyen. Two-Phasc
Perspective Ray Casting for Interactive Volume Navigation. In
Proceedings of Visualization '97, pages 183-189, Pheonix, AZ,
Oct. 1997. IEEE.

1. Cartbom, 1. Chakravarty, and W. M. Hsu. SIGGRAPH 91
Workshop Report: Integrating Computer Graphics, Computer
Vision, and Image Processing in Scientific Applications. Com-
puter Graphics, 26(1):8-10, Jan. 1992.

H. Chang, S. Ong, C. Lee, M. H. Sunwoo, and T. Cho. A General
Purpose SLiM-II Image Processor. In Proceedings of the Fourth
IEEE International Workshop on Computer Architectures for
Machine Perception, pages 253-259, Cambridge, MA, Oct. 1997,
IEEE.

E. L. Cloud. The Geometric Arithmetric Parallel Processor. In

Proceedings of Second Symposium on Frontiers of Massively
Parallel Processors, George Mason University, Oct. 1988.

W. J. Dally. Analysis of k-ary n-cube Interconnection Networks.
IEEE Transactions on Computers, 39(6), June 1990.

M. de Boer, J. Hesser, A. Gropl, T. Gunther, C. Poliwoda,
C. Reinhart, and R. Manner. Evaluation of a Real-Time Direct
Volume Rendering System. In Proceedings of the 11th Furo-
graphics Workshop on Graphics Hardware ’96, Poitiers, France,
Aug. 1996. Eurographics.

M. Doggett. An array based design for Real-Time Volume Ren-
dering. In Proceedings of the 10th Eurographics Workshop on
Graphics Hardware ’95, pages 93 101, Maastricht, The Nether-
lands. Aug. 1995. Eurographics.

M. C. Doggett and G. R. Hellestrand. A hardware architecture
for video rate smooth shading of Volume data. In Proceedings
of the 9th Eurographics Workshop on Graphics Hardware 94,
pages 95- 102, Oslo, Norway, Sept. 1994. Eurographics.

R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Ren-
dering. In Computer Graphics, SIGGRAPH 88, pages 65 74.
ACM, Aug. 1988.

Y. Fujita, S. Kyo, N. Yamashita, and S. Okazaki. A 10 GIPS
SIMD Processor for PC-based Real-Time Vision Applications

Architecture, Algorithm Implementation and Language Support
—. In Proceedings of the Fourth IEEE International Workshop
on Computer Architectures for Machine Perception, pages 22

32, Cambridge, MA, Oct. 1997. IEEE.

T. Gunther, C. Poliwoda, C. Reinhart, J. Hesser, R. Manner, H.-
P. Meinzer, and H.-J. Baur. VIRIM: A Massively Parallel Proces-
sor for Real-Time Volume Visualization in Medicine. In Proceed-
wngs of the 9th Eurographics Workshop on Graphics Hardware
’94, pages 103 -108, Oslo, Norway, Sept. 1994. Eurographics.

M. . Herbordt. The Evaluation of Massively Parallel Array
Architectures. PhD thesis, University of Mass., Department of
Clomputer Science, 1994. | also TR95-07.

M. €. Herbordt. Univ. of Houston-CAAD Lab, Mar.
1998. http://indus.ee.uh.edu/ideas. html#SIMD Coprocessors
are Neat!

W. M. Hsu. Segmented Ray Casting for Data Parallel Volume
Rendering. In Parallel Rendering Symposium, pages 7 1 4, San
Jose, CA, Oct. 1993. IEEE.

K. Hwang. Advanced Computer Architecture: Parallelism,
Scalability, Programmability. McGraw-Hill, 1993.

(18]

[19]

[27]

[30]

{31)

M. Johannesson and M. Gokstorp. Video-rate Pyramid Optical
IFlow computation on the Linear SIMD Array IVIP. In Proceed-
ings of the Third IEEE International Workshop on Computer
Architectures for Machine Perception, pages 280-287, Como,
Italy, Sept. 1995. IEEE.

S. Juskiw and N. G. Durdle. Interactive Rendering of Volumetric
Data Sets. In Proceedings of the 9th Eurographics Workshop on
Graphics Hardware '94, pages 86-94, Oslo, Norway, Sept. 1994.
Eurographics.

A. Kaufman and R. Bakalash. A 3-D Cellular Frame Buffer.
In Eurographics 85, pages 215-220, Nice, France, Sept. 1985.
Furographics.

H.-N. Kim, M. J. Irwin, and R. M. Owens. MGAP Applications
in Machine Perception. In Proceedings of the Third IEEE In-
ternational Workshop on Computer Architectures for Machine
Perception, pages 67-73, Como, Italy, Sept. 1995. IEEE.

(. Knittel and W. Strasser. VIZARD: Vizualization Acceler-
ator for Realtime Display. In Proceedings of the 1997 Sig-
graph/Eurographics Workshop on Graphics Hardware, pages
139 146, Los Angeles, CA, Aug. 1997. ACM.

G. Knittel and W. Strauser. A Compact Volume Rendering Ac-
celerator. In Symposium on Volume Visualization, pages 67-74,
Washington, DC, Oct. 1994. IEEE.

T. Komuro, I. Ishii, and M. Ishikawa. Vision Chip Architecture
Using General-Purpose Processing Elements for 1ms Vision Sys-
tem. In Proceedings of the Fourth IEEE International Work-
shop on Computer Architectures for Machine Perception, pages
276-279, Cambridge, MA, Oct. 1997. IEEE.

. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick. Scalable
Processors in the Billion-Transistor Era: [RAM. I[IEEE Com-
puter, 30(9):75--78, Sept. 1997.

K. A. Kreeger and N. R. Vempaty. Bandwidth Equalization to
achieve Hypercube Performance from a Mesh Connected Massive
Parallel Processor. In Proceedings of 5th Australian Supercom-
puting Conference, pages 690-698, Melbourne, Australia, Dec.
1992, CSIRO.

P. Lacroute. Analysis of a Parallel Volume Rendering System
Based on the Shear-Warp Factorization. [EEE Transactions
on Visualization and Computer Graphics, 2(3):218-231, Sept.

1996.

. Lacroute and M. Levoy. Fast Volume Rendering using a Shear-
warp Factorization ot the Viewing Transform. In Computer
Graphics, SIGGRAPH 94, pages 451-457, Orlando, FL, July
1994. ACM.

U. Neumann. Communication Costs for Parallel Volume-
Rendering Algorithins. IEEE Computer Graphics and Appli-
cations, 14(4):49-58, July 1994.

K. L. Novins, F. X. Sillion, and D. P. Greenberg. An efficient
method for volume rendering using perspective projection. (Com-
puter Graphics, 24(5):95--100, Nov. 1990.

R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hi-
att, and T. Ohkami. EM-Cube: An Architecture for Low-Cost
Real-Time Volume Rendering. In Proceedings of the 1997 Sig-
graph/Eurographics Workshop on Graphics Hardware, pages
131-138, Los Angeles, CA, Aug. 1997. ACM.

H. Pfister and A. Kaufman. Cube-4 - A Scalable Architecture
for Real-Time Volume Visualization. In Symposium on Volume
Visualization, pages 47-54, San Francisco, CA, Oct. 1996. ACM.

P>, Schroder and G. Stoll. Data Parallel Volume Rendering as

Line Drawing. In Workshop on Volume Visualization, pages
25-32, Boston, MA, Oct. 1992. ACM.

M. Srdmek. Visualization of Volumetric Data by Ray Tracing.
Austrian Computer Society, Austria, 1998. ISBN: 3-85403-112-2.

(. Vezina, P. A. Fletcher, and P. K. Robertson. Volume Ren-
dering on the MasPar MP-1. In Workshop on Volume Visual-
ization, pages 3-8, Boston, MA, Oct. 1992. ACM.

86

136]

(39]

D. Voorhies and J. Foran. Reflection Vector Shading Hardware.
In Computer Graphics, SIGGRAPH 94, pages 163-166, Or-
lando, FL, July 1994. ACM.

C. M. Wittenbrink and A. K. Somani. Permutation Warping for
Data Parallel Volume Rendering. In Parallel Rendering Sympo-
stum, pages 57-60, San Jose, CA, Oct. 1993. IEEE.

C. M. Wittenbrink and A. K. Somani. Time and Space Optimal
Data Parallel Volume Rendering using Permutation Warping.
Journal of Parallel and Distributied Computing, 46(2):148-164,
Nov. 1997.

T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip,
J. Rhoades, and R. Whitaker. Direct Visualization of Volume
Data. IEEE Computer Graphics and Applications, 12(4):63
71, July 1992,

