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Abstract 
In this paper a new low cost bump mapping hardware is prc- 
sented. The new hardware approach does not rely on per pixel 
lighting, but instead uses Gouraud interpolated triangles. The 
bump mapping effect is applied by blending the calculated per 
pixel bump map color onto the fragment’s color. This allows real- 
time animated distant light-sources to react on the specified bump 
map. 
The paper further investigates a number of different variants of 
recently proposed bump engines. These variants range from low- 
end PC solution to highest quality high-end solutions. 

CR Categories and Subject Descriptors: 1.3.3 [Computer 
Graphics]: Hardware Architecture - Graphics processors; 1.3.3 
[Computer Graphics] Picture/Image Generation -Viewing and 
Display algorithms; 1.3.7 [Computer Graphics]]Three- 
Dimensional Graphics and Realism - Color, shading, shadowing, 
texture. 

Additional Keywords: real-time bump mapping, normal vector 
interpolation, Gouraud bump mapping, Gouraud shading hard- 
ware. 

1. INTRODUCTION 
Driven by continuously improving VLSI technology and the cus- 
tomers’ wish for quality, interactive graphics need new graphic 
architectures must evolve. Universal pixel rate lighting, known as 
Phong shading with bump mapping, displacement mapping, 
shadow casting etc., illuminated by various types of lights, like 
spots and area-lights, will be the basic operational principle of 
future micro-architectures. 

While hardware bump mapping based on micro-surface orienta- 
tion, viewer and light(s) positions lies mainly in the domain of 
current research prototypes (Ikedo’s ParimsGr concept, see 
http://www.parims.com or [5]), the mainstream graphics industry 
requires a bump mapping approach that is easily adapted into their 
current Gouraud architectures, without the need of pixel geometry 

as an intermediate step. 

In this paper, we briefly describe the algorithms of recently pub- 
lished bump mapping architectures and present the design of a 
new bump mapping engine which overcomes the need for per- 
pixel lighting hardware, preserving excellent image quality. 

2. CLASSIC BUMP MAPPING 

This section describes the essence of the classic Blinn bump map- 
ping approach, which is the base of all the following hardware 
adaptations. Further details are given in [ 11. 

Blinn uses a height field to simulate wrinkled surfaces where each 
height value represents the difference in height to the given sur- 
face. 

This height field perturbs the surface along its normal vector 

N = (4, x P,)I(C, x p,> . 

Given the height field F the Position P’ on the surface becomes 

P’ = P + F N I(((N((( 

where F is a height function displacing P by an amount of Ffu,v) 
in the direction of the surface normal N. 

The new surface normal is then given by 
N’ = p,’ x P,,’ where Pi and P,,’ are the partial derivatives of the 

perturbed surface. I’,,’ ( P,’ not shown) then becomes 

P,,’ = $ P + F . N l/N\\ 

= P, + F, . N l]jNj+ F -(N /j\Nll)( . 

Applying simplifications to the above derivative, the equations 
result in 

4: = 4, + Fl, . NlIINII where F,, is the partial derivative of the 

height function. 

The new normal N’ then is: 

N’=(P, xP,)+ 

6, b” x P, )lIINII + 

F” .k xN)~IINII+O 

Thus (P, x P, ) = N , we get 
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D = (F,, .(N x P,.)+ F,. .(p;, x N))lIINIj 

as the final perturhcd normal-vector. 

3. REAL-TIME BUMP MAPPING 
Real-time hump mapping recently became an interesting field of 
research after Microsoft and SGI[2] proposed their solution to 
adapt the classic Blinn approach to hardware. 

This section briefly descrihcs the algorithms introduced by : 

. University of Tuehingen: TexRam Bump Mapping 

. GMD: Visa+ Real-Time Bump Mapping 

. Microsoft Direct3D 6: Bump Mapping 

. Silicon Graphics: Bump Mapping Hardware 

. Evans and Sutherland: Harmony Bump Mapping 

3.1 TexRam Bump Mapping 
An interesting real-time hump mapping approach for normal vec- 
tor shaders is to use an orthonormal system with a main direction 
m [31. 

The idea is to replace the local co-ordinate system through an 
orthogonal system that is derived from the interpolated normal 
vector N and a direction m, which is, for example homogeneously 
interpolated over the triangle. 

The obvious advantage of using the main direction m is that both 
Pv x N and N x P,, are no longer held constant over the triangle. 

This reduces the edge-discontinuity artifact described in [4]. 

However since the orthogonal system is constructed from two unit 
vectors e, and e2 perpendicular to N, which have to be calcu- 

lated on a per pixel basis, the extra hardware becomes a consid- 
eration. 

Given the intcrpolatcd per vertex normal N, and the main direc- 

tion m the following formulae lead to the final perturbation: 

mxN 
e, = p; e2 = N x e, gives e2 defined in a 

lb x NII 
plane by N and m and e, perpendicular to that plane. 

Further simplification avoids the normalization by multiplying 

with IIN, 11 and widening the vector formats, this gives: 

N . IIN, II = N, 

el WI II = ll,“: ;,l w, II 
e2 .IIN, II= N, xc1 

3.2 Visa+ Real-Time 

In 1996 bump mapping for the 
first proposed in [4]. 

Bump Mapping 

VISA+ graphics accelerator was 

This method uses precalculated derivatives, offset vectors, stored 
in a bump map similar to the TexRam approach described in 
section 3.1. 

Since this architecture is based on normal-vector interpolation and 
per pixel lighting, the tangent plane of the surface is already given 
by N. 

The resulting perturbed normal vector then becomes 

N’ = N + V , where V is the perturbation vector V = [AuAv]r 

The remaining problem is to guarantee the perturbation in the 
direction of the tangent plane at a given point. This is done by 
aligning the texture coordinate system u,v,w to the tangent plane 
system pl, , P, and N. 

This transformation can be done using an alignment matrix A. 
Given A the resulting normal vector becomes: 
N’=N+A.V. 

The construction of A simplifies Blinn’s formulation in such a 
way that P, x N and N x P,, are held constant over the triangle. 

A is calculated based on a local orthogonal coordinate system 
constructed by the local surface normal N and the texture coordi- 
nates of the triangle. Therefore, the perturbation vector V is ro- 
tated constantly over the triangle. By adding the aligned perturba- 
tion vector to the interpolated per pixel normal the simulated cur- 
vature of the triangle is preserved. 

This leads to minor visible discontinuities at the edges of two 
adjacent triangles if the angle hetwecn the spanned planes exceeds 
a certain threshold. This threshold is around 30 degrees for cx- 
treme lighting situations (high material shininess and mirror re- 
flection of the light) and leads to artifacts as described in [4]. 
Full control (scaling, rotation etc.) over the bump map is given 
through the matrix A which is calculated on a per triangle basis. 

Using quaternions at the triangle vertices for A and interpolating 
them over the triangle removes this artifact [5]. 

3.3 Microsoft Bump Mapping 
This is more accurately referred to as per-pixel texture coordinate 

perturbation for diffuse and specular environment maps. 

This technique allows the lighting environment of the scene to be 
represented in an image environment map (either for diffuse or 
specular effects). This permits the lights to be of any number, 
shape, color, or intensity distribution that can he represented in 
such a map. 

In this pure lighting map approach, only distant light sources are 
supported and the rendering quality is limited to the representa- 
tion of the light source image inside the texture map. Reasonable 
lighting quality for multiple light sources can only be achieved if 
higher resolution textures are used. 
Using six sided environment textures further increases this texture 
demand providing better light source direction handling. 
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One main disadvantage is that light sources need to be stationary. 
Whenever a light source is turned on/off or the direction changed 
the lighting maps have to be recalculated or reloaded. 

3.4 Silicon Graphics Bump Mapping 

SGI reformulates the classic Blinn approach in such a way that 
only a pcrturhcd normal vector field is needed as a hump-normal 
map (three component texture map). 
The principal idea is that illumination models are a function of 
vector operations that can he calculated relative to any coordinate 
system (reference frame). 

The first iteration of the algorithm chooses tangent space TS in 
point P as a reference coordinate system given by the unperturbed 
normal vector N, a tangent vector T and a hinormal vector B: 

TS := (T, B, N) where 

T = P;, l(lP;, II 
R=NxT 

This tangent space forms an orthonormal basis where each point 
on the surface is given as: 

N;, =(x,y.z)+Jm 

x = -f,, (B . Pv ) 

Y = -(f,. .[I?, II- f,, (T P, 1) 

z = l/P,, x p,,ll 

Since the normal vectors lie in tangent space the light vector L 
and the half vector H have to be transformed into tangent space, 
which is done, using the following equation. 

V,, =V.(T,B,N) h w ere V is substituted by L or H respec- 

tively. 

The transformed per vertex parameters are homogeneously inter- 
polated over the triangle to get the best results. 

However choosing tangent space as a reference frame leads to a 
surface dependency of the stored perturbed normal vectors. Fur- 
thermore, the transformation for each parameter is different for 
each triangle vertex that has to he calculated in the geometry en- 
gine. 

To overcome the tangent space dependency the second iteration of 
the algorithm introduces object space as a reference frame. Using 
object space gives the advantage that the matrix applied to the 
light and half vector is shared by all vertices over the triangle. 

This saves a great amount of geometry engine computation but 
does not remove the surface dependency. 

To overcome the surface dependency the final algorithm or- 
thonormalizes pI, and P,. such that: 

P, . P,, = T. P,, = 0 and IIt, II= IIP,I) = 1. 

The perturbed hump normals then result in: 

N;,y =(x,y,z)-dm 

x = -kf,, 

y = -kf,, 

z =k’ 

Equation I :Final bump normal equation 

This simplified equation leads exactly to the algorithm described 
in [6]. 

3.5 Harmony Bump Mapping 
Harmony bump mapping [7] simply interpolates the per vertex 
coordinate systems across the triangle. The three axes spanning 
the coordinate system are: 
-P, x N 

-Nxc, 

P;d x P, 
Note that these are the components of Blinn’s final equation (see 
section 1). 

The illumination calculation is done by using the interpolated 
light and half vectors. For each light-source, an interpolated light 
direction is needed. 

4. GOURAUD BUMP MAPPING 

An alternative scheme for cost effective bump mapping is pre- 
sented in section 5. This stores object-space local normal vec- 
tors/perturbations in the image data similar to that proposed in 
section 3.4. 

This method is more flexible than the Microsoft approach, since 
light-source directions, colors and the material shininess can be 
changed without loss of performance. 

Nevertheless, it is still limited to distant light-sources relative to 
one triangle to keep the necessary hardware at a minimum. Fur- 
thermore only a limited number of light-sources (usualy two to 
four) can be implemented in parallel to cut down hardware costs. 

Since we transform all the vectors into bump vector space, an 
orthogonal system is already given (compared to P, , P, as par- 
tial derivatives, see 3.4). 

The bump normals stored in the bump map are calculated using 
the following formula: 

N:, =(x, y, z)+dm 
x = f,, 
Y = .f, 

z=l 

Equation 2 : Gouraud bump normal equation 

Note that this formula equals Equation I in 3.4 with k = 1. 
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The construction of the transformation matrix to transform half 
and light vectors into bump vector space is described in detail in 
[61. 

4.1 Gouraud Bump Mapping Algorithm 

The simplicity of the Gouraud Bump Mapping algorithm keeps 
the extra hardware needed to render bump mapped triangles at a 
minimum. 

Using the reordered graphics pipeline in section 5.1, two new 
units are added to the Gouraud rasterizer. Both, the diffuse and 
the specular blending units need bump-state information, which 
consists of the light-source direction, light-source color and the 
material’s shininess. 

The perturbed normal is read from the bump map and the half 
vector is transferred to the rasterizer with the triangle data or it 
may be kept in the bump-state. Given the half-vector and the nor- 
mal in a point on the triangle the lighting equation can be calcu- 
lated. 

The lighting model can he simplified by using a parallel viewer 
and parallel light sources. Using the simplified model, the half- 
vector and the light direction can be stored in the bump state to 
reduce the data transfer to the rasterizer. 

4.2 Blending Unit 

The blending unit combines the Gouraud color with the lighting 
result given by the bump map normal Bi, the light direction L 

and the half-vector Hi . 

The function used to calculate the diffuse bump lighting intensity 
is: 

fdi = B; . L 

The specular intensity uses the material exponent to simulate 
shiny surfaces and results in: 

fii =(Bi .Hi) 

Given the light source color Li the final lighting color can be 

calculated. 

The final fragment blending is done by the following equation: 

c = “CW c,,~ + CCfdi + fsi).ki .Li 

This function calculates the final Gouraud Bump color for i light 
sources. 

C,,, is the interpolated Gouraud color output of the Color 

DDA Unit (C represents R, G, B). Only light-sources 
which are not effected by the hump map generate C. 

CfWW is the final blended Gouraud Bump color. 

fdi represents the diffuse blending function of light source 

fs, represents the diffuse blending function of light source 

k, modulates spot and/or attenuation information accord- 
ing to the OpenGL specification. 

L, is the light source color of light i. 

The material shininess is held constant over the triangle and is 
implemented as a simple power table for one shininess at a time. 
The table can be loaded similar to a color LUT and is equal in size 
to reduce costs. 

k, is used if the basic blending function is extended to improve 

the per pixel lighting/blending quality. One possible improve- 
ments is the simulation of cut-off angles for spotlights. In our 
sample implementation, it has no effect. 

Both blending units can selectively be turned off to reduce the 
artifacts described in section 5.4 according to the color informa- 
tion given in the interpolated Gouraud color fragment C,Y,, 

BHn k L 

BHnkL 

mdt 
I 

G.. 

Figure I: Gouraud Bump Mapping block diagram 

Figure 1 gives an impression of the additional hardware units. 
Depending on the accuracy of all relevant input fields (B, H, n and 
color) and the fidelity of the specular intensity generator, the gate 
budget lies in the range from 10,000 to 25,000 gate equivalents. 
Multiple light sources can be implemented by accumulation of all 
relevant light fragments and final addition with the interpolated 
Gouraud color. n light sources are blended in n clock cycles, 
avoiding n times the hardware. Note that H is constant within at 
least one triangle, so bandwidth will increase to three 16-bit words 
per triangle, or about less than 5% of a typical textured Gouraud 
triangle data-set. 

5. INSIDE GOURAUD BUMP MAPPING 

This section provides recommendations to improve the rendering 
quality of Gouraud bump mapped triangles taking into considera- 
tion the artifacts found using the algorithm. 

5.1 Pipeline re-ordering 
A rendering pipeline for a Gouraud rasterizer usually gets the 
interpolated Gouraud color and blends the texture color thereafter. 
Thus, the pipeline ordering is ColorDDA - Texture - Blend. 
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Using  Gouraud, bump mapping the pipeline  has to be changed 5.2 Multiple Light  Sources
slightly.

The best results can be achieved if the interpolated  fragment  is
first blended with  the diffuse bump color and after the texture is
applied it is blended  with  the specular  bump color. This color
splitting  is similar to the Kd, KS lighting.

Multiple  light sources are supported by looping  over all n light
sources and blending  the incoming color fragment n times with
the diffuse and the specular  bump color respectively  (see Figure
4).

The  final pipeline  looks as follows:

The  following pictures  show  the necessity  of calculating  both, the
diffuse and the specular  bump blend color as shown  in the final
pipeline.  Note that blending  the diffuse and specular color to-
gether after the texture pass has no effect on black texture color
due to the multiplication  (see Figure  3). Figure 2 shows  the de-
sired result using the split blending  pipeline.

Figure  4: Torus with sphere  cap bump map illuminated  by two
light-sources.  White light-source from right, purple light-source
from left.

5.3 Natural Surface Simulation

Figure 2: Di’use and  Specular Gouraud  Bump  Blending  using
DiffuseBlend-Texture-SpecularBlend  pipeline ordering.

Bump  maps do not necessarily  add roughness  or structure to a
surface. Instead, we can use it to simulate smooth surfaces.

The image in Figure 5 B shows how  to define a bump map,  which
generates  a smooth shaded cylinder  (see Figure 8) that can only be
achieved using per pixel lighting  hardware.

Dependent  on the type of the object,  bump maps can be held small
and used repeatedly  similar  to texture maps (see Figure 5 B).

Due to the full texture filtering  capability  of bump maps,  smoothly
interpolated  bump-vectors  are used to avoid local flat shading
effects (see Figure 5 A).

Figure  5: Natural  Surface  Simulation

Figure 3: Specular  Gouraud  Bump  Blending  only using  Texture-
D$tiiseBlend/SpecularBlend  pipeline ordering.
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5.4 Artifacts
To discuss the artifacts we first recall all the simplifications:

1. Gouraud color is used instead of Phong interpolated  color

2. Half vector held constant over the triangle  (viewer is parallel
over the triangle). Only distant  light sources relative  to the
triangle are supported which  react on the bump map.

3. P, and P, are orthogonal unit vectors

5.4.1 Gouraud Color Artifact
Gouraud Bump  Mapping blends the diffuse and the specular  color
given by the lighting  geometry on top of the interpolated  Gouraud
color. This gives the well-known math-banding effect. However
since Gouraud Bump  Mapping is limited  to parallel  light-sources
and triangle parallel  viewer the Gouraud color can add spot-light
and other lighting  capabilities  to the bump mapped triangle (see
Figure 6).

Figure  6: Sphere  with brick  bump map. Only the white  light-
source is used  for the bump  map effect. The red and  green  spot-
light  is given  by the Gouraud  color.

5.4.2 Parallel  Viewer  and Light Source
Given a parallel  viewer and a parallel  light-source  results in flat
shading artifacts which  can be seen  in Figure  7. This artifact can
be avoided by simply adding only the bump blending  effect which
has a perturbed normal stored in the bump map and leaving the
fragments that contain unperturbed  normals untouched. According
to Equation 1 the unperturbed normal vector  is [O,O,  1 .O].

Figure  7: Flat  shading  artifact using  constant  bump-normals  on a
curved surface.

Likewise  it is possible  to calculate the correct  surface-normal
within the bump-map  (see 5.3). A bump mapped cylinder  for
example contains  the computed surface normals of the cylinder
patch plus the bump-structure.  Nevertheless  doing so, we added a
surface dependence  to the bump map.

Figure  8: Simulated  smooth  shading  using Gouraud  Bump Map-
ping

5.4.3 Orthogonal  Axis PU and P,

The orthogonal  axis’ removes the surface dependency  of the bump
map but automatically  limits the models to be rendered to be
square patched. These include spheres, tori, surfaces of revolu-
tion and flat rectangles. _

6. CONCLUSIONS  AND FUTURE WORK
We have presented  a simple but efficient  scheme for bump map-
ping on common Gouraud renderers. The additional  hardware
overhead is small and is justified by the resulting  quality  in both
bump mapped surfaces and specular lighting  (see Figure 9). The
memory requirements  for the bump maps  can be minimized  by
using palletized  bumps. With eight bit addressing  a table lookup
(bump)  texture, up to 256 surface orientations  can be modeled.
Further  improvements  can be made  by interpolating  the half vec-



tor (no flat shading effect) and/or by interpolating the light direc- 
tions, one per light-source. References 
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Figure 9: Teapot with mexican hat bump map 
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