
PAVLOV: A Programmable Architecture
for Volume Processing

Kevin Kreeger and Arie Kaufrnant

Center for Visual Computing (CVC)
and Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11749-4400, USA

Abstract

We present a purullel 2D mesh connected architecture with
SIML) processing elements. The design allows for real-time
volume rendering as well as interactive 30 segmentation and
.1D feature extraction. Thas zs possible because the SIMD
processing elements are programmable, a feature which also
ullows the use of many different rendering algorithms. We
present an algorithm which, with the addition of hardware
re,sources, provides conflict free access to volume slices along
any of the three major axes. The volume access conflict
bus been the main reason why previous similar architectures
could not perform real-time volume rendering. We present
the performance of preliminary algorithms on a software
simulator of the architecture design.

CR Categories: C.1.2 [Processor Architectures]: Mul-
t,iple Data Stream .4rchitectures (Multiprocessors)-Single-
irlst,rllc:tion-streanl, multiple-data-stream processors (SIMD)
; 1.3.1 [Computer Graphics]: Hardware Architecture-
Graphics processors, Parallel processing; 1.4.6 [Image Pro-
c.rssillg And Computer Vision]: Segmentation;

Keywords: Volume Rendering, Volume Processing, Seg-
mentation, SIMD, 2D Mesh Array

1 Introduction

Real-time and near real-time rendering of volumetric
tlatasets is finally becoming possible. Recent advances pro-
vide users with different choices depending on the require-
ments and resources of the application. Near real-time vol-
ume rendering systems are now available in software for
users with access to parallel SMP computers such as the
SC1 Challenge [27] or multiple processor Intel machines with
3D graphics accelerator cards [3]. Recent special-purpose
architccturc> designs that have actually been built include
VIRIM [13] and VIZARD [22]. For higher quality render-
ing, real-time performance, and commercial availability, Mit-

t { kkreeger,ari}Qcs.sunysb.edu

subishi Electric Research Labs plans to release a PC1 bus
plug-in card for performing volume rendering [31] which is
based on Cube-4 [32]. Finally, users everywhere will be able
to afford to add an accelerator card to their PC which will
enable them to view their volumetric datasets in real-time.
This advancement has the potential to greatly increase the
productivity of scientists, medical professionals and techni-
cians who analyze three dimensional data. The user will be
able to interactively explore the volume, adapt the data-to-
color mapping function, and manipulate other viewing pa-
rameters to more quickly analyze and interpret their data.

Now that high quality real-time volume visualization is
on the horizon, the users will, of course, begin to demand
more functionality. For example, researchers are already be-
ginning to explore segmentation of volume data and feature
extraction. We call this volume processing. If the volumetric
data is static, it can be pre-processed one time on a general-
purpose machine and the user can visualize the processed
datasets. However, if the data is being collected in real-time
or the user desires to interactively adapt the segmentation
parameters, general-purpose processors cannot perform this
process at the desired rate. In fact, it is reported that “seg-
mentation of volume data will always require a high degree
of user interaction” [4]. For this reason architectures arc
needed that will provide, at the least, sub-second runtimes
for common volume processing algorithms. Meanwhile, pro-
posed hardware rendering architectures are ASIC pipelines
for performing volume rendering only. They have not been
configured to perform such volume processing tasks.

Segmentation is the process of dividing a volume into two
subsets, one of which contains all the voxels possessing a
certain property and the other being the rest of the voxels.
A simple example of a property is “all voxels whose density
value are above a certain threshold”. It would be trivial t,o
compute these two sets. Add the requirement that all of the
voxels must also be either 6 or 26 connected to some seed
voxel and it gets more complicated. Now attempt to perform
this operation robustly on data collected from a noisy sensor
and it becomes quite a challenge [34].

We propose a programmable architecture for performing
volume processing and viewing that we call PAVLOV --
Parallel Array for VoLume processing and Viewing. The
PAVLOV machine is a two-dimensional array of SIMD ---
Single Instruction Multiple Data - Processing Elements
that would operate as a coprocessor for performing vol-
ume operations and rendering. This architecture is pro-
grammable for a variety of tasks. In [8] de Boer et al. pre-
sented lessons which they learned from building and testing
the first ever operable volume rendering accelerator, VIRIM.
They reported that the most important feature in the eyes
of the user was that of segmentation. They went on to state

77

that the main benefit of their system was its flexibility to
perform various volume rendering algorithms.

SIMD computer architectures have experienced a decline
in popularity over the last couple of years, reasons being the
gCIltTiL1 downswing of massively parallel architectures (most,
SIMD machines are massively parallel), and SIMD proccss-
ing elements not taking advantage of the multitude of recent
work on micro-processors. Since one of the prevailing the-
ories in most SIMD machine design is to highly replicate
very simple processing elements, very few contain the com-
plex processing elements associated with the recent advances
in niicroproccssor design. Another reason is that SIMD ar-
chitectures provide a worst-case approach to algorithm per-
formance instead of an average case approach because, by
design. they must also work on portions of the dataset that
don’t require processing.

Despite this, SIMD machines have been holding ground in
t,he image processing field. Researchers in image processing
have discovered that, the advantages of SIMD architectures

110 synchronization delay and no communication over-
llt’ild provide tradeoffs and outweigh the disadvantages
for the t,ypes of fine grain data parallel processing found
in image processing algorithms and, as we show, volume
processing. In fact, most recent image processing architec-
tures are designed either entirely SIMD or with a SIMD
core for performing the low-level portions of the algorithms
[l, 12, 6, 5, 18, 21, 241. Volume processing contains many
of t,hc same inherent low-level features of image processing.
‘l’hey both contain fine grain data parallelism ~ where algo-
rithms perform the exact same processing on each and every
data element ~ and the data is represented as a regular ar-
ray of scalar data. Furthermore, the processing of each data
item not only requires minimal information from other data
items, but also what it, does require is confined to a localized
neighl~orliood.

Additionally, some researchers still believe that there is
a fut,ure for SIMD arrays because they offer the following
bent:fit,s:

l SIMD arra,ys, almost by definition, maximize computa-
tional capability per unit hardware (chip, board, etc.).

l SIMD arra,ys are inherently easy to build and code.

l SIMD arrays provide the power of an ASIC implemen-
tat,ion with the flexibility of a solution on a general-
purpose machine for many applications (especially ones
with fine-grain data parallelism) [15].

2 Previous SIMD volume rendering Work

Schroder and Stoll proposed an algorithm for the Connection
Machine CM2 where the volume is stored one beam per pro-
ccssi~~g element. However, the inherent latency of the CM2
limit,ed t,heir performance to 4 frames per second for a 1283
volunn~ [33]. Yoo et al. presented a method to perform vol-
ume rendering on the Pixel Planes 5 machine partly utilizing
the 2D SIMD mesh pixel processors and partly the MIMD
Graphics Processors [39]. They achieved 20 frames per sec-
ond for a 128x128~56 volume. Hsu designed a segmented
Ray Casting approach for the DECmpp SIMD mesh [16].
However it, distributed the volume in sub-blocks and only
achieved 4-5 frames/second. Both Vezina et al. [35] and
Witt.enbrink and Somani [38] pronosed algorithms for the
MASPAR MP-1 (a SIMD 8-COUI 2~ ted mesh). Yet, neither
achieved frame rates better that 2-5 frames per second. All
of t,llcsc, methods suffered because of the latency inherent

Controller

Figure 1: System level PAVLOV design.

in large general-purpose machines. Doggett [9] presented
a special-purpose architecture with a 2D array of process-
ing elements for volume rendering. However, his processing
elements are ASICs, not programmable SIMDs. Also, the
machine is a shared memory design and the volume data
flows from a single memory buffer through the array.

3 PAVLOV Architecture

We propose a SIMD parallel architecture for performing vol-
ume processing. The processing elements are arranged in a
2D mesh with a RISC based controller processor. PAVLOV
utilizes a distributed memory design. This means that a
portion of the memory is associated with each processing
element as shown in Figure 1. Processing elements commu-
nicate with each other through direct connections with the
nearest processing elements in each of the two dimensions
of the array. The processing elements on the edges of the
array are connected with the associated processing element
on the opposite edge as shown in Figure 1. This topology
can be considered as either a 2D plane with wraparound,
or as a torus (picture rolling the 2D plane to make a tube,
then rolling the tube to make a donut) [17]. For volume pro-
cessing applications we consider the topology as a 2D plane
with wraparound (we sometimes utilize the wraparound and
sometimes not). A 2D array of SIMD processing elements
inherently processes slice order algorithms [2, 11, 20, 28, 301
very efficiently, since an entire slice of the volume is pro-
cessed at one time. Therefore, proven slice-order algorithms
can be easily ported to the PAVLOV system.

78

1;igul.c’ 2: Moppi7~g u 30 volume onto a 2D array such that a

complete beam, of ~oscl,s along the Z-axis are stored on each
p7uwm71~~ elcmf:7~t

To a<‘<‘ess slices of a volume stored in the distributed mem-
ory of a 2D arra,y, WC propose storing the volume as follows.
Each processing c+ment, in the 2D array of size N2 has an
(:I;, !/) index. Since a 3D volume of size N3 contains voxels
with (zI:, ?,, 2) indexes, the volume can be easily mapped onto
t,ho 2D array in such a way that all N voxels which have z
in&:x X’ and :y index Y’ are stored in a processing element
with index (X’,Y’). This approach, shown in Figure 2, is
used by [33, 35, 371. Mapping the volume in this manner
allows conflict free access to any Z-slice ~~~ plane of voxels
with t,ho same z index -~ by the plane of processing elements.
Howc~cr. slice-order algorithms sometimes require accessing
t,he volume in X-slices or Y-slices. Previous attempts to al-
low conflict free access to these slices of the volume required
cithtlr t,hrcc copies of the volume data or some mechanism
to transpose the volume before beginning processing. We
propost’ thr following algorithm and architectural enhance-
ment,s t,o provide conflict free access to slices of the volume
in any of the t,hree major viewing directions.

Assuming the volume is stored as above, accessing the Z-
slices conflict fret> is trivial. A 2D example is shown in Fig-
ure 3a for slice, 0 and 3b for slice 2. Each case re

1
uires only

one t.imc: step to load the entire slice since the N voxels in
each slice are distributed among all N” processing elements.

When accessing an X-slice of the volume, the entire slice
of data is stored in one column of t,he 2D array. Thus, only
one column of the slice can be read at one time. It requires
N iterations of reading N voxels each to access the entire
slice. Also, t,he data needs to bc shifted across the array to
align the slice with the Iv2 processing elements. For exam-
ple, in Figure 3c, slice 0 is being loaded. It is read one beam
at a t,ime, and only the processing elements on column 0 are
reading voxel data. Between reading each beam, the slice is
shif~,c~tl to the left by one column of processing elements uti-
lizing wraparound communication at the edges of the array.
Thcrcfore, there are two steps associated with each column
of data being read. Time steps 1 and 2 show these two steps
for thcl first, column of data. The remaining 7 columns of
data art: read similarly, so that at time step 14 the entire
slice is loaded, and one more shift operation aligns the slice

J- X

Y (cl

lb)

1 101 1 1 1 I 1] t=1

1 ~0~1~ 1 1 1 1 I t=2

1011121 1 1 1 1] t=4

fll2l3l I I I loI t=6

1213141 1 1 1011 t=8

[314151 1 lOlll2l t=10

1415161 101112131 t=12

t516171011[213141 t=14

[617101112]314151 t=15

1710111213141516 t=16

10111213j41516171 t=17

(d)

Figure 3: 2D view of loading volume slices. (a) Z-slice 0 ,(b)
Z-slice 2 ,(c) X-slice 0 ,(d) X-slate 2.

with the processing element array. Similarly for slice 2 in
Figure 3d the slice is loaded column by column so that the
entire slice is read at time step 14. Now, however, it requires
t,hree ext,ra shift, operations to align the slice with the pro-
cessing elements. For slices from a column numbered greater
t,han than $, the slice is shifted the opposite direction after
it is loaded. Therefore, this algorithm accesses slices along
any axis of an N3 volume in 2N + $ steps. This works the
same for Y-slices by accessing the volume in a row by row
fashion.

The 2N + q latency involved with the previous algorithm
is too large to enable real-time volume rendering. Simply in-
creasing the clock rate would only decrease the latency, not
remove it, and the latency would still be the same percentage
of the overall runtime. This occurs because of the volume
rc-distribution required when processing is decomposed in
image-order. Neumann has shown in [29] that dissect,ing
the processing and storage this way creates greater commu-

79

I<‘igurc 4: PAVLOV cnllanced SIMD mesh array to proGdc
am:,s.s to vol7~7rse slrces along any of the three axes.

ni(.at ion requirements than object decomposition process-
iug. However, image decomposition allows simpler, and
r,hus more efficient,, processing once the data is redistributed.
‘l‘hc~rc~fort~, WC propose the following architectural improve-
rncrns which completely hides the volume access latency by
allowing each volume slice t,o be loaded while the previous
slice is being processed.

l IZdd a register to each processing elcmcnt which is uti-
lized for volume I/O (VOLIO). Interconnect the VO-
LIO registers separately from the interconnections asso-
ciated wit,11 t,he normal processing elements. With sep-
arat,c interconnections, the VOLIO registers can shift
data without, interrupting t,he processing element per-
forming it,s normal inst,ructions (see Figure 4).

. l’rovitlc a mechanism to allow only one row/column of
t,he processing elements to perform an instruction. This
is rnumall,y done with an activity flag on SIMD arra,ys.

One can visualize the proposed VOLIO enhancements as
a layor of volume memory access elements which lie undcr-
neat h the regular processing elements as shown in Figure 4.
The extra PEs must be arranged this way, simply laying out,
ii mesh that. is t,wicc as large only increases the memory ac-
cess lat,ency. Also, one could consider the enhancements as
simply increasing the interproccssor bandwidt,h - a solution
t,hat has been shown to increase the communication perfor-
mance of mesh connected arra,ys with minimal VLSI costs
[7, 261. Alt,ernat,ively, the array plane of VOLIO registers can

bc envisioned as a fully associative volume memory cache.
This cache utilizes the regular access patterns of slice-order
algorit,hms 1.0 eliminate memory latency by prefetching the
dar,it that is about t,o be used.

lsing t,hc c~nhancemcnts, Algorithm 1 loads the VOLIO
rcgisl~crs (there is actually a 2D plane of registers since every
processing element contains its own VOLIO register) with
X-slices iu 2N + $ st,eps. Additionally, it does this without
affecting the normal functioning of the processing clement.
Therefore. as long as it takes at least 2N + $ steps to pcr-
forni the normal processing on each slice of the volume, the
next slice is available for the algorithm to use with no de-
lav. The speedup achieved by the addition of the VOLIO
(‘rlllilIl(.rrrlr:rlt,s ranges as a function of the number of cycles
spent processing each slice. Specifically, the enhancements
product ii sprcdup of 2 (over a normal 2D SIMD mesh) when
the per-slice processing is exactly 2 N + p. If there are more
or I(ss:, cycle:, processed per s1ic.e. t.he specdup is less. The
t.irnc> to perform one slice of an algorithm which has C cycles
lier slice without the VOLIO enhancements is

for i = 1 to N
Set CO~LI~~[CURRSLICEI active
load VOLIO with VOLUMEMEMORY [i]
Set all columns active
shift VOLIO by 1 row

endfor
if c’rJRRSLICE< > NUMSLICES/z

for i = 1 to CURRSLICE
shift VOLIO back 1 row

endfor
else

for i = CIJRIISLICE to NIJMSLICl3S
shift VOLIO by 1 row

endfor
endif

Algorithm 1: provides access to X-slices of the volurr~ using
the VOLIO enlaancements. Since this 7'2171s concurrently with

the processzng of the previous slice, the slates are uvailahlt
with, no delay

while the time with the VOLIO enhancements is

Ti = MAX((2N + ;), C)

Notice that if C is much smaller than 2N + 9, then 2N + $
dominates both Ti and TZ and therefore produce minimal
speedup. The effect is similar when C is very large and C
itself dominates both runtimes. Only when C is close to
2N + $ will Ti be 2 times larger than T2. An altcrnativc
option would be doubling the VOLIO resources t,o provide
better speedup at the maximum point as well as providing
a larger range where speedup is achieved.

3.1 PE Architecture

Figure 5 shows all of the components of each of the SIMD
processing elements. At the heart of the processor is an
8bit .4LU with multiply capability. Two registers, RA and
RB are the inputs to the ALU. There is a 256x8bitj working
memory. The Counter register can be loaded with a value
from the processing element. The counter can be decre-
mented and its value used to perform conditional loads. The
most common mechanism for performing conditional execu-
tion with SIMD arrays is using such conditional loads. III
essence, both branches of a condition are computed and only
the correct results of the processing are loaded into result
registers (or memory locations). Two registers are used for
communication. The RV register provides access to the pro-
cessing elements above and below each processor. The RH
register provides left and right access. The VOLIO register,
connections and Volume Memory provide the access to the
volume in slice order along any of the three axes as described
in the previous section. There is also a shader unit assoc-
ated with each processing clement. Currently, the shader is
implemented as a reflectance vector shader [36]. We have not
finalized the shader implementation yet. We have focused on
the rest of the design since we wish to provide volume pro-
cessing in addition to rendering and there are many good
shader designs already proposed in the literature which we
could incorporate [lo, 19, 36, 231. For the amount of shader
hardware included we are considering the following tradeoffs:

l Shader LUT performed in software. The controller
stores the reflectance vector table and loads the va-

80

Up PE
4 4

Column Active
I

'CL--.- r-4 1 TTT T --. 3

:’ r+r ALU if ALIJ ALU I I RI, RH

ght PE

Figure 5: PAVLOV SlMD Processing Elemenl

ucs into the instruction stream. It takes 3 clock-cycles
pc’r table clement, t,o implement this.

. One shader unit, per processing element. This approach
rc,quires a lXgf! amount of VLSI resources.

. One shader per chip. Assuming multiple PEs per chip,
WC’ mihy require soft,ware pipelining. This approach al-
lows tllo shading unit a whole slice time to sequence
t,hrough all of the processing elements on the chip at
1,1le rxpt~nse of increased working memory.

11crbortlt. provides a very good analysis of design tradeoffs
for tll:signing 21~ SIMD mesh arrays in [14]. He analyzed
IIM~U~S for performing image: processing t,asks. Since volume
proc.cssing utilize‘s many of the same processing features as
imag(x processing, wc used two of Hcrbordt’s conclusions in
our fff3igrl.

l Incrc,asing the> datapath width to 8 bits provides enough
spoedup to rationalize the added VLSI requirements.
IHowever, increasing the width past 8 bit,s provides lit,-
I lo spc~dup. if any, regardless of the increased VLSI
rc~f~uirerrifmts

l Thr~ inclusion of Mult,iply circuit, also provides signif-
i(.aIlt, spec~lup to warrant its inclusion despite its in-
c~rc~asc:d \‘LSI requirsmcnts. (Many of thr SIMD mesh
;arravs tlcxsigned for image processing include a Wallace
t rc(‘ muhiply circ.uit. sincr it comput,cs an 8hit. x shit,
Irlultiply in 1 cyc,lc.)

The Proc,cGng clcments also contain activation lines. There
art’ row anti columr~ lines for the entire array that are set, by
I 11~~ controller processor. Each Processing clement, logically
AN115 its ilctivatifm lines togctlicr t,o 1151’ as an active flag

for that processing element. Currently this is only used for
thr VOLIO register to allow rows or columns of the volume
memory to bc read independently.

3.2 Instruction set

In keeping with the sam~~le ~~rocessing cZcmr/,r.nt idea of
SIMD architectures, we have designed the processing tlc-
~rlcwt,s to utilize a microcode instruction format, similar to
many of the SIMD arrays designed for image processing
[5, 6, 241. What this means is that the processing clernents
arc designed such that, the control point,s (select lines on

Muxes, rcad/writ,e lines on memory, etc.) become the bit.
fields in the instruction. Instructions then set every con-
t.rol point for c~~zr,y cycle. Becausr of this, every instruction
runs on the processing element is a l-cycle instruction. This
is advantageous because the programmer has Inorc control
of the processing element. For example, multiple operations
<:an bc performed in each cycle as long as they do not require:
;LII~ of the same resources. The VLSI costs of achieving this
wit,11 regular microprocessors superscaler, pipelining the
instruction fetch/decode/execute would be prohibitive to
placing many processing elementas on each chip.

Table 1 shows all of the fields in a mic:roinstructit,n
(grouped where multiple points control one function) along
wit,11 thr action performed for the values placed in the field.
Since most fields are independent of each other, the process-
ing elcmcnt, can be programmed to perform many different
functions at one time. With this configuration, there arc 25
control 1)it.s in the instruction (plus 8 address/constant, bits)
which yields 225 or 33 million possible diRerent instructions.

The example instructions in Figure 6 arc from the, grad-
cnt. calculat,ion portion of a rendering algorithm WC wrot,(‘.
7’11~ code segment picks up where G,7 is being calculatc~tl.

81

I 0 . . . 3 4 . . . 7 * . . . 11 12 13 14 l l 016 17. l =19 20 21 22. l -24 25 l -' 32
Address/

m-MUX RB-MUX Operation

0000 00 010 000 01 011 00000100 MEM[4]<=WRITE-RA; K"<=DOvm; "OLIO~=DOwN

0000 00 001 000 10 001 00000101 MEM[S]<-WRITE-m; Fa<=R"; R"<="P: "OLIO<="OLMEM

0000 00 001 000 00 011 00000000 R"<="P; VOLIO<=DOWN

0000 00 000 000 00 001 00000000 RB<=RV; VOLIO<=VOLMEM

Figurc 6: PAVLOV .“1’3bzt microin..struction format and example code from the glndient portion of a rendering algorithm

‘I’ablr 1: PAVLOV processing element microcode instructzon

RA+RA
RA&MEM
RA+RV
RAeRH
RA+=ALU
RA+ALU-IF-C
RA+VOLIO
RAeO
RA+LUT-R
RA+LUT.G
RA+=LUT-B
RA+LUT-A
RA+CONST
RA+CONTR-VA
RA+=RB
RAe=255
iiVt=RV
RV+UP
RVeDOWN
RVe=RA
RV+RB
RVeMEM
RV-+RH
ALU+ADD
ALUe=SUB
ALU+AND
ALUe=OR
ALU+=XOR
ALU+MULT
ALUeNOT
ALU+CMP
ALUt;RB
ALU+C ADD
MEM NO-OP
MEMeWRITE I
MEM-kWRITE I -

0000 RBe=RB
0001 RBeMEM
0010 RBeRV
0011 RB+RH
0100 RB+ALU-HI-BYTE
0101 RB+ALU-IF-CTR
0110 RB+RA
0111 RBeO
1000 RBe=PHONG-1R
1001 RBePHONG2R
1010 RBt=PHONG-1G
1011 RB+PHONG_2G
1100 RB+PHONG-1B
1101 RB+PHONG_2B
1110 RB+CONST
1111 RBe255

000 RH+RH
001 RH+LEFT
010 RH+RIGHT
011 RH+=RA
100 RH+RB
101 RH+MEM
110 RH+RV

0000 CTR+CTR
0001 CTR+DEC
0010 CTReCONST
0011 CTReRA
0100 voLIo~voLIo
0101 VOLIOeVOLMEM
0110 VOLIO~UP
0111 VOLIO+DOWN
1000 VOLIOeLEFT
1001 VOLIO+RIGHT

00 VOLIO-+RA

::,

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

000
001
010
011
100

10
11
00
01
10
11

000
001
010
011
100
101
110
111

The left and the right samples have already been collected
and stored in RA and RB. In the first instruction, the left.
sample is subtracted from the right sample and the result is
stored in RA; the high-order byte of the output is stored in
RB (we need to store the sign of the output, since the range
of 8 bits minus 8 bits is -255..255). Concurrently with this
operation, the current plane of samples is loaded into the
vertical communication register, RV. The next instruction
stores the output of the gradient calculation into memory
and shifts the plane of samples up by one processing element.
The third instruction stores the sign information from the
gradient calculation into memory, stores the shifted sample
plane in RA and shifts the sample plane back down to its
original position. The fourth instruction shifts the sample
plane down by one more processing element. Finally in the
fifth instruction, the shifted sample plane is stored in RB.
Now, in each processing element, the G, has been computed,
RA contains the sample below the current sample, and RB
contains the sample above the current sample. The process-
ing would continue by computing G,, etc. Notice how the
mathematical operation for G, was performed concurrently
with some of the communication required for G,. Addition-
ally, the VOLIO enhancement registers are busy loading the
next Y-slice of the data without effecting the normal corn
putations in the processing element.

WC propose to utilize an off-the-shelf micro-processor for
the controller. The row and column activate lines are
mapped into the memory space of the micro-processor.
There is also a memory mapped register whose value is
broadcast to every processing element in the 2D array. This
allows the controller to load a scalar value into the array.
Finally the microcode instructions are loaded, one for each
clock cycle, into another memory mapped location which is
also broadcast to every processing element each cycle. The
controller handles overlaying the instruction sequences from
Algorithm 1 on top of the code that is being run. This cre-
ates a dual instruction stream for the PEs. Additionally,
the controller ensures that it has finished loading each slice
before the algorithm requires it.

4 Performance

Most of the current designs of SIMD arrays for image pro-
cessing applications being fabricated today utilize 50 MHz
clock frequencies [5, 18, 21, 241 (all from Computer Archi-
tectures for Machine Perception, 1997 and 1995). The fu-
ture designs normally count on 100MHz. We analyze the
performance of the PAVLOV design for performing a Rq,
Casting algorithm with a clock frequency of 50 MHz. To

82

Tabk 2: Required subslice sizes to perform parallel projec-
tions at 3OHz on PAVLOV. Assuming 50 MHz clock yields
1.6 mallion cycles/frame and the algorithm utilizes 405 cy-
c:h per slice.

F

Volume Size c2/cles 1lCP 1 Sub-Slices 1 array size
128j 1 13020 1 32 1 16x32
256”

I I
6510 16 64x64

512” 3255 8 128x256
1024” 1627 4 512x512

pc,rform real-time rendering at 30 frames/second, each frame
<‘an ut,ilize 1.6 million clock cycles. For a 2563 volume, that,
InflanS that, 6510 instructions can be executed for each vol-
um(’ slice:. We have developed a simulation of the PAVLOV
arra,y and written a parallel ray casting algorithm which uti-
lixcs slice-order object-access. The algorithm requires 405
clock cycles per volume slice to render an image. Therefore,
we <:an provide 30Hz rendering of a 2563 volume with only a
64” PAVLOV array and processing 16 different subvolumes.
(Of course with sub-slice processing there is both processing
and storage overhead which needs to be addressed in the fi-
nal system.) With a 642 Pavlov array, the sub-slices of the
volume can be loaded in 160 cycles according to our previous
analysis. This shows how our VOLIO enhancements and Al-
gorithm 1 provide conflict-free access to volume slices along
any of’ the three major directions with no delay. Table 2
prclst%nts the same analysis for different volume sizes.

To show how this design can be used to implement various
rcndcring algorithms, we have coded a Shear-Warp projec-
t,ion algorithm which requires 409 clock cycles per slice and
a 1)ort of the Cube-4-Light [2] perspective algorithm which
uses 313 clock cycles per volume slice. The previous analysis
rm be similarly applied to the runtime of these algorithms.

Figure 7(also in Color Section) shows three views of the
skull from the CT head dataset projected along each of the
major axes of the volume on a software simulator of the
PAVLOV system. The volume is 128x128~113 and the sim-
ulat,or is configured as 128x128 processing elements. Both
the> X and the Y projections were computed in 52K cycles,
iLlId the 2 projection was computed in 45K cycles (because
t.hc:rct are only 113 Z-slices). The X and 2 projections are
from viewpoints centered directly in the front and above the
volume while the Y projection 1s rendered from slightly to
t,hc, left of center.

Wfa have extracted the common primitives used in volume
segmentation and analyzed the speed of computing them
on iI general-purpose computer versus the PAVLOV array.
&imrk [34] reports that it takes approximately 10 seconds
1.0 perform Thresholding, Median Filtering, Erosion or Dila-
tzon for a 2563 volume on an HP9000. We notice that for all
of these operations that the direction of the slices does not
matt,c:r when we process the volume, so we can utilize the
main storagt, direction. Therefore, the next volume slice is
;~lways available wit,hin 1 cycle. This is important because of
that small cycle count of these opera,tions. The 2N + G st,eps
required to access norl-storage-direction slices would domi-
nat,c the runt imr and cause the extra VOLIO enhancements
to provicle minimal advantage.

Specifically, the number of cycles to perform each of these
operations 011 tllc~ PAVLOV architecture ranges from 4 cy-
c+s llcr slice for t,hresholding to 29 for erosion and dilation.
Ac~corcling to Sriimek, these operations are usually repeated,

possibly requiring many erosion, dilation and floodfill oper-
ations to perform a robust segmentation. Additionally, de-
riving the order to perform the primitives is an interactive
process taking substantial human input.

For example, in Figure 8(also in Color Section) the meat
of a 128x128x29 lobster volume is segmented from the shell.
Figure 8a shows the entire volume rendered with a translu-
cent shell making the meat visible. In Figure 8b, the meat,
is segmented by simply performing a threshold above the
$$ density level. Clearly, the segmentation achieved is of
low quality. Notice the pieces of the shell that are marked
as part, of the lobster meat as well as antenna around the:
head. To perform a more robust segmentation, we spent 2
hours testing different combinations of the previous primi-
tives (it took 5 to 10 minutes per segmentation attempt on

a HP9000). We developed the following primitive sequence
as the best segmentation from 13 different attempts:

Threshold - Dilate - Erode - Median-Filter -
- Erode - Dilate

Figure 8c shows the results of our effort to develop a robust,
primitive sequence for segmenting the meat from the lobster.
Unfortunately, this sequence is most likely a one of a kind,
and the same process must be repeated whenever another
volume is to be segmented.

It would take 4 cycles per slice to perform the segmenta-
tion, 29 per slice for the erodes and dilates, and 25 per slice
for the median filter. This means that the PAVLOV sys-
tem is able to perform the sequence of segmentation prim-
itives in 4205 cycles (29 slices times 145 to perform all the
primitives) or 80 milliseconds at 50MHz. Furthermore, the
PAVLOV system is capable of producing real-time rendering
of the segmented data, immediately, so the user can examine
the segmentation performance and re-adjust the parameters
and primitive operation ordering.

The most challenging segmentation primitive to imple-
mcnt on a SIMD architecture is floodfill. While a naive
sequential algorithm performs floodfill with a simple recur-
sive call to all connected neighbors, the worst case SIMD
algorithm (here is one of the trade-off areas where SIMD
performs worse) may take 54 million instructions to com-
pletely floodfill a 2563 volume if the portion to be filled is
the perfect 3D snake. This, however, is still in the 1 sec-
ond range, still faster than on a general-purpose processor.
Therefore, the PAVLOV system can still produce true inter-
active segmentation.

5 Resource Estimates

To get an idea of the VLSI costs of a system based on the
PAVLOV design, we compared our design to SIMD array
designs recently presented in the image processing commll-
nity. For example, at the recent Computer Architectures
for Machine Perception conference the following Chips were
presented.

l NEC has built a chip based on the IRAM [25] design. It
includes 32 8bit processors (each with 1KByte of RAM)
per chip with 208 pins on a chip [12].

l The SLIM-II will be built with 64 8bit processors (each
with 256 bytes of R.AM and each includes a multiplier
circuit) per chip and also 208 pins on a chip [5].

l Komuro et al. submitted a design for fabrication with
64x64 lbit ALU’s on 1 chip [24].

83

Usillg estimates based on these, we propose to put 8x8 pro-
cussing elements on each chip. With 8 processing elements
along each side of a chip, there will be 32 required connec-
t,ions to the, neighboring chips. Additionally, because of our
proposed cnhanccments, each connection is actually 2 lines.
With 8bit data-paths, PAVLOV will require 512 pins just
for c.ornrllullic;Lt,ion in addition t,o t,he required power, in-
st,ruct,ion and row/column activation pins. This design will
rc>quircl t,irllc:-nlrllt,iplexing communication pins or the next,
gc>nclration of chip with sufficient pin resources to be feasi-
bl~. Beyond this, to create t,he 64x64 processing element
fray &scribed in Table 2 for real-time rendering of a 256”
volume: will require 64 chips in an 8x8 layout.

An alt,rrnativt~ implementation along the line of Komuro
(>I al.‘5 wit,11 Ibit, datapaths may provide a more efficient, de-
sign. Assunling that a lbit rendering algorithm would take
X I irncts as man,~ cycles as the algorithm with 8bit datap-
ilt,llh. the, rc?nticGlg algorithm would then take 3240 cycles
p(tr slices. With this count, only two subslices may be pro-
c(~sht~d using t h(, same 5OMHz clock and 30Hz frame rate for
a 256” volumc~. However, following Komuro et al.‘s design
with 64x64 processing elements per chip, a 256x128 arra,y
(‘an bet built with only 8 chips in a 4x2 layout, 8 times fewer
chips than with 8bit datapaths.

6 Conclusions

tVt> have> proposed architectural improvements to 2D mesh
architcxcturcs which allow conflict-free access to volume slices
along arbitrary axes. Overcoming this restriction allows 2D
mc~h archit,cctures to achieve true real-time volume render-
ing rates for the first time. We have proposed a SIMD design
for t.hc~ PEs that, enjoys the innate advantages of no synchro-
Iliz.;itiorl tlelay and no communication overhead. We have
dcrrlorIst,rat,c:d that the fine grain data parallelism inherent
in volume rendering and processing utilizes these advantages
t,o such a degrctl that they overcome the SIMD disadvantage
of requiring worst-cast processing. The design can perform
variouh volume rendering algorithms in real-time. Addition-
allv. t,hr design is capable of accelerating volume processing
t,asks. WC believe that, with the advent of real-time volume
rentlcring archit,ectures, that int,eractive volume processing
will bccomcl tlt,sirable. We show segmentation as an exam-
ply of volume processing, but feel that future applications of
volurnc~ proc:rGng are unpredictable and therefore wanted
t,o provit10 a programmable solution.

\\To arc’ currcantly analyzing the performance of the pro-
c.trssing c~leruc~nt (lcsign. For example, the current design
cant ains t.wo rc,gistcrs as inputs t,o the ALU and two reg-
istc>rs for c:orrlrIlunic:ation. These could be combined. We
would need t,o amlyze the impact m algorithm runtimes.

We need t,o complet,e a study of t,he tradeoffs on algorithms
t,o process volumes larger than the processing element array
(sir1c.c our design ut,ilizes it). For instance, the volume can
1~1 storctl. and snlwc~uc~~~tl,y processed as subblocks or int,er-
I~~ilV~~tl.

Finally, the 8x8 layout, of 64 chips is not as concise as
such st.at.cl of thcl art, volume rendering architectures as the
KM (:III)c tl&gn that Mitsubishi Electric Research Labs is
currr:nt,ly building [31]. However, because PAVLOV is pro-
griLlllI1lilt)l~, it provides more functionality. It allows mu-
t ipk rendering algorithms and, more importantly, it allows
volurr~c~ pro(,essing such as segmentation and feature extrac-
t,ion. Thercforc:, it, would have a different market than as a
I’(: phlg-in (.;LI.c~.

Figure 7: Parallel projections of 128x128~113 CT head
three axes from our software simulator using parallel p
taons. X and Y projections were computed in 52K cyc
projectam in 45K cycles (only 113 Z-slices). The Y 1
taon shows non-orthogonal parallel rendering.

along
rojec-
.les, Z
wojec-

Acknowledgements

This work was supported by the: National Science FC bunda-
tion under grant MIP9527694, Office of Naval Resear,cl1 UIl-

84

mt, N000149710402, Mitsubishi Electric Research Lab,
Radio Corp., Hewlett-Packard, axA Intel Corp. The

:ad ciatasrt is from the IjNC dat,abase. The lobster
mt is courtesy of ,4VS Inc.

References

[‘I P. Baglietto, M. Maresca, and M. Migliardi. Euclidean Distarlcc~
Transform on Polymorphic Processor Array. In Proceedrvgs o.l
I/L,, Thwd IEEE Internatzonal Workshop on Computer Arc/m
tectuws for Machrne Pemeptzon, pages 288-293, Corno, Italy.
Sept. 1995. IEEE.

[Sl

[31

[,I1

PI

[lOI

[“I

[121

[I:)]

11‘11

[I 51

[It;]

!‘71

1. Bitter and A. Kaufman. A Ray-Slice-Sweep Volume R~wdrr-
ing Engine. In Proceedings of the 1,997 Szgg~aph/Eurogroptrccs
Wwkshop on Graphm Hardware, pages 121-130. 130s A~q@s.
CA, Aug. 1997. ACM.

M. Jjrady, K. Jung, H. Nguyen, and 1’. Nguyen. Two-I’hasc
Pcrspcctivr Ray Casting for Interactive Volume Navigation. In
IJ~o~:erdmg,s of Vzsualwation ‘97, pages 183-189, Pheonix, A%.
Oct. 1997. IEEE.

1. Carlbom, I. Chakravarty, and W. M. Hsu. SlGGRAPII ‘!lI
Workshop Report: Integrating Computer Graphics, Cornputet
Vision, ard Image Processing in Scientific Applications. COOL-
putnr Graphzcs, 26(l):&10, Jan. 1992.

H. Chang, S. Ong, C:. Lee, M. Ii. Sunwoo, and ‘I‘. Cho. A General
Purpose SLIM-II Image Processor. In Proceedings of the l”our11~
IEEE Internationnl Workshop on Computer Archrtectwes SOT
Mochnc Perceptcon, pages 253-259, Cambridge, MA, Oct. 1997.
IEEE.

I? L. Cloud. ‘l‘he Geometric Arithmetric Parallel Processor. In
Proceedmgs of Second Sympo.sium on Frontzers of Masazorly
Parallel Processors, George Mason IJniversity, Oct. 1988.

W. J. Dally. Analysis of k-ary wcube Interconnection Networks.
IEEE Transactrons on Computers, 39(6), June 1990.

M. de Boer, J. Hesser, A. Gropl, ‘I-. Gunther, C:. Poliwoda,
C. Reinhart, and R. Manner. Evaluation of a Real-Time I)irert
Volumr Rendering System. In Proceedings of the 11th E;uro-
gmphzcs Workshop on Gmphrcs Hardwaw ‘96, Poitiers, Fr;lncc.
Aug. 1996. Eurographics.

M. Doggrt,t.. Au array based design for Real-Time Volumrx Itrw
deriug. In Proceedings of the 10th Eurographzcs Workshop ou
Graphzcs Hardwore l.95, pages 93 101, Maastricht, Thr Net.hrr-
lauds. Aug. 1995. Eurographics.

M. C. Doggett and G. R. Hollest,rand. A hardware architcvt,nrc
Car video rate smooth shading of Volume d&a. Jn Proceedir~ys
of the 9th Eurographzcs Workshop on Graphzcs Ifardwaw ‘r/d,
pages 96~ 102, Oslo, Norway, Sept. 1994. Eurographics.

R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Iten-
dering. In Computer Graphics, SIGGRAPH 88, pages 65 74.
ACM, Aug. 1988.

Y. Fujita, S. Kyo, N. Yamashita, and S. Okazaki. A 10 GIPS
SIMD Processor for PC-based Real-Time Vision Applications
Architerturc, Algorithm Implementation and Language Support
~. In Proceedzngs of the Fourth IEEE International Wwkshop
on Computer Architectures for Machine Perceptron, pages 22
32, <:aml,ridgr, MA, Oct. 1997. IEEE.

T. Gunther, C. Poliwoda, C. Reinhart, J. Hesser, R. Manner, II.-
P. Meinzer, and H.-J. Baur. VIRIM: A Massively Parallel Prorcs-
bar for Real-Time Volume Visualization in Medicine. In Proctxd-
rngs of the 9th Eurographzcs Workshop on Grnphzcs l-ln~rtwwi~

“14, pages 103 -108, Oslo, Norway, Sept. 1994. Eurographics.

M. C:. Herhordt. The Bvaluotzo?~ of Massavely Parallel Awe?/

Axh,~tcctures. PhD thesis, IJniwrsit.y of Mass.. I)cpart.mcwt of
(‘omputer Sriencc, 1994. , also TR95-07.

M. C. IIorbordt. IJniv. of Ilousto~~-CAAD L,ab, M&I..
1998. l~l.t.l~://indus.ce.uh.ed~r/ideas.html#SIMD Coproc~~ssors
are Neat,!

W. M. 11s~. Segmented Ray Casting for Data Parallel Volume
llrndering. In Parallel Rendwi7L.y Sympos~mm~, pages 7 I ,I, Sail
Jose. CIA, Oct. 1993. IEEE.

85

[IX] M. Johannesson and M. Gokstorp. Video-rate Pyramid Optical
1~10~ computation on the Linear SIMD Array IVIP. In Proceed-
cngs of the Thwd IEEE Internatzonal Workshop on Computer
Axhztectures for Machzne Perception, pages 280-287, Como,
Italy, Sept. 1995. IEEE.

[t!~] S. .Juskiw and N. G. Durdle. Interactive Rendering of Volumetric
I)ata Seth In Proceedings of the 9th Eurographics Workshop on
C:ruph~s Hardwure ‘94, pages 86-94, Oslo, Norway, Sept. 1994.
f<urographirs.

[,(I] A. Kaufman and R. Bakalash. A 3-D Cellular Frame Buffer.
III Euro,graphzcs ‘85, pages 215-220, Nice, France, Sept. 1985.
t+;nrographirs.

1211 II.-N. Kim, M. J. Irwin, and R. M. Owens. MGAP Applications
ill Marhior Perception In Proceedzngs of the Thzrd IEEE In-
tr mo.twnol Workshop on Computer Archztectures for Machmc
I’, rccptLon. pages 67- 73, C’orno, Italy, Sept. 3995. IEEE.

1221 (:. t<nitt,el and W. Strasser. VIZARD: Vizualization Accrter-
at.or for Realtime Display. In Proceedzngs of the 1997 Szg-
I/~aph/lS1Lro,qraphzcs Workshop on Graphzcs Hardware, pages
139 146, Los Angeles, CA, Aug. 1997. ACM.

[2:i] (:. Knitt,et and W. Stranser. A Compact Volume Rendering Ar-
wlcrator. In Sympostum on Volume Vzsualztatzon, pages 67-74,
Washington, DC, Oct. 1994. IEEE.

[?I] ‘I’ Komuro, I. Ishii, and M. Ishikawa. Vision Chip Architecture
llsirrg General-Purpose Processing Elements for lms Vision Yys-
trm In F’roceedzngs of the Fourth IEEE International Work-
shop on Computer Archztectwes for Machme Perceptzon. pages
276 279, Cambridge. MA, Oct. 1997. IEEE.

[%5] C-Z. I<. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
I<. Asanovir, N. Cardwelt, R. Fromm, J. Golbus, B. Gribstad,
I< Keeton, R. Thomas, N. Treuhaft, and K. Yelick. Scalable
Processors in the Billion-Transistor Era: IRAM. IEEE Com-
puter, 30(9):75-78, Sept. 1997.

[26] I<. A. Kreeger and N. R. Vempaty. Bandwidth Equalization to
achieve Hypwcube Performance from a Mesh Connected Massive
f’aratlct Processor. In Proceedmgs of 5th Australian Supercom-
putzng Conference, pages 690-698, Melbourne, Australia, Dec.
1992. CSIRO.

[27] I’ 1,arroutc. Analysis of a Parallel Volume Rendering System
I%ased on the Shear-Warp Factorization. IEEE Transactzons
07) Vrsualztatron and Computer Graphws, 2(3):218-231, Sept.
I !):16.

[%X1 r’. 1,nrroute and M. Levoy. Fast Volume Rendering using a Shear-
warp Fact,orizat,ion ot the Viewing Transform. In ComputeT

Gmphrcs, SIGGRAPH .94, pages 451 -457, Orlando, FL, July
1994. ACM.

[‘!I] Ii. Neurr~ann. Communication Costs for Parallel Volume-
Rendering Algorithms. IEEE Computer Graphzcs and Appli-
iotrons. 14(4):49-58, July 1994.

[:<o] K I,. Novios, F. X. Sitlion, and D. I’. Greenberg. An efficient
trlcthod for volume rendering using perspective projection. (:om-
puter (:roph,rcs, %4(5):X 100, Nov. 1990.

[:$I] Ii. Osborne, II. Pfister. H. Lauer, N. McKenzie, S. Gibson, W. Hi-
att, and 1’. Ohkami. EM-Cube: An Architecture for Low-Cost
Heat-Time Volume Rendering. In Proceedrngs of the 1997 Szg-
graph/Eurographzcs Workshop on Graphzcs Hardware, pages
131 138, Los Angeles, CA, Aug. 1997. ACM.

[:12] II. Plister and A. Kaufman. Cube-4 A Scalable Architecture
for Real-Time Volume Visualization. In Symposzum on Volume
V~~u~lltzafron, pages 47-54, San Francisco, CA, Oct. 1996. ACM.

[:I:I] 1’. Schroder and G. Stall. Data Parallel Volume Rendering as
Line Drawing. In Workshop on Volume Vwuolization, pages
25-32. Boston, MA, Oct. 1992. ACM.

[:M M Srarnek Vzsualzzatzon of Volumetrzc Data by Ray Traczng.
Aust.rian Conlputcr Society, Aust.ria. 1998. ISBN: 3-85403-112-2.

[:15] (;. Vezina, I’. A. Fletcher, and P. K. Robertson. Volume Ren-
clrl-ing on t,hc MasPar MP-1. In Workshop on. Volume Vzsual-
rzotrou, pages 3- 8, Boston, MA, Oct. 1992. ACM.

[36] D. Voorhies and J. Foran. Reflection Vector Shading Hardware
In Computer Graphzcs, SIGGRAPH 94, pages 163.-166, Or-
lando, FL, July 1994. ACM.

[37] C. M. Wittenbrink and A. K. Somani. Permutation Warping for
Data Parallel Volume Rendering. In Parallel Rendering Sympo-
szwn, pages 57-60, San Jose, CA, Oct. 1993. IEEE.

[38] C. M. Wittenbrink and A. K. Somani. Time and Space Optimal
Data Parallel Volume Rendering using Permutation Warping.
Journal of Parallel and Distribzltied Computing, 46(2):14%164,
Nov. 1997.

[39] ‘I’. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip.
.J. Rhoades, and R. Whitaker. Direct Visualization of Volurrw
Data. IEEE Computer Graphics and Applications, 12(4):63
71, July 1992.

86

