
WARD - Visualization Accelerator for Realtime Display 

Giinter Knittel, Wolfgang StraOer 

WSVGRIS, University of Tiibingen, Germanyt 

ABSTRACT 1 MOTIVATION 

Volume rendering has traditionally been an application for super- 
compulers, workstation nehvorks or expensive special-purpose 
hardware. In contrast, this report shows how far we have reached 
using the other extreme: the low-end PC platform. We have allevi- 
ated the mismatch behveen this demanding application and the 
limited computational resources of a PC in three ways: 
l several stnges in the visualization pipeline are placed into a pre- 

processing step, 
l the volume rendering algorithm was optimized using a special 

data compression scheme and 
l the algorithm has been implemented in hardware as a PCI-com- 

patible coprocessor (lXZ,4RD). 
These methods give us a frame rate of up to 1OHz for 2563 data 
sets at nn acceptable image quality, although the accelerator proto- 
type was built using relatively slow FPGA-technology. 
In a low-cost environment a coprocessor must not be more expen- 
sive than the host itself, and so VIZARD was designed to be man- 
ufacturable for a few hundred dollars. The special data 
compression scheme allows the data set to be placed into the main 
memory of the PC and eliminates the need for an expensive, sepa- 
rate volume memory. 
The entire visualization system consists of a portable PC with hvo 
built-in nccelerator boards. Despite its small size, the system pro- 
vides perspective raycasting for realtime walk-throughs. Addi- 
tional features include stereoscopic viewing using shutter glasses 
and volume animation. 

CR Catcgorles and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture - Graphics Processors; 1.3.3 
[Computer Graphics]: Picture/Image Generation. 

Additional Keywords and Phrases: Volume Rendering Acceler- 
ator, PCI-Coprocessor 
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Currently we can observe a number of research projects dealing 
with the design of volume rendering accelerators: VIRIM [7] is 
already operational since some years, as well as the massively par- 
allel system described in [IO]. DIVVA [I I] is currently being 
assembled and tested. 
Common to all approaches is that they represent large and expen- 
sive coprocessing Jystenrs with a separate, highly interleaved vol- 
ume memory and complex arithmetic units. The controlling 
workstation is merely considered as an intelligent display, which 
passes user inputs to the deskside accelerator. An exception is 
Cube-4 [12], since it is being designed as a PCI-card. However, it 
still has an owu volume memory and will fall outside the typical 
PC price range. 
Considering the current trend in the area of surface-oriented 
graphics accelerators, we follow a radically different approach. 
Volume data sets are extremely large, and thus the user acceptance 
for a dedicated memory of this size is limited. Moreover, worksta- 
tions and PCs are shipped with more and more memory, up into 
the gigabyte range, and so it is no longer understandable why 
these enormous resources should not be used for volume rendering 
also. 
The volume rendering accelerator presented in this work is a step 
towards the ultimate goal of a single-chip visualization coproces- 
sor. The central problem to be solved is the limited main memory 
bandwidth, which we try to solve using data compression and spe- 
cialized caches. The achieved performance and the image quality 
are encouraging, although this project is still in its prototype stage. 
The paper is organized as follows: in section 2, the underlying 
algorithm is explained in short terms. The hardware architecture is 
explained bottom-up from the coprocessor architecture to our 
BlackMagic visualization system in section 3 through section 7. 
Operational principles of the system are explained in section 8 and 
section 9. Performance figures are given in section 10. Image 
quality is illustrated at the end of the paper by some examples 
from medical imaging. 

2 ALGORITHM 

The underlying visualization paradigm is perspective mycasting, 
although this is one of the most expensive algorithms, in order to 
allow for proper walk-throughs and stereoscopic viewing. Trans- 
parent display of selected materials also adds to the complexity of 
the algorithm, but can in no way be omitted. 
The overall processing from the raw data set to the image is shown 
in Figure 1. Segmentation, shading and our special way of data set 
compression are done in sofhvare once per data set. The trans- 
formed data set can then be visualized in realtime with hardware 
acceleration. 
At the first glance it may be considered as a disadvantage to move 
the segmentation and shading steps out of the interactive loop. 
However, a reliable classification in standard applications (e.g., 
separating a tumor from healthy brain tissue) is far too compli- 
cated and expensive to be done in realtime during the visualiza- 
tion. Therefore, in most relevant cases, segmentation will be done 
separately anyway. 
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Figure 1: The Rendering Pipeline 

The consequences of pre-shading are that the light sources travel 
with the data set as it is moved, and cannot be brought to other 
positions. Thus, the data set is viewed like a work of art at an exhi- 
bition. An advantage is, that the number of light sources and the 
complexity of the illumination model are not limited by hardware 
considerations. 
The special data set compression scheme, which we call RBC 
(Redundant Block Compression), reduces the memory bandwidth 
requirements and therefore allows the data set to be placed in the 
main memory of the host. It is a 3D-extension of the well-known 
BTC (Block Truncation Coding) scheme, which was invented in 
1979 for grayscale 2D-images [5]. RBC has also been described 
comprehensively in [S]. Here we give only a short summary. 
VIZARD currently supports only monochrome data sets, and so 
we restrict our discussion to the processing of grayvalues. 
The grayvalues of a 12-voxel-block are quantized into 2 new gray- 
values C, and C, such that losses are minimized. Each voxel posi- 
tion is assigned one decision bit to select one of the grayvalues. 
Given S bits for both of the new grayvalues, a 12-voxel-block can 
be compressed into a 32-bit word, as shown in Figure 2. The 
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Figure 2: Data Element representing one Voxel Block 

remaining 4 bits can be used to identify the different materials 
inside the block. This compression is done redundantly, as 
depicted in Figure 3 (not shown but also done in y-direction). 
Consequently, all eight samples needed for the t&linear interpola- 
tion can always be fetched from memory in a single access. 

Data Element n+dim_y’dim-x/2 

\ Data Element n+dim~‘dlm~x/2*1 

Data Elem/ent n Data Element ntl 

Figure 3: Redundant Block Compression 

Besides the memory bandwidth requirements, computationnl 
expenses are also significantly reduced. The tri-linear interpoln- 
tion of the raypoint value Cat offsels a, j3 and y from eight voxcls 
CO.J~ given by 
C = C,(l-a) (I-p) (1-y) +C,(l-a)p(I-y) 

+C,(I-a) (I-j3)y+...+C,-a~p.y (1) 

can be factorized as shown below, since there are only two diffcr- 
ent grayvalues C, and C, in any given volume cell: 

c = c,; (o,+ob+ . . . +oJ 

+c,* (od+oe+...+w) (2) 
/ 

The weightfactors o, sum up to 1. If oI is the compound weight 
for C,, then 

c = c; (I-o,) +c,*o, = cu-Co,’ (q-c,) * (3) 

The compound weight o1 depends on a, p and y (which we limit 
to 4 bit precision each), and on S decision bits, giving a total of IM 
= 220 different configurations. Thus we can easily precomputc the 
weightfactors for each possible configuration and store them in a 
table. Furthermore, as implied by (3), we do not store C,, and C, in 
the data elements, but instead C, and (C,,-Cl). Then, a complcto 
t&linear interpolation is performed by 
0 assembling the weightfactor address from the decision vector 

and the offsets, 
Cl one table look-up and 

Cl one multiplication and one subtraction. 
A further, significant speedup is achieved by integrating a specinl 
distance coding into the data set. If a voxel block is empty, i.e,, 
C,=O, the remaining bits of the data element are redefined and 
contain information about the neighborhood of the block, There is 
a certain probability that parts of this neighborhood are empty as 
well, which can then be skipped during raycasting [S]. 

3 COPROCESSOR FUNCTIONALITY 

The coprocessor autonomously traces a given ray through the dnla 
set until volume exit or encounter with an opaque surface, After 
being set up with the coordinates of the first raypoint and the vcc- 
tor to the next, it starts processing as shown in Figure 4. Accord- 
ingly, the coprocessor has one address-pipeline and one datn- 
pipeline. For the simplified &i-linear interpolation as cxplaincd 
above, the coprocessor is accompanied by a PROM holding the 
weightfactors in S-bit precision. The weightfactor address is 
assembled as 
%OY-I.., L-4 a-l..-4 ifX0=0, orD11..4Y-1..-4 IL-4 a./..-4 iflU,= 1. 
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The only large arithmetic unit is an SxS into 8 bits multiplier, so 
that the entire functionality tits into a single FPGA (XC4013 from 
XILINX [ 11). 
Due to the distance coding, there is a certain idle time between the 
receipt of a data element and the initiation of the next transfer. For 
this reason, the accelerator board has two coprocessors following 
two different rays in parallel. 

4 MEMORY HIERARCHY 

Figure 4: Coprocessor Operation 

For further speedup, we use on-board and on-chip caches, which 
in combination with the main memory and the harddisks form a 
four-level memory hierarchy. 
The atomic transfer unit is a 2x2~2 voxel block, defined by four CACHE 
data elements as shown in Figure 5. Whenever a memory access UPDATE 

offs:t& 
Figure 5: Atomic Transfer Unit 

occurs, four data items are read out and stored in the on-board and 
on-chip cache. Accordingly, the on-chip cache has four 32-bit 
entries and is addressed by ZOYo of the raypoint coordinates. 
The hit ratio of the on-chip cache can be considerable, if the dis- 
tance from one raypoint to the next is very small. This in turn is 
desirable in favor of a high image quality. 
The task of the on-board cache is to hold all blocks a ray has tra- 
versed, as shown in Figure 6. If the next ray passes through the 
neighboring pixel, it will hit a certain percentage of blocks then 
already present in the cache (ray-by-ray coherence). However, a 

Observer 

Figure 6: Blocks to be cached 

standard direct-mapped or n-way-associative cache organization 
would lead to an unacceptable cache size. For this reason, a spe- 
cialized cache architecture has been developed. The cache is 
addressed by the Manhattan Distance of the voxel block relative to 
the Manhattan Distance Reference Point, which is the closest 
point of the volume to the observer. Given 2x2~2 cache blocks 
and a data set resolution of 2563, the maximum Manhattan Dis- 
tance is 384, and thus the cache has 384 entries. Each entry con- 
sists of the physical memory offset of the cache block (the cache 
tag), which is 21 bits wide, and the 12S-bit voxel block. This 
would result in a total cache capacity of only about 7KByte. 
However, it is desirable to have a larger cache capacity for an 
increased hit rate. The most economic way to do this is to increase 
the cache line size to 4~4x4 voxel blocks, or 32 data elements. 
Then, we have only 192 cache entries, and an l&bit wide tag. 
However, the cache is still tilled in units of 4 data elements, so that 
we have to provide additional 8 valid bits. This gives a capacity of 
4992 bits for the tag RAM, and 24KByte for the cache. 
This tiny system is able to cache a data set of 32MByte and still 
deliver a very high hit ratio [9]. 
The operational principle of the cache tag architecture is shown in 
the block diagram in Figure 7. 
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Figure 7: On-Board Cache Tag Circuitry 
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Both coprocessors compute the Manhattan Distance along with 
the logical coordinates of the raypoints, and have a private cache 
tag system as shown in Figure 7. The tag systems are implemented 
in a third XC4013 device, making use of the Distributed Memory 
Feature of the XILINX 4K-family [l]. The 4013-device offers up 
to 18.432 bits storage capacity. 
If a hit occurs. an external 32-bit high-speed SRAM is addressed 
by MHD, 0 iA, 4 to deliver the appropriate voxel block during 
four on-board transfers. For maximum performance, the data ele- 
ment containing the raypoint is transferred first. 
For a high hit rate, a strong my-by-my coherence is needed. There- 
fore, rays are not generated in scanline order, but instead in the 
order of screen squares. 

5 ACCELERATOR ARCHITECTURE 

The missing part of a complete accelerator system is the data 

Cl the two completely identical coprocessor units, each consist- 

transfer controller, which is implemented using an XC3195A 
FPGA. It incorporates a dual-channel PC1 master/target interface 

ing of one 4013 device (unit A or unit B), accompanied by two 

for burst transfers and controls all on-board activities. An atomic 
transfer unit can be read from main memory without wait states, 

Flash Memory chips, 

since the transfer controller has a 4x32-bit register pipeline. 
The block diagram of the accelerator is given in Figure 8. A pho- 
tography of the board is shown in Figure 9. The different units dis- 
cussed so far can easily be identified: 

CCONTROL (16 LINES) 

Figure 8: Accelerator Block Diagram 

ning at 200MHz is sufftcient for the software part of the visualizn- 

6 SYSTEM ARCHITECTURE 

tion process. In the current implementation, MMX would not 
increase the frame rate significantly. 

The host system can be any standard PC having a PCI-bus. Since 
the data set must tit entirely into the main memory, the PC must bc 
equipped with 32MByte for 2563 data sets. A Pentium-CPU run- 

..I 

Cl the third 4013 FPGA (unit C), which incorporates the cache 
tag systems and controls the high-speed SRAM, and 

0 the PC1 interface and system controller (unit P). 

For fitme use there is a high-speed multiply-and-accumulate 
(MAC) unit, which can perform a 16x 16 into 32 bit multiplication 
with subsequent accumulation within 25ns. 

The system architecture of a typical PCI-based PC is shown in 
Figure 10. In our system, control functions are carried out by the 
TXC-unit (cache and memory control, host-to-PCI-bridge) nnd the 
PIIX3-unit (ISA-bridge, disk interface), both manufactured by 
Intel. For detailed information about the PCI-bus and the system 
control units, please refer to [2], [3] and [4]. 

.,- 

Figure 9: WARD 
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Figure 10: PC System Architecture 

7 BLACKMAGIC VISUALIZATION SYSTEM 

Compactness has been driven to the extreme for our BlackMagic 
demonstmtion system. It is a portable PC with a standard PC1 
mainboard, a 200MHz Pentium-CPU, 512KByte second level 
cache, 128MByte main memory, two 2JGByte harddisks and two 
VIZARD nccelerator boards. A VGA-adapter, which can drive 
both the built-in LCD and an external monitor simultaneously, 
completes the PC. The graphics adapter provides double-buffering 
nnd even fourfold-buffering (for stereoscopic viewing) for screen 
resolutions of up to 64Ox400xSbit. 
A photogmphy of the BlackMagic system together with a collec- 
tion of 3D input devices is shown in Figure 11. 

Figure 11: The BlackMagic Visualization System 

8 PARALLEL OPERATION 

At progmm start the dnta set is loaded into memory and the copro- 
cessors nre set up with the starting address and bounding volume 
of the data set. The two accelerator boards work in parallel, pro- 

viding a total of four raycasting engines. An even workload is 
established by assigning screen tiles of 32x32 pixels to the differ- 
ent coprocessor. 
For maximum performance, all system components must work in 
parallel. The system architecture implies that the sofhvare part 
should entirely fit into the CPU’s second level cache. This has 
been achieved by optimizing the critical parts in assembly lan- 
guage. Since the CPU never accesses the data set itself, perfect 
parallelism can be established. 
The software performs ray generation and intersection tests in 
floating-point format. If a my hits the volume, the coordinates of 
the intersection point and the components of the vector to the next 
raypoint are converted into integer format and stored along with 
other visualization parameters in main memory. The appropriate 
data transfer controller (unit P) is triggered, which transfers the 
parameter block to the targeted visualization coprocessor. This 
unit in turn starts raycasting as explained in section 3. Meanwhile 
the CPU generates the next my. Upon completion, the CPU checks 
if the last my has been terminated. If so, it reads the pixel value, 
which again triggers the appropriate data transfer controller to 
transfer the next parameter block. If not, the CPU generates a ray 
for the next coprocessor. After a very short while, all four copro- 
cessors and the CPU are working in parallel. 
After image completion, the CPU optionally performs 2D opera- 
tions (e.g., bi-linear interpolation in the case of subsampling), 
transfers the image to the frame buffer on the VGA card in a block 
transfer, and switches the display buffers. 

9 VOLUME ANIMATION 

By volume animation we mean the display of a sequence of data 
sets. However, due to the lack of a high-speed I/O-interface in the 
PC architecture, we assume that the data sets are already stored on 
the local disks. 
As long as the sequence fits entirely in the main memory, chang- 
ing from one data set to the next just means changing a pointer. 
Since the main memory usually is much larger and can more eas- 
ily be upgraded than a specialized volume memory, this approach 
has a clear advantage for this kind of applications. For example, a 
main memory capacity of IGByte will be common in the near 
future, giving room for more than 30 data sets of 2563 16-bit vox- 
els. 
However, the PC architecture does not yet support such a large 
main memory, and so the question was examined at which rate the 
data sets could be swapped in from harddisks during visualization. 
As can be seen in Figure 10, the PIIX3 can control hvo IDE chan- 
nels in parallel. IDE defines a practically no-cost harddisk inter- 
face and is the low-end counterpart to SCSI. The disks attached 
are hvo Seagate ST52520A drives with an individual peak transfer 
rate of SJMByte/s from the outermost tracks. 
The PIW provides an independent DMA channel for each IDE 
disk, and one 32-Byte buffer. This allows burst-mode write 
accesses to main memory via the PCI-bus to proceed at peak trans- 
fer rates. 
The largest block of data the disk can deliver without CPU inter- 
vention is 16KBytes. Then an interrupt is generated, and the disk 
must be set up for the next block read. 
The smallest unit of allocation on a disk is called a cluster, in our 
case containing 32KByte. All clusters are numbered. Cluster num- 
bers are 16 bits wide. The clusters of a file are organized as a 
linked list. 
At program start, a cluster list for the entire data set sequence is set 
up in main memory for both drives. This eliminates excessive 
head movements during the animation. As an example, the cluster 
list would occupy 256KByte for a sequence of 4GByte. 
Two memory regions are defined, one for the data set being ren- 
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dered, and one for the data set being loaded. After having loaded 
the first data set, DMA and interrupt structure are set up such that 
all subsequent data sets are loaded concurrently to the visualiza- 
tion with little CPU overhead. 

, 

Whenever the system has finished a frame, it checks if there is a 
new data set present. If so, it exchanges the data set pointers, and 
renders the new data set using any new user inputs. In the opposite 
case, user inputs are used to display the old data set. 
Clearly, the system cannot load large data sets at a realtime anima- 
tion rate. For evaluation purposes, we used 100 timesteps from an 
astrophysical simulation. A gas eruption on a rotating sun, which 
leads to accretion disks, has been simulated using Smoothed Parti- 
cle Hydrodynamics [6]. The results of each timestep were sampled 
on a 256x256~32 grid, giving 4MByte for each data set. The first 
half of each data set has been written on the one disk, and the sec- 
ond on the other, starting on the outermost track of each disk. 
The entire sequence of 100 timesteps is loaded from disk and visu- 
alized within 48 seconds. This gives a sustained animation rate of 
2.1 data sets per second. Thus, the disk system can provide a sus- 
tained data stream of about SJMBytels into the main memory, 
which at the same time is frequently accessed by the visualization 
coprocessors. 

10 PERFORMANCE AND IMAGE QUALITY 

The performance figures given below have been measured in the 
running system using a logic analyzer, or have been derived from 
our design. The PCI-bus clock runs at 33MHz, which is also the 
clock for the accelerators. 
On average, a 2OOMHz Pentium-CPU can generate the parameters 
for one my within 4ps, resulting in a generation rate of about 4Hz 
for 256x256 rays. 
Transferring 512x400 pixels from memory to the frame buffer 
takes 5ms. 
The PCI-bus can transfer more than 85MBytes per second. How- 
ever, due to the relatively short bursts of four transfers per mem- 
ory access (atomic transfer unit), memory latency reduces the data 
rate significantly. A four-word-burst takes 12 cycles of 3Ons, giv- 
ing a peak data rate of 44MByte/s. 
A coprocessor can accept data elements every 150ns, giving a 
maximum performance of 6.67M raypoints per second if the data 
is available in the on-chip caches. This gives a system peak perfor- 
mance of 26.7M raypoints per second. 
A transfer from the on-board cache into the on-chip cache takes 15 
cycles, resulting in a rate of 2.2M raypoints per second per accel- 
erator. 
Finally, if misses occur in both caches, two consecutive memory 
accesses are separated by 31 clocks, giving a worst-case rate of 
about 1M raypoints per second per system. 
The application performance was evaluated using a CT-stack of a 
human head containing 256x256~222 voxels. The achievable 
image quality is illustrated by several images in Figure 12. 
For the images on the right side, 256x200 rays have been shot 
through the data set. The images on the let? side have been created 
using fourfold subsampling, i.e., by sending 128x100 rays through 
the volume. In any case, the images are bi-linearly interpolated (in 
software) to a final screen resolution of 5 12x400 pixels. The sys- 
tem uses subsampling during motion, and switches to the normal 
resolution as soon as motion has stopped. 
For images a) and b) the skin was set to opaque. Therefore, we can 
achieve high frame rates by means of the distance coding and 
early-ray-termination. 
The skin surface was set to translucent, and the bones were set to 
opaque in images c) and d). All interior tissue was discarded. The 
frame rate drops because rays can only be terminated after 
encounter with the bone surface, and the distance coding does not 

apply to material which is discarded during rendering. 

Finally, the bones were set to translucent, and the intcnsitics of nil 
raypoints within bone have been accumulated to give the X-rny- 
like images e) and f). In terms of frame rates this’reprcscnts the 
worst-case, since each and every ray has to go through the entire 
data set. 

The frame rates, which have been measured by rotating the dnta 
set around the z-axis, are given in Table 1. 

Table 1: Frame Rates 

The preprocessing step of the visualization pipeline is currently 
implemented in C for UNIX workstations. However, it has never 
been optimized and is still in its debug version. On an SGI-Indy 
running at 1OOMHz the preprocessing takes between 15 nnd 30 
minutes. Future workpackages therefore include the implcmcntn- 
tion of all preprocessing steps in hardware, mnking USC of the in- 
system-programmability of the FPGA devices. In this wny, the 
preprocessing time could potentially be brought into the rnnge of 
seconds. 

11 PERFORMANCE IMPROVEMENTS 

The limiting factors are the FPGA-technology, the PCI-bus nnd 
the CPU (in that order). Architectural improvements, however, 
should also be made. 

If we could use ASIC-technology, we could implement lnrgcr on- 
chip caches and complete one raypoint every clock, possibly nt 
66MHz or more. Also, the burst length of the PCI-trnnsfcrs could 
be extended to 32 data elements by means of larger FIFOs. On the 
architectural side, it is a clear performance bottleneck thnt two 
coprocessors share one on-board (second level) cache A rcdcsign 
should provide private second level caches for each my cnsting 
engine (possibly also on-chip). 

A higher transfer bandwidth towards the main memory will bc 
provided by the upcoming Accelerated Graphics Port (AGP), 
which will have a peak transfer rate of 52SMBytels. 

Using a Pentium-II-class CPU should also yield a signiflcnnt pcr- 
formance increase, since the geometric computations involve n 
large number of floating-point calculations. 

A performance increase by a factor of two for an ASIC-solution of 
the coprocessor, a factor of two for the AGP over the PCI-bus nnd 
a factor of 1.5 for a Pentium-II over its predecessor can be consid- 
ered a pessimistic estimation. In this case, the system would run nt 
twice the speed, giving frame rates of 1 SHz and 6Hz for imngcs n) 
and b), respectively. However, one should keep in mind thnt using 
VLSI-technology, this performance could be provided by a singlc- 
chip coprocessor. 
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12 CONCLUSIONS AND OUTLOOK 

We have presented probably the world’s most compact volume 
rendering accelerator existing today. Nevertheless, performance 
and image quality are highly competitive, although the underlying 
algorithm uses lossy data compression. We lay special emphasis 
on the fact that this architecture does not need a specialized vol- 
ume memory, as opposed to all other existing or academic designs. 
The evolution of surface-oriented graphics accelerators tells us 
that this will be the prerequisite for a broad market acceptance. 
Using ASIC-technology, we could not only increase rendering 
speed, but also implement this architecture into a single chip. 

However, using lossy data compression is not acceptable in some 
applications. Thus, our future research activities will be directed 
towards lossless compression schemes, which still allow the 
decompression units to be fast and compact. 
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