
Gouraud Bump Mapping
I. Ernst”, H. Rtisseler’, H. Schulz”, 0. Wittig&

‘German National Research Center for Computer Science,
Institute for Computer Architecture and Software Technology (GMD FIRST)

‘3Dlabs Inc.

Abstract
In this paper a new low cost bump mapping hardware is prc-
sented. The new hardware approach does not rely on per pixel
lighting, but instead uses Gouraud interpolated triangles. The
bump mapping effect is applied by blending the calculated per
pixel bump map color onto the fragment’s color. This allows real-
time animated distant light-sources to react on the specified bump
map.
The paper further investigates a number of different variants of
recently proposed bump engines. These variants range from low-
end PC solution to highest quality high-end solutions.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Hardware Architecture - Graphics processors; 1.3.3
[Computer Graphics] Picture/Image Generation -Viewing and
Display algorithms; 1.3.7 [Computer Graphics]]Three-
Dimensional Graphics and Realism - Color, shading, shadowing,
texture.

Additional Keywords: real-time bump mapping, normal vector
interpolation, Gouraud bump mapping, Gouraud shading hard-
ware.

1. INTRODUCTION
Driven by continuously improving VLSI technology and the cus-
tomers’ wish for quality, interactive graphics need new graphic
architectures must evolve. Universal pixel rate lighting, known as
Phong shading with bump mapping, displacement mapping,
shadow casting etc., illuminated by various types of lights, like
spots and area-lights, will be the basic operational principle of
future micro-architectures.

While hardware bump mapping based on micro-surface orienta-
tion, viewer and light(s) positions lies mainly in the domain of
current research prototypes (Ikedo’s ParimsGr concept, see
http://www.parims.com or [5]), the mainstream graphics industry
requires a bump mapping approach that is easily adapted into their
current Gouraud architectures, without the need of pixel geometry

as an intermediate step.

In this paper, we briefly describe the algorithms of recently pub-
lished bump mapping architectures and present the design of a
new bump mapping engine which overcomes the need for per-
pixel lighting hardware, preserving excellent image quality.

2. CLASSIC BUMP MAPPING

This section describes the essence of the classic Blinn bump map-
ping approach, which is the base of all the following hardware
adaptations. Further details are given in [11.

Blinn uses a height field to simulate wrinkled surfaces where each
height value represents the difference in height to the given sur-
face.

This height field perturbs the surface along its normal vector

N = (4, x P,)I(C, x p,> .

Given the height field F the Position P’ on the surface becomes

P’ = P + F N I(((N(((

where F is a height function displacing P by an amount of Ffu,v)
in the direction of the surface normal N.

The new surface normal is then given by
N’ = p,’ x P,,’ where Pi and P,,’ are the partial derivatives of the

perturbed surface. I’,,’ (P,’ not shown) then becomes

P,,’ = $ P + F . N l/N\\

= P, + F, . N l]jNj+ F -(N /j\Nll)(.

Applying simplifications to the above derivative, the equations
result in

4: = 4, + Fl, . NlIINII where F,, is the partial derivative of the

height function.

The new normal N’ then is:

N’=(P, xP,)+

6, b” x P,)lIINII +

F” .k xN)~IINII+O

Thus (P, x P,) = N , we get

47

D = (F,, .(N x P,.)+ F,. .(p;, x N))lIINIj

as the final perturhcd normal-vector.

3. REAL-TIME BUMP MAPPING
Real-time hump mapping recently became an interesting field of
research after Microsoft and SGI[2] proposed their solution to
adapt the classic Blinn approach to hardware.

This section briefly descrihcs the algorithms introduced by :

. University of Tuehingen: TexRam Bump Mapping

. GMD: Visa+ Real-Time Bump Mapping

. Microsoft Direct3D 6: Bump Mapping

. Silicon Graphics: Bump Mapping Hardware

. Evans and Sutherland: Harmony Bump Mapping

3.1 TexRam Bump Mapping
An interesting real-time hump mapping approach for normal vec-
tor shaders is to use an orthonormal system with a main direction
m [31.

The idea is to replace the local co-ordinate system through an
orthogonal system that is derived from the interpolated normal
vector N and a direction m, which is, for example homogeneously
interpolated over the triangle.

The obvious advantage of using the main direction m is that both
Pv x N and N x P,, are no longer held constant over the triangle.

This reduces the edge-discontinuity artifact described in [4].

However since the orthogonal system is constructed from two unit
vectors e, and e2 perpendicular to N, which have to be calcu-

lated on a per pixel basis, the extra hardware becomes a consid-
eration.

Given the intcrpolatcd per vertex normal N, and the main direc-

tion m the following formulae lead to the final perturbation:

mxN
e, = p; e2 = N x e, gives e2 defined in a

lb x NII
plane by N and m and e, perpendicular to that plane.

Further simplification avoids the normalization by multiplying

with IIN, 11 and widening the vector formats, this gives:

N . IIN, II = N,

el WI II = ll,“: ;,l w, II
e2 .IIN, II= N, xc1

3.2 Visa+ Real-Time

In 1996 bump mapping for the
first proposed in [4].

Bump Mapping

VISA+ graphics accelerator was

This method uses precalculated derivatives, offset vectors, stored
in a bump map similar to the TexRam approach described in
section 3.1.

Since this architecture is based on normal-vector interpolation and
per pixel lighting, the tangent plane of the surface is already given
by N.

The resulting perturbed normal vector then becomes

N’ = N + V , where V is the perturbation vector V = [AuAv]r

The remaining problem is to guarantee the perturbation in the
direction of the tangent plane at a given point. This is done by
aligning the texture coordinate system u,v,w to the tangent plane
system pl, , P, and N.

This transformation can be done using an alignment matrix A.
Given A the resulting normal vector becomes:
N’=N+A.V.

The construction of A simplifies Blinn’s formulation in such a
way that P, x N and N x P,, are held constant over the triangle.

A is calculated based on a local orthogonal coordinate system
constructed by the local surface normal N and the texture coordi-
nates of the triangle. Therefore, the perturbation vector V is ro-
tated constantly over the triangle. By adding the aligned perturba-
tion vector to the interpolated per pixel normal the simulated cur-
vature of the triangle is preserved.

This leads to minor visible discontinuities at the edges of two
adjacent triangles if the angle hetwecn the spanned planes exceeds
a certain threshold. This threshold is around 30 degrees for cx-
treme lighting situations (high material shininess and mirror re-
flection of the light) and leads to artifacts as described in [4].
Full control (scaling, rotation etc.) over the bump map is given
through the matrix A which is calculated on a per triangle basis.

Using quaternions at the triangle vertices for A and interpolating
them over the triangle removes this artifact [5].

3.3 Microsoft Bump Mapping
This is more accurately referred to as per-pixel texture coordinate

perturbation for diffuse and specular environment maps.

This technique allows the lighting environment of the scene to be
represented in an image environment map (either for diffuse or
specular effects). This permits the lights to be of any number,
shape, color, or intensity distribution that can he represented in
such a map.

In this pure lighting map approach, only distant light sources are
supported and the rendering quality is limited to the representa-
tion of the light source image inside the texture map. Reasonable
lighting quality for multiple light sources can only be achieved if
higher resolution textures are used.
Using six sided environment textures further increases this texture
demand providing better light source direction handling.

48

One main disadvantage is that light sources need to be stationary.
Whenever a light source is turned on/off or the direction changed
the lighting maps have to be recalculated or reloaded.

3.4 Silicon Graphics Bump Mapping

SGI reformulates the classic Blinn approach in such a way that
only a pcrturhcd normal vector field is needed as a hump-normal
map (three component texture map).
The principal idea is that illumination models are a function of
vector operations that can he calculated relative to any coordinate
system (reference frame).

The first iteration of the algorithm chooses tangent space TS in
point P as a reference coordinate system given by the unperturbed
normal vector N, a tangent vector T and a hinormal vector B:

TS := (T, B, N) where

T = P;, l(lP;, II
R=NxT

This tangent space forms an orthonormal basis where each point
on the surface is given as:

N;, =(x,y.z)+Jm

x = -f,, (B . Pv)

Y = -(f,. .[I?, II- f,, (T P, 1)

z = l/P,, x p,,ll

Since the normal vectors lie in tangent space the light vector L
and the half vector H have to be transformed into tangent space,
which is done, using the following equation.

V,, =V.(T,B,N) h w ere V is substituted by L or H respec-

tively.

The transformed per vertex parameters are homogeneously inter-
polated over the triangle to get the best results.

However choosing tangent space as a reference frame leads to a
surface dependency of the stored perturbed normal vectors. Fur-
thermore, the transformation for each parameter is different for
each triangle vertex that has to he calculated in the geometry en-
gine.

To overcome the tangent space dependency the second iteration of
the algorithm introduces object space as a reference frame. Using
object space gives the advantage that the matrix applied to the
light and half vector is shared by all vertices over the triangle.

This saves a great amount of geometry engine computation but
does not remove the surface dependency.

To overcome the surface dependency the final algorithm or-
thonormalizes pI, and P,. such that:

P, . P,, = T. P,, = 0 and IIt, II= IIP,I) = 1.

The perturbed hump normals then result in:

N;,y =(x,y,z)-dm

x = -kf,,

y = -kf,,

z =k’

Equation I :Final bump normal equation

This simplified equation leads exactly to the algorithm described
in [6].

3.5 Harmony Bump Mapping
Harmony bump mapping [7] simply interpolates the per vertex
coordinate systems across the triangle. The three axes spanning
the coordinate system are:
-P, x N

-Nxc,

P;d x P,
Note that these are the components of Blinn’s final equation (see
section 1).

The illumination calculation is done by using the interpolated
light and half vectors. For each light-source, an interpolated light
direction is needed.

4. GOURAUD BUMP MAPPING

An alternative scheme for cost effective bump mapping is pre-
sented in section 5. This stores object-space local normal vec-
tors/perturbations in the image data similar to that proposed in
section 3.4.

This method is more flexible than the Microsoft approach, since
light-source directions, colors and the material shininess can be
changed without loss of performance.

Nevertheless, it is still limited to distant light-sources relative to
one triangle to keep the necessary hardware at a minimum. Fur-
thermore only a limited number of light-sources (usualy two to
four) can be implemented in parallel to cut down hardware costs.

Since we transform all the vectors into bump vector space, an
orthogonal system is already given (compared to P, , P, as par-
tial derivatives, see 3.4).

The bump normals stored in the bump map are calculated using
the following formula:

N:, =(x, y, z)+dm
x = f,,
Y = .f,

z=l

Equation 2 : Gouraud bump normal equation

Note that this formula equals Equation I in 3.4 with k = 1.

49

The construction of the transformation matrix to transform half
and light vectors into bump vector space is described in detail in
[61.

4.1 Gouraud Bump Mapping Algorithm

The simplicity of the Gouraud Bump Mapping algorithm keeps
the extra hardware needed to render bump mapped triangles at a
minimum.

Using the reordered graphics pipeline in section 5.1, two new
units are added to the Gouraud rasterizer. Both, the diffuse and
the specular blending units need bump-state information, which
consists of the light-source direction, light-source color and the
material’s shininess.

The perturbed normal is read from the bump map and the half
vector is transferred to the rasterizer with the triangle data or it
may be kept in the bump-state. Given the half-vector and the nor-
mal in a point on the triangle the lighting equation can be calcu-
lated.

The lighting model can he simplified by using a parallel viewer
and parallel light sources. Using the simplified model, the half-
vector and the light direction can be stored in the bump state to
reduce the data transfer to the rasterizer.

4.2 Blending Unit

The blending unit combines the Gouraud color with the lighting
result given by the bump map normal Bi, the light direction L

and the half-vector Hi .

The function used to calculate the diffuse bump lighting intensity
is:

fdi = B; . L

The specular intensity uses the material exponent to simulate
shiny surfaces and results in:

fii =(Bi .Hi)

Given the light source color Li the final lighting color can be

calculated.

The final fragment blending is done by the following equation:

c = “CW c,,~ + CCfdi + fsi).ki .Li

This function calculates the final Gouraud Bump color for i light
sources.

C,,, is the interpolated Gouraud color output of the Color

DDA Unit (C represents R, G, B). Only light-sources
which are not effected by the hump map generate C.

CfWW is the final blended Gouraud Bump color.

fdi represents the diffuse blending function of light source

fs, represents the diffuse blending function of light source

k, modulates spot and/or attenuation information accord-
ing to the OpenGL specification.

L, is the light source color of light i.

The material shininess is held constant over the triangle and is
implemented as a simple power table for one shininess at a time.
The table can be loaded similar to a color LUT and is equal in size
to reduce costs.

k, is used if the basic blending function is extended to improve

the per pixel lighting/blending quality. One possible improve-
ments is the simulation of cut-off angles for spotlights. In our
sample implementation, it has no effect.

Both blending units can selectively be turned off to reduce the
artifacts described in section 5.4 according to the color informa-
tion given in the interpolated Gouraud color fragment C,Y,,

BHn k L

BHnkL

mdt
I

G..

Figure I: Gouraud Bump Mapping block diagram

Figure 1 gives an impression of the additional hardware units.
Depending on the accuracy of all relevant input fields (B, H, n and
color) and the fidelity of the specular intensity generator, the gate
budget lies in the range from 10,000 to 25,000 gate equivalents.
Multiple light sources can be implemented by accumulation of all
relevant light fragments and final addition with the interpolated
Gouraud color. n light sources are blended in n clock cycles,
avoiding n times the hardware. Note that H is constant within at
least one triangle, so bandwidth will increase to three 16-bit words
per triangle, or about less than 5% of a typical textured Gouraud
triangle data-set.

5. INSIDE GOURAUD BUMP MAPPING

This section provides recommendations to improve the rendering
quality of Gouraud bump mapped triangles taking into considera-
tion the artifacts found using the algorithm.

5.1 Pipeline re-ordering
A rendering pipeline for a Gouraud rasterizer usually gets the
interpolated Gouraud color and blends the texture color thereafter.
Thus, the pipeline ordering is ColorDDA - Texture - Blend.

50

Using Gouraud, bump mapping the pipeline has to be changed 5.2 Multiple Light Sources
slightly.

The best results can be achieved if the interpolated fragment is
first blended with the diffuse bump color and after the texture is
applied it is blended with the specular bump color. This color
splitting is similar to the Kd, KS lighting.

Multiple light sources are supported by looping over all n light
sources and blending the incoming color fragment n times with
the diffuse and the specular bump color respectively (see Figure
4).

The final pipeline looks as follows:

The following pictures show the necessity of calculating both, the
diffuse and the specular bump blend color as shown in the final
pipeline. Note that blending the diffuse and specular color to-
gether after the texture pass has no effect on black texture color
due to the multiplication (see Figure 3). Figure 2 shows the de-
sired result using the split blending pipeline.

Figure 4: Torus with sphere cap bump map illuminated by two
light-sources. White light-source from right, purple light-source
from left.

5.3 Natural Surface Simulation

Figure 2: Di’use and Specular Gouraud Bump Blending using
DiffuseBlend-Texture-SpecularBlend pipeline ordering.

Bump maps do not necessarily add roughness or structure to a
surface. Instead, we can use it to simulate smooth surfaces.

The image in Figure 5 B shows how to define a bump map, which
generates a smooth shaded cylinder (see Figure 8) that can only be
achieved using per pixel lighting hardware.

Dependent on the type of the object, bump maps can be held small
and used repeatedly similar to texture maps (see Figure 5 B).

Due to the full texture filtering capability of bump maps, smoothly
interpolated bump-vectors are used to avoid local flat shading
effects (see Figure 5 A).

Figure 5: Natural Surface Simulation

Figure 3: Specular Gouraud Bump Blending only using Texture-
D$tiiseBlend/SpecularBlend pipeline ordering.

51

5.4 Artifacts
To discuss the artifacts we first recall all the simplifications:

1. Gouraud color is used instead of Phong interpolated color

2. Half vector held constant over the triangle (viewer is parallel
over the triangle). Only distant light sources relative to the
triangle are supported which react on the bump map.

3. P, and P, are orthogonal unit vectors

5.4.1 Gouraud Color Artifact
Gouraud Bump Mapping blends the diffuse and the specular color
given by the lighting geometry on top of the interpolated Gouraud
color. This gives the well-known math-banding effect. However
since Gouraud Bump Mapping is limited to parallel light-sources
and triangle parallel viewer the Gouraud color can add spot-light
and other lighting capabilities to the bump mapped triangle (see
Figure 6).

Figure 6: Sphere with brick bump map. Only the white light-
source is used for the bump map effect. The red and green spot-
light is given by the Gouraud color.

5.4.2 Parallel Viewer and Light Source
Given a parallel viewer and a parallel light-source results in flat
shading artifacts which can be seen in Figure 7. This artifact can
be avoided by simply adding only the bump blending effect which
has a perturbed normal stored in the bump map and leaving the
fragments that contain unperturbed normals untouched. According
to Equation 1 the unperturbed normal vector is [O,O, 1 .O].

Figure 7: Flat shading artifact using constant bump-normals on a
curved surface.

Likewise it is possible to calculate the correct surface-normal
within the bump-map (see 5.3). A bump mapped cylinder for
example contains the computed surface normals of the cylinder
patch plus the bump-structure. Nevertheless doing so, we added a
surface dependence to the bump map.

Figure 8: Simulated smooth shading using Gouraud Bump Map-
ping

5.4.3 Orthogonal Axis PU and P,

The orthogonal axis’ removes the surface dependency of the bump
map but automatically limits the models to be rendered to be
square patched. These include spheres, tori, surfaces of revolu-
tion and flat rectangles. _

6. CONCLUSIONS AND FUTURE WORK
We have presented a simple but efficient scheme for bump map-
ping on common Gouraud renderers. The additional hardware
overhead is small and is justified by the resulting quality in both
bump mapped surfaces and specular lighting (see Figure 9). The
memory requirements for the bump maps can be minimized by
using palletized bumps. With eight bit addressing a table lookup
(bump) texture, up to 256 surface orientations can be modeled.
Further improvements can be made by interpolating the half vec-

tor (no flat shading effect) and/or by interpolating the light direc-
tions, one per light-source. References

ill

PI

[31

Figure 9: Teapot with mexican hat bump map

Acknowledgments

[41

We are grateful to Markus Szymaniak, Mark K. Newholm, Robert
Sharp and S. Budianto for their suggestions and contributions to
this work. [51

[61

J. F. Blinn, “Simulation of wrinkled surfaces,” in SIG-
GRAPH 78, pp. 286-292, 1978.

Mark Peercy, John Airey, Brian Cabral, Efficient Bump
Mapping Hardware, Proceedings of SIGGRAPH 97 (Los
Angeles, California, August 3-8, 1997). In Computer
Graphics Proceedings, Annual Conference Series, 1997,
ACM SIGGRAPH, pp. 303-306

Schilling, A., Knittel, G., StraRer, W., Texram: A Smart
Memory for Texturing, Computer Graphics & Applications,
May 1996, pp. 32-41.

I. Ernst, D. Jackel, H. Rtisseler, 0. Wittig, Hardware Sup-
ported Bump Mapping: A Step towards Higher Quality
Real-Time Rendering, In 10th EuroGraphics Workshop on
Graphics Hardware, EuroGraphics, pp. 63-70 (1975)

0. Wittig, I. Ernst, D. Jackel, “Bildverarbeitungsverfahren
zur Simulation einer Tiefenstruktur und zugehoerige Vor-
richtung”, 25.8.1995, Patentanmeldung 196 06 356.6

I. Ernst, “Verfahren und Vorrichtung zur Darstellung com-
putermodelherter Objekte”, 20.3.1997, Patentanmeldung
197 13 466.1-53

M. A. Cosman and R. L. Grange, “CIG scene realism: the
world tomorrow,” Proceedings of 18th I/ITEC Conference,
1996.

53

