
View-independent Environment Maps 

Wolfgang Heidrich and Hans-Peter Seidel 

Computer Graphics Group 
University of Erlangen 

{heidrich,seidel}@informatik.uni-erlangen.de 

Abstract 

Environment maps are widely used for approximating reflec- 
tions in hardware-accelerated rendering applications. Unfor- 
tunately, the parameterizations for environment maps used 
in today’s graphics hardware severely undersample certain 
directions, and can thus not be used from multiple view- 
ing directions. Other parameterizations exist, but require 
operations that would be too expensive for hardware imple- 
mentations. 

In this paper we introduce an inexpensive new parame- 
terization for environment maps that allows us to reuse the 
environment map for any given viewing direction. We de- 
scribe how, under certain restrictions, these maps can be 
used today in standard OpenGL implementations. Further- 
more, we explore how OpenGL could be extended to support 
this kind of environment map more directly. 
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1 Introduction 

The basic idea of environment maps is striking [l]: if a re- 
flecting object is small compared to its distance from the 
environment, the incoming illumination on the surface re- 
ally only depends on the direction of the reflected ray. Its 
origin, that is the actual position on the surface, can be ne- 
glected. Therefore, the incoming illumination at the object 
can be precomputed and stored in a 2-dimensional texture 
map. 

If the paramet,erization for this texture map is cleverly 
chosen, the illumination for reflections off the surface can 
be looked up very efficiently. Of course, the assumption 
of a small object compared to the environment often does 

not hold, but environment maps are a good compromise be- 
tween rendering quality, and the need to store the full, 4- 
dimensional radiance field on the surface. 

Both offline [3, 91 and interactive, hardware-based render- 
ers [g] have used this implementation of reflections, often 
with amazing results. 

Given the above description of environment maps, one 
would think that it should be possible to use a single map 
for all viewing positions and directions. After all, the en- 
vironment map is supposed to contain information about 
illumination from all directions. Thus, it should be possible 
to modify the lookup process in order to extract the correct 
information for all possible points of view. 

In reality, however, this is not quite true. The parameter- 
ization used in most of today’s graphics hardware exhibits 
a singularity as well as areas of extremely poor sampling. 
As a consequence, this form of environment map cannot be 
used for any viewing direction except the one for which it 
was originally generated. 

This leaves us with a situation, where the environment 
map has to be re-generated for each frame even in simple 
applications such as walkthroughs. Other parameterizations 
exist (see Section 2), but require operations that would be 
too expensive for hardware implementations. In this paper 
we introduce a parameterization for environment maps that 
uses only simple operations (additions, multiplications and 
matrix operations), but provides a good enough sampling so 
that one map can be used for all viewing directions. 

In the following, we first discuss existing parameteriza- 
tions for environment maps and their deficiencies. Then, 
in Section 3, we introduce our new parameterization, and 
describe how it can be used on contemporary graphics hard- 
ware under certain restrictions (Section 5). Finally, we pro- 
pose a simple extension to the texture coordinate generation 
of OpenGL that would add direct support for our method 
(Section 6), and we present results of our implementation in 
(Section 7). 

2 Previous Work 

The parameterization used most commonly in com- 
puter graphics hardware today, are spherical environment 
maps [8]. It is based on the simple analogy of a small, per- 
fectly mirroring ball centered around the object. The image 
that an orthographic camera sees when looking at this ball 
from a certain viewing direction is the environment map. An 
example environment map from the center of a colored cube 
is shown in Figure 1. 

The sampling rate of this map is maximal for directions 
opposing the viewing direction (that is, objects behind the 
viewer), and goes towards zero for directions close to the 
viewing direction. Moreover, there is a singularity the in 
viewing direction, since all points where the viewing vec- 
tor is tangential to the sphere show the same point of the 
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Figure  1: A spherical environment  map  from the center  of
a colored  cube. Note the bad sampling of the cube face
directly  in front of the observer (light  gray).

environment.
With these properties,  it is clear that this  parameteri-

zation  is not suitable  for viewing  directions  other  than  the
original  one. The major  reason why it is used anyway,  is
that the lookup  can be computed  efficiently  with simple  op-
erations  in hardware.  The parameterization  proposed  in this
paper solves the  sampling problems while at the  same  time
maintaining  the simplicity  of the lookup process.

Another  parameterization  are latitude-Zongztude  maps [9].
Here, the s, and t parameters  of the texture map  are inter-
preted as the latitude  and longitude,  respectively,  with re-
spect to a certain  viewing  direction.  Apart  from the fact that
these maps  are severely  oversampled around the poles,  the
lookup  process  involves  the computation  of inverse  trigono-
metric  functions,  which is inappropriate  for hardware imple-
mentations.

Finally,  cubical  environment  maps [2, 101 consist  of 6 in-
dependent  perspective  images  from the cent,er of a cube
through each  of its faces.  The sampling of these maps is
fairly  good,  as the sampling rates  for the directions  differ by
a factor of 3& z 5.2.  Also,  the lookup process within  each
of the 6 images is inexpensive.  However,  the difficulty  is to
decide  which of the six images to use for the lookup.  This
requires several  conditional  jumps,  and interpolation  of tex-
ture coordinates  is difficult  for polygons containing  vertices
in more than one image.  Because  of these problems cubical
environment  maps are difficult  and expensive  to implement
in hardware,  although  they are quite widespread  in software
renderers (e.g.  [9]).

Many interactive  systems  initially  obtain  the illumination
as a cubical  environment  map, and then resample this  in-
formation  into a spherical environment  map. There are two
ways this can be done.  The first is to re-render  the  cubi-
cal map  for every  frame, so that the cube is always aligned
with the current  viewing  direction.  Of course this is slow
if the:  environment  contains  complex  geometry. The other

method  is to generate  the cubical  map  only  once,  and then
re-compute  the mapping from the cubical  to the spherical
map  for each  frame. This, however,  makes  the resampling
step more expensive,  and can lead to numerical  problems
around the singularity.

In both cases, the resampling  can be performed as a mul-
tipass  algorithm  in hardware,  using  morphing  and texture
mapping. Yet, the bandwidth  imposed by this  method  onto
the graphics  system  is quite large:  the six textures  from the
cubical  representation  have to be loaded  into texture mem-
ory, and the resulting  image has to be transferred  from the
framebuffer  into texture RAM  or even into main memory.

3 A New Parameterization

The parameterization  we use is based on an analogy simi-
lar to the one used to describe  spherical  environment  maps.
Assume that the reflecting  object  lies in the origin,  and that
the viewing  direction  is along  the negative  z axis. The im-
age seen by an orthographic  camera  when  looking at the
paraboloid

f(GY)  = ; - p + Y”), x2 + y2 < 1 (1)

contains  the information  about  the  hemisphere  facing to-
wards the  viewer.  The complete  environment  is stored in
two separate  textures,  each  containing  the information  of
one hemisphere.  The geometry  is depicted  in Figure  2.

4 \

Figure  2: The rays of an orthographic  camera  reflected  on a
paraboloid  sample a complete  hemisphere  of directions.

It should  be noted that this parameterization  has recently
been introduced  by Nayar  [6, 51 in a different context.  Nayar
actually  built  a lens and camera  system  that is capable  of
capturing  this  sort of image from the real world. Besides ray-
tracing  and resampling  of cubical  environment  maps, this is
actually  one way  of acquiring  maps in the proposed  format.
Since  two of these  cameras can be attached  back to back [5],
it is possible  to create  full  360” images of real world scenes.

The geometry  described  above has some  interesting  prop-
crties. Firstly,  the reflection  rays in each  point of the
paraboloid  all intersect  in a single  point,  the origin  (see
dashed  lines in Figure  2). This means that the  resulting
image  can indeed  be used as an environment  map for an
object  in the origin.

Secondly, the sampling  rate varies  by a factor  of 4 over the
complete  image, as depicted  in Figure  3. Pixels  in the outer
regions  of the map  cover only  l/4 of the solid angle  covered
by center  pixels.  This means that directions  perpendicular
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to the viewing  direction  are sampled at a higher  rate than  di-
rections  parallel  to the  viewing  direction.  Depending  on how
we select mipmap levels,  the factor  of 4 in the sampling rate
corresponds t,o one or two levels difference, which  is quite
acceptable.  In particular  this  is better  than  the sampling of
cubical environment  maps.

I
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Figure  3: The change of solid angle  w covered  by a single
pixel  versus  the angle  6’ between  the viewing  direction  and
the reflected ray. The sampling rate  varies  by a factor  of 4
over the environment  map. Directions  perpendicular  to the
viewing direction  are sampled at a higher rate  than  direc-
tions parallel  to the viewing  direction.

Figure  4 shows the two images  comprising  an environment
map for the simple  scene used in Figure  1. The top image
represents  the hemisphere  facing towards  the camera,  while
the bottom image  represents  the hemisphere  facing away
from it.

4 Lookups from Arbitrary
Viewing Positions

In the following,  we  describe  the math  behind  the lookup
of a reflection value from an arbitrary viewing  position.  We
assume  that environment  maps  are specified  relative  to a
coordinate  system,  where  the reflecting  object  lies in the
origin,  and the map is generated  for a viewing  direction  of
d, = (O,O, --1)r. It is not necessary that this  coordinate
system represents  the object  space of the reflecting  object,
although this would be an obvious  choice.  However,  it is
important  that the transformation  between  this  space  and
eye space  is a rigid  body transformation,  as this  means that
vectors do not have to be normalized after transformation.
To simplify  the notation,  we  will  in the following  use the
term “object,  space” for this space

In the following,  v, denotes  the  normalized vector from
the eye point  to the point on the surface, while the vector
n, = (%,z,%,y,%.z) r is the normal of the surface point
in eye space. Furthermore,  the (affine)  model-view mat,rix  is

Figure  4: The two textures  comprising  an environment  map
for an object  in the center  of a colored cube.

given as M. This means, that the normal vector in eye space
n, is really the transformation  M-r n, of some  normal
vector in object  space. If M is a rigid  body  transformation,
and n, was  normalized, then so is n,. The reflection  vector
in eye space  is then given as

r, =v,+2(n,,-v,).n,. (2)

Transforming  this  vector with  the inverse  of M yields  the
reflection  vector in object  space:

ro = M-’ rr. (3)
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The illumination for this vector in object space is stored 
somewhere in one of the two images. More specifically, if the 
z component of this vector is positive, the vector is facing 
towards the viewer, and thus the value is in the first im- 
age, otherwise it is in the second. Let us, for the moment, 
consider the first case. 

r. is the reflection of the constant vector d, = (O,O, -l)T 
in some point (z, y, z) on the paraboloid: 

r. = d, + 2 (n, -do). n, (4) 

where n is the normal at that point of the paraboloid. 
Due to the formula of the paraboloid from Equation 1, this 
normal vector happens to he 

(5) 

Combining Equations 4 and 5 yields 4 

k.x 
do-r,=2(n,v)n= k.y ( ) (6) 

k 

In summary, this means that z and y, which can be di- 
rectly mapped to texture coordinates, can be computed by 
calculating the reflection vector in eye space (Equation 2), 
transforming it back into object space (Equation 3), sub- 
tracting it from the (constant) vector d, (Equation 6), and 
finally dividing by the .z component of the resulting vector. 

The second case, where the z component of the reflection 
vector in object space is negative, can he handled similarly, 
except that -d has to he used in Equation 6, and that the 
resulting values are --z and -y. 

5 OpenGL Implementation 

An interesting observation of the above equations is that al- 
most all the required operations are linear. There are two 
exceptions. The first is the calculation of the reflection vec- 
tor in eye space (Equation 2), which is quadratic in the com- 
ponents of the normal vector n,. The second exception is 
the division at the end, which can, however, be implemented 
as a perspective divide. 

Given the reflection vector re in eye coordinates, the 
transformations for the frontfacing part of the environment 
can be written in homogeneous coordinates as follows: 

[ i] =P.S.(M,)-‘. [ ii;] > (7) 

where 

rl 0 0 01 

is a projective transformation that divides by the .z compo- 
nent, 

r-i 0 0 do,, 1 

computes d, - ro, and Ml is the linear part of the affine 
transformation M. Another matrix is required for mapping 
z and y into the interval [0, l] for the use as texture coordi- 
nates: 

[i]..[i I i g].[;] 
Similar transformations can he derived for the backfacing 

parts of the environment. These matrices can he used as 
texture matrices, if re is specified as the texture coordinate 
for the vertex. Note that re changes from vertex to vertex, 
while the matrices remain constant. 

Due to the non-linearity of the reflection vector, re has to 
be computed in software. This is the step that corresponds 
to the automatic generation of texture coordinates for spher- 
ical environment maps in OpenGL (glTexGen). Actually, 
this process can he further simplified by assuming that the 
vector v from the eye to the object point is constant. This 
is true, if the object is far away from the camera, compared 
to its size, or if the camera is orthographic. Otherwise, the 
assumption breaks down, which is particularly noticeable on 
flat objects. 

What remains to he done is to combine frontfacing and 
backfacing regions of the environment into a single image. 
To this end we use OpenGL’s alpha test feature. In the 
two texture maps, we mark those pixels inside the circle 
zr2 + y2 5 1 with an alpha value of 1, the pixels outside the 
circle with an alpha value of 0. Then the algorithm works 
as follows: 

glAlphaFunc ( GL_EQUAL, 1.0 ) ; 
glEnable ( GL_ALPHA-TEST ) ; 
glMatrixMode( CL-TEXTURE 1; 

glBindTexture( GL_TEXTURE_2D, 
frontFacingMap ); 

glLoadMatrix( frontFacingMatrix 1; 
draw object with r0 as texture coord. 

glBindTexture( GL_TEXTURE_2D, 
backFacingMap 1; 

glLoadMatrix( backFacingMatrix ); 
draw object with r0 as texture coord. 

The important point here is that backfacing vectors r,, will 
result in texture coordinates x2 + yz > 1 while the matrix for 
the frontfacing part is active, and will thus not be rendered. 
Similarly frontfacing vectors will not he rendered while the 
matrix for the hackfacing part is active. 

6 Extending OpenGL 

White the method described in Section 5 works, and is also 
quite fast (see Section 7), it is not the best one could hope 
for. Firstly, since the texture coordinates have to be gener- 
ated in software, it is not possible to use display lists’. Sec- 
ondly, many vectors required to compute the reflected vector 

‘Actually, since the texture coordinates are identical for both 
passes of our method, display lists can be used to render the two 
passes within one frame, but they cannot be reused for other 
frames. 
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re are already  available  further  down the pipeline  (that is,
when  OpenGL  texture coordinate  generation  takes  place),
but are  not easily  available  in software.

For  example,  the normal  vector  in a vertex  is typically
only  known  in object  space.  In order to compute  n,, this
vector  has  to be transformed  by hand,  although  the trans-
formed normal  is later being  transformed  by the hardware
anyway  (for lighting  calculations).

Interestingly,  the texture coordinates  generated  for spher-
ical environment  maps  are the z and y components  of the
halfway  vector  between  the reflection  vector  re and the neg-
ative  viewing  direction  (0, 0, l)T [8]. Thus,  current  OpenGL
implementations  essentially  already  require  the computation
of re for environment  mapping.

We would  like  to emphasize  that this  computation of the
reflection  vector  is really  necessary,  even  with the standard
OpenGL  spherical  environment  maps.  On first  sight,  one
could  think  that for this  parameterization,  it would  be pos-
sible to directly  use the x and y components  of the surface
normal  as texture coordinates.  This, however,  would  only
yield  the desired  result  for orthographic  views.  For per-
spective  views  it would  lead  to sever  artifacts, such  as flat
mirroring  surfaces  being colored in a single,  uniform  color.

Because  OpenGL  implementations  already  compute  the
reflection  vector,  the changes  necessary  to fully support  our
parameterization  are  minimal.  All that is required,  is a new
mode  for texture coordinate  generation  that directly  stores
re into the s, t, and T texture coordinates,  and sets  CJ to 1.

Furthermore,  and independent  of this  proposal,  it would
be possible get  rid the second rendering  pass by allowing  for
multiple  textures to be bound at the same  time.  OpenGL
extensions  for this  purpose  are currently  being  discussed  by
the OpenGL  architecture review  board.

7 Results

We have  implemented  the software-based  method  described
in Section  5, and tested it with several  scenes.  Figure  5
shows two images  making  up one environment  map. These
images  where  generated  using  ray-casting.  The circles  indi-
cate regions  with  x2 +y2 5 1. The regions  outside  the circles
are do not really  belong to the map,  but have  been gener-
ated during  the ray-casting  step  by extending  the paraboloid
to the domain -1 5 2,~ < 1. We found it useful to have
an additional  ring of one  or two pixels  available  outside  the
act.ual  circle,  in order  to avoid  seams  in regions  where  front-
and backfacing  regions  touch.

Figure  6 shows a sphere  to which  this  environment  map
has been applied.  The images  have  been taken  from different
viewpoints,  but with the same  environment  map.  This image
can be rendered  in full screen  (1280  x 1024)  at about 15
frames  per second on an SGI 02 and at > 20 frames  per
second on an SGI RealityEngine:!.  The tessellation  used for
this  sphere  was 72 x 72 quadrilaterals.

A closeup of the seams  between  frontfacing  and backfacing
regions  of the environment  map can be seen  in Figure  7. In ,
the left image,  the curve indicates  this  seam,  which  hard  to
detect  in the right  image.

Finally,  Figure  8 shows a torus with  the environment  map
applied.  Here  we used a tessellation  of 144  x 72,  and the
timings  where  13 frames  per  second on the 02, and > 20
frames  per second on the RealityEngineS, again  at full screen
resolution

Based  on the discussion  in Section 6, we are  confident,
that these  times  could be further  improved,  if some  minor

Figure  5: The two textures of the environment  map for an
object  in the center  of an office  scene.

extensions  were  made to the texture coordinate  generation
mechanism  of OpenGL.

8 Conclusions

In this  paper,  we have  introduced  a novel  paramcteriza-
tion for environment  maps,  which  allows  us to reuse  them
from multiple  viewpoints.  This allows  us to generate  walk-
throughs  of scenes  with reflecting  objects  without  the need
to recompute  environment  maps  for each frame.

We have  shown  how the new parameterization  can be used
today  in standard  OpenGL implementations.  Although  this
method  is partly  based  on a software  algorithm,  we have
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Figure  6: The environment  map  from Figure  5 applied  to a
sphere  seen from t,wo  different  viewpoints.

demonstrated  it, t,o be efficient,  enough  for xrlarly  practical
purposes.

Further  performance  improvements  are possible by adding
some direct support, for our parameterization  into t,he
OpenGL  API. <My minimal  changes would he necessary
for this support,  and they would he backwards compatible
to the current  interface.
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Figure 8: A torus  with  view-independent  environment mapping, rendered using Opx~GL
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