
WARD - Visualization Accelerator for Realtime Display

Giinter Knittel, Wolfgang StraOer

WSVGRIS, University of Tiibingen, Germanyt

ABSTRACT 1 MOTIVATION

Volume rendering has traditionally been an application for super-
compulers, workstation nehvorks or expensive special-purpose
hardware. In contrast, this report shows how far we have reached
using the other extreme: the low-end PC platform. We have allevi-
ated the mismatch behveen this demanding application and the
limited computational resources of a PC in three ways:
l several stnges in the visualization pipeline are placed into a pre-

processing step,
l the volume rendering algorithm was optimized using a special

data compression scheme and
l the algorithm has been implemented in hardware as a PCI-com-

patible coprocessor (lXZ,4RD).
These methods give us a frame rate of up to 1OHz for 2563 data
sets at nn acceptable image quality, although the accelerator proto-
type was built using relatively slow FPGA-technology.
In a low-cost environment a coprocessor must not be more expen-
sive than the host itself, and so VIZARD was designed to be man-
ufacturable for a few hundred dollars. The special data
compression scheme allows the data set to be placed into the main
memory of the PC and eliminates the need for an expensive, sepa-
rate volume memory.
The entire visualization system consists of a portable PC with hvo
built-in nccelerator boards. Despite its small size, the system pro-
vides perspective raycasting for realtime walk-throughs. Addi-
tional features include stereoscopic viewing using shutter glasses
and volume animation.

CR Catcgorles and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture - Graphics Processors; 1.3.3
[Computer Graphics]: Picture/Image Generation.

Additional Keywords and Phrases: Volume Rendering Acceler-
ator, PCI-Coprocessor

tUniversitat Tiibingen
Wilhelm-Schickard-Institut filr Informatik -
Gmphisch-Interaktive Systeme (WSI / GRIS)
Auf der Morgenstelle 10, C9
D-72076 Ttibingen, Germany
Phone: ,,49 7071 29 76356, FAX: ..49 707129 5466
email: [knittel,strasser]@gris.uni-tuebingen.de
web: http://www.gris.uni-tuebingen.de

lknnissiou lo mnke digitnlflmd copies ofall or pat of Ihis mnterinl for
p~~ounl or rlnsmou~ use is grautud \rillloul fee provided U~nt tl~e copies
nrc uot ulndc or distributed lbr pro13 or eomuvrcinl advautnge. 111r copy-
rig111 uolice. llle title oftlle publicaliou nud its dare appear, and notice is
pivat 1lu-d ~wpyriglit is by pcrmissiou oflk ACM, luc. To copy od~mvise,
to repuldisll. to post on servers or to redistribute to lists, requires specilic
permission mid/or fca

1937 SKXRA PIREwogrnpi~ics 1Vorksliop
Copyright 1937 AChl O-S973l-311-0137/S..$3.50

Currently we can observe a number of research projects dealing
with the design of volume rendering accelerators: VIRIM [7] is
already operational since some years, as well as the massively par-
allel system described in [IO]. DIVVA [I I] is currently being
assembled and tested.
Common to all approaches is that they represent large and expen-
sive coprocessing Jystenrs with a separate, highly interleaved vol-
ume memory and complex arithmetic units. The controlling
workstation is merely considered as an intelligent display, which
passes user inputs to the deskside accelerator. An exception is
Cube-4 [12], since it is being designed as a PCI-card. However, it
still has an owu volume memory and will fall outside the typical
PC price range.
Considering the current trend in the area of surface-oriented
graphics accelerators, we follow a radically different approach.
Volume data sets are extremely large, and thus the user acceptance
for a dedicated memory of this size is limited. Moreover, worksta-
tions and PCs are shipped with more and more memory, up into
the gigabyte range, and so it is no longer understandable why
these enormous resources should not be used for volume rendering
also.
The volume rendering accelerator presented in this work is a step
towards the ultimate goal of a single-chip visualization coproces-
sor. The central problem to be solved is the limited main memory
bandwidth, which we try to solve using data compression and spe-
cialized caches. The achieved performance and the image quality
are encouraging, although this project is still in its prototype stage.
The paper is organized as follows: in section 2, the underlying
algorithm is explained in short terms. The hardware architecture is
explained bottom-up from the coprocessor architecture to our
BlackMagic visualization system in section 3 through section 7.
Operational principles of the system are explained in section 8 and
section 9. Performance figures are given in section 10. Image
quality is illustrated at the end of the paper by some examples
from medical imaging.

2 ALGORITHM

The underlying visualization paradigm is perspective mycasting,
although this is one of the most expensive algorithms, in order to
allow for proper walk-throughs and stereoscopic viewing. Trans-
parent display of selected materials also adds to the complexity of
the algorithm, but can in no way be omitted.
The overall processing from the raw data set to the image is shown
in Figure 1. Segmentation, shading and our special way of data set
compression are done in sofhvare once per data set. The trans-
formed data set can then be visualized in realtime with hardware
acceleration.
At the first glance it may be considered as a disadvantage to move
the segmentation and shading steps out of the interactive loop.
However, a reliable classification in standard applications (e.g.,
separating a tumor from healthy brain tissue) is far too compli-
cated and expensive to be done in realtime during the visualiza-
tion. Therefore, in most relevant cases, segmentation will be done
separately anyway.

I

I ,
I
8
/

I

I
,

1

I
I

!
1
I

I

,

/

-

Raw Data set

r*h

Pre-Processing
Step
performed
once by
Software

Hardware
Acceleration C

Image

Figure 1: The Rendering Pipeline

The consequences of pre-shading are that the light sources travel
with the data set as it is moved, and cannot be brought to other
positions. Thus, the data set is viewed like a work of art at an exhi-
bition. An advantage is, that the number of light sources and the
complexity of the illumination model are not limited by hardware
considerations.
The special data set compression scheme, which we call RBC
(Redundant Block Compression), reduces the memory bandwidth
requirements and therefore allows the data set to be placed in the
main memory of the host. It is a 3D-extension of the well-known
BTC (Block Truncation Coding) scheme, which was invented in
1979 for grayscale 2D-images [5]. RBC has also been described
comprehensively in [S]. Here we give only a short summary.
VIZARD currently supports only monochrome data sets, and so
we restrict our discussion to the processing of grayvalues.
The grayvalues of a 12-voxel-block are quantized into 2 new gray-
values C, and C, such that losses are minimized. Each voxel posi-
tion is assigned one decision bit to select one of the grayvalues.
Given S bits for both of the new grayvalues, a 12-voxel-block can
be compressed into a 32-bit word, as shown in Figure 2. The

z
Y

k
X

31 20 16 6 0
0~0~0~0~0~0~1~0~1)1~1~0~ MAT 1 C, 1 C,

2
Decision Bits

/“t t t
Material “lower” “upper

D,,...D, Bits Grayvalue

Figure 2: Data Element representing one Voxel Block

remaining 4 bits can be used to identify the different materials
inside the block. This compression is done redundantly, as
depicted in Figure 3 (not shown but also done in y-direction).
Consequently, all eight samples needed for the t&linear interpola-
tion can always be fetched from memory in a single access.

Data Element n+dim_y’dim-x/2

\ Data Element n+dim~‘dlm~x/2*1

Data Elem/ent n Data Element ntl

Figure 3: Redundant Block Compression

Besides the memory bandwidth requirements, computationnl
expenses are also significantly reduced. The tri-linear interpoln-
tion of the raypoint value Cat offsels a, j3 and y from eight voxcls
CO.J~ given by
C = C,(l-a) (I-p) (1-y) +C,(l-a)p(I-y)

+C,(I-a) (I-j3)y+...+C,-a~p.y (1)

can be factorized as shown below, since there are only two diffcr-
ent grayvalues C, and C, in any given volume cell:

c = c,; (o,+ob+ . . . +oJ

+c,* (od+oe+...+w) (2)
/

The weightfactors o, sum up to 1. If oI is the compound weight
for C,, then

c = c; (I-o,) +c,*o, = cu-Co,’ (q-c,) * (3)

The compound weight o1 depends on a, p and y (which we limit
to 4 bit precision each), and on S decision bits, giving a total of IM
= 220 different configurations. Thus we can easily precomputc the
weightfactors for each possible configuration and store them in a
table. Furthermore, as implied by (3), we do not store C,, and C, in
the data elements, but instead C, and (C,,-Cl). Then, a complcto
t&linear interpolation is performed by
0 assembling the weightfactor address from the decision vector

and the offsets,
Cl one table look-up and

Cl one multiplication and one subtraction.
A further, significant speedup is achieved by integrating a specinl
distance coding into the data set. If a voxel block is empty, i.e,,
C,=O, the remaining bits of the data element are redefined and
contain information about the neighborhood of the block, There is
a certain probability that parts of this neighborhood are empty as
well, which can then be skipped during raycasting [S].

3 COPROCESSOR FUNCTIONALITY

The coprocessor autonomously traces a given ray through the dnla
set until volume exit or encounter with an opaque surface, After
being set up with the coordinates of the first raypoint and the vcc-
tor to the next, it starts processing as shown in Figure 4. Accord-
ingly, the coprocessor has one address-pipeline and one datn-
pipeline. For the simplified &i-linear interpolation as cxplaincd
above, the coprocessor is accompanied by a PROM holding the
weightfactors in S-bit precision. The weightfactor address is
assembled as
%OY-I.., L-4 a-l..-4 ifX0=0, orD11..4Y-1..-4 IL-4 a./..-4 iflU,= 1.

140

- _ -_. -- ---. .- __-. _ .~-___. ~-- _.- .

Compute Physical Memory Address
I I_ ” .--.-- .-- -? ’

Initiate Data Transfer
I .L

The only large arithmetic unit is an SxS into 8 bits multiplier, so
that the entire functionality tits into a single FPGA (XC4013 from
XILINX [11).
Due to the distance coding, there is a certain idle time between the
receipt of a data element and the initiation of the next transfer. For
this reason, the accelerator board has two coprocessors following
two different rays in parallel.

4 MEMORY HIERARCHY

Figure 4: Coprocessor Operation

For further speedup, we use on-board and on-chip caches, which
in combination with the main memory and the harddisks form a
four-level memory hierarchy.
The atomic transfer unit is a 2x2~2 voxel block, defined by four CACHE
data elements as shown in Figure 5. Whenever a memory access UPDATE

offs:t&
Figure 5: Atomic Transfer Unit

occurs, four data items are read out and stored in the on-board and
on-chip cache. Accordingly, the on-chip cache has four 32-bit
entries and is addressed by ZOYo of the raypoint coordinates.
The hit ratio of the on-chip cache can be considerable, if the dis-
tance from one raypoint to the next is very small. This in turn is
desirable in favor of a high image quality.
The task of the on-board cache is to hold all blocks a ray has tra-
versed, as shown in Figure 6. If the next ray passes through the
neighboring pixel, it will hit a certain percentage of blocks then
already present in the cache (ray-by-ray coherence). However, a

Observer

Figure 6: Blocks to be cached

standard direct-mapped or n-way-associative cache organization
would lead to an unacceptable cache size. For this reason, a spe-
cialized cache architecture has been developed. The cache is
addressed by the Manhattan Distance of the voxel block relative to
the Manhattan Distance Reference Point, which is the closest
point of the volume to the observer. Given 2x2~2 cache blocks
and a data set resolution of 2563, the maximum Manhattan Dis-
tance is 384, and thus the cache has 384 entries. Each entry con-
sists of the physical memory offset of the cache block (the cache
tag), which is 21 bits wide, and the 12S-bit voxel block. This
would result in a total cache capacity of only about 7KByte.
However, it is desirable to have a larger cache capacity for an
increased hit rate. The most economic way to do this is to increase
the cache line size to 4~4x4 voxel blocks, or 32 data elements.
Then, we have only 192 cache entries, and an l&bit wide tag.
However, the cache is still tilled in units of 4 data elements, so that
we have to provide additional 8 valid bits. This gives a capacity of
4992 bits for the tag RAM, and 24KByte for the cache.
This tiny system is able to cache a data set of 32MByte and still
deliver a very high hit ratio [9].
The operational principle of the cache tag architecture is shown in
the block diagram in Figure 7.

,M’%.A J VALID h

MANH.
DISTANCE

l VALID

MHD7..0
TAGRAM BITS

n

l

21
1

Mk.4

NEW MEMORY ADDRESS HIT
M&IA

Figure 7: On-Board Cache Tag Circuitry

141

Both coprocessors compute the Manhattan Distance along with
the logical coordinates of the raypoints, and have a private cache
tag system as shown in Figure 7. The tag systems are implemented
in a third XC4013 device, making use of the Distributed Memory
Feature of the XILINX 4K-family [l]. The 4013-device offers up
to 18.432 bits storage capacity.
If a hit occurs. an external 32-bit high-speed SRAM is addressed
by MHD, 0 iA, 4 to deliver the appropriate voxel block during
four on-board transfers. For maximum performance, the data ele-
ment containing the raypoint is transferred first.
For a high hit rate, a strong my-by-my coherence is needed. There-
fore, rays are not generated in scanline order, but instead in the
order of screen squares.

5 ACCELERATOR ARCHITECTURE

The missing part of a complete accelerator system is the data

Cl the two completely identical coprocessor units, each consist-

transfer controller, which is implemented using an XC3195A
FPGA. It incorporates a dual-channel PC1 master/target interface

ing of one 4013 device (unit A or unit B), accompanied by two

for burst transfers and controls all on-board activities. An atomic
transfer unit can be read from main memory without wait states,

Flash Memory chips,

since the transfer controller has a 4x32-bit register pipeline.
The block diagram of the accelerator is given in Figure 8. A pho-
tography of the board is shown in Figure 9. The different units dis-
cussed so far can easily be identified:

CCONTROL (16 LINES)

Figure 8: Accelerator Block Diagram

ning at 200MHz is sufftcient for the software part of the visualizn-

6 SYSTEM ARCHITECTURE

tion process. In the current implementation, MMX would not
increase the frame rate significantly.

The host system can be any standard PC having a PCI-bus. Since
the data set must tit entirely into the main memory, the PC must bc
equipped with 32MByte for 2563 data sets. A Pentium-CPU run-

..I

Cl the third 4013 FPGA (unit C), which incorporates the cache
tag systems and controls the high-speed SRAM, and

0 the PC1 interface and system controller (unit P).

For fitme use there is a high-speed multiply-and-accumulate
(MAC) unit, which can perform a 16x 16 into 32 bit multiplication
with subsequent accumulation within 25ns.

The system architecture of a typical PCI-based PC is shown in
Figure 10. In our system, control functions are carried out by the
TXC-unit (cache and memory control, host-to-PCI-bridge) nnd the
PIIX3-unit (ISA-bridge, disk interface), both manufactured by
Intel. For detailed information about the PCI-bus and the system
control units, please refer to [2], [3] and [4].

.,-

Figure 9: WARD

142

-.-- -

1-11 CPU

SECOND 1
LEVEL TXC
CACHE

I
I

PCI-BUS >

b.
PCI

DEVICES

ISA-BUS

Figure 10: PC System Architecture

7 BLACKMAGIC VISUALIZATION SYSTEM

Compactness has been driven to the extreme for our BlackMagic
demonstmtion system. It is a portable PC with a standard PC1
mainboard, a 200MHz Pentium-CPU, 512KByte second level
cache, 128MByte main memory, two 2JGByte harddisks and two
VIZARD nccelerator boards. A VGA-adapter, which can drive
both the built-in LCD and an external monitor simultaneously,
completes the PC. The graphics adapter provides double-buffering
nnd even fourfold-buffering (for stereoscopic viewing) for screen
resolutions of up to 64Ox400xSbit.
A photogmphy of the BlackMagic system together with a collec-
tion of 3D input devices is shown in Figure 11.

Figure 11: The BlackMagic Visualization System

8 PARALLEL OPERATION

At progmm start the dnta set is loaded into memory and the copro-
cessors nre set up with the starting address and bounding volume
of the data set. The two accelerator boards work in parallel, pro-

viding a total of four raycasting engines. An even workload is
established by assigning screen tiles of 32x32 pixels to the differ-
ent coprocessor.
For maximum performance, all system components must work in
parallel. The system architecture implies that the sofhvare part
should entirely fit into the CPU’s second level cache. This has
been achieved by optimizing the critical parts in assembly lan-
guage. Since the CPU never accesses the data set itself, perfect
parallelism can be established.
The software performs ray generation and intersection tests in
floating-point format. If a my hits the volume, the coordinates of
the intersection point and the components of the vector to the next
raypoint are converted into integer format and stored along with
other visualization parameters in main memory. The appropriate
data transfer controller (unit P) is triggered, which transfers the
parameter block to the targeted visualization coprocessor. This
unit in turn starts raycasting as explained in section 3. Meanwhile
the CPU generates the next my. Upon completion, the CPU checks
if the last my has been terminated. If so, it reads the pixel value,
which again triggers the appropriate data transfer controller to
transfer the next parameter block. If not, the CPU generates a ray
for the next coprocessor. After a very short while, all four copro-
cessors and the CPU are working in parallel.
After image completion, the CPU optionally performs 2D opera-
tions (e.g., bi-linear interpolation in the case of subsampling),
transfers the image to the frame buffer on the VGA card in a block
transfer, and switches the display buffers.

9 VOLUME ANIMATION

By volume animation we mean the display of a sequence of data
sets. However, due to the lack of a high-speed I/O-interface in the
PC architecture, we assume that the data sets are already stored on
the local disks.
As long as the sequence fits entirely in the main memory, chang-
ing from one data set to the next just means changing a pointer.
Since the main memory usually is much larger and can more eas-
ily be upgraded than a specialized volume memory, this approach
has a clear advantage for this kind of applications. For example, a
main memory capacity of IGByte will be common in the near
future, giving room for more than 30 data sets of 2563 16-bit vox-
els.
However, the PC architecture does not yet support such a large
main memory, and so the question was examined at which rate the
data sets could be swapped in from harddisks during visualization.
As can be seen in Figure 10, the PIIX3 can control hvo IDE chan-
nels in parallel. IDE defines a practically no-cost harddisk inter-
face and is the low-end counterpart to SCSI. The disks attached
are hvo Seagate ST52520A drives with an individual peak transfer
rate of SJMByte/s from the outermost tracks.
The PIW provides an independent DMA channel for each IDE
disk, and one 32-Byte buffer. This allows burst-mode write
accesses to main memory via the PCI-bus to proceed at peak trans-
fer rates.
The largest block of data the disk can deliver without CPU inter-
vention is 16KBytes. Then an interrupt is generated, and the disk
must be set up for the next block read.
The smallest unit of allocation on a disk is called a cluster, in our
case containing 32KByte. All clusters are numbered. Cluster num-
bers are 16 bits wide. The clusters of a file are organized as a
linked list.
At program start, a cluster list for the entire data set sequence is set
up in main memory for both drives. This eliminates excessive
head movements during the animation. As an example, the cluster
list would occupy 256KByte for a sequence of 4GByte.
Two memory regions are defined, one for the data set being ren-

143

I

144

dered, and one for the data set being loaded. After having loaded
the first data set, DMA and interrupt structure are set up such that
all subsequent data sets are loaded concurrently to the visualiza-
tion with little CPU overhead.

,

Whenever the system has finished a frame, it checks if there is a
new data set present. If so, it exchanges the data set pointers, and
renders the new data set using any new user inputs. In the opposite
case, user inputs are used to display the old data set.
Clearly, the system cannot load large data sets at a realtime anima-
tion rate. For evaluation purposes, we used 100 timesteps from an
astrophysical simulation. A gas eruption on a rotating sun, which
leads to accretion disks, has been simulated using Smoothed Parti-
cle Hydrodynamics [6]. The results of each timestep were sampled
on a 256x256~32 grid, giving 4MByte for each data set. The first
half of each data set has been written on the one disk, and the sec-
ond on the other, starting on the outermost track of each disk.
The entire sequence of 100 timesteps is loaded from disk and visu-
alized within 48 seconds. This gives a sustained animation rate of
2.1 data sets per second. Thus, the disk system can provide a sus-
tained data stream of about SJMBytels into the main memory,
which at the same time is frequently accessed by the visualization
coprocessors.

10 PERFORMANCE AND IMAGE QUALITY

The performance figures given below have been measured in the
running system using a logic analyzer, or have been derived from
our design. The PCI-bus clock runs at 33MHz, which is also the
clock for the accelerators.
On average, a 2OOMHz Pentium-CPU can generate the parameters
for one my within 4ps, resulting in a generation rate of about 4Hz
for 256x256 rays.
Transferring 512x400 pixels from memory to the frame buffer
takes 5ms.
The PCI-bus can transfer more than 85MBytes per second. How-
ever, due to the relatively short bursts of four transfers per mem-
ory access (atomic transfer unit), memory latency reduces the data
rate significantly. A four-word-burst takes 12 cycles of 3Ons, giv-
ing a peak data rate of 44MByte/s.
A coprocessor can accept data elements every 150ns, giving a
maximum performance of 6.67M raypoints per second if the data
is available in the on-chip caches. This gives a system peak perfor-
mance of 26.7M raypoints per second.
A transfer from the on-board cache into the on-chip cache takes 15
cycles, resulting in a rate of 2.2M raypoints per second per accel-
erator.
Finally, if misses occur in both caches, two consecutive memory
accesses are separated by 31 clocks, giving a worst-case rate of
about 1M raypoints per second per system.
The application performance was evaluated using a CT-stack of a
human head containing 256x256~222 voxels. The achievable
image quality is illustrated by several images in Figure 12.
For the images on the right side, 256x200 rays have been shot
through the data set. The images on the let? side have been created
using fourfold subsampling, i.e., by sending 128x100 rays through
the volume. In any case, the images are bi-linearly interpolated (in
software) to a final screen resolution of 5 12x400 pixels. The sys-
tem uses subsampling during motion, and switches to the normal
resolution as soon as motion has stopped.
For images a) and b) the skin was set to opaque. Therefore, we can
achieve high frame rates by means of the distance coding and
early-ray-termination.
The skin surface was set to translucent, and the bones were set to
opaque in images c) and d). All interior tissue was discarded. The
frame rate drops because rays can only be terminated after
encounter with the bone surface, and the distance coding does not

apply to material which is discarded during rendering.

Finally, the bones were set to translucent, and the intcnsitics of nil
raypoints within bone have been accumulated to give the X-rny-
like images e) and f). In terms of frame rates this’reprcscnts the
worst-case, since each and every ray has to go through the entire
data set.

The frame rates, which have been measured by rotating the dnta
set around the z-axis, are given in Table 1.

Table 1: Frame Rates

The preprocessing step of the visualization pipeline is currently
implemented in C for UNIX workstations. However, it has never
been optimized and is still in its debug version. On an SGI-Indy
running at 1OOMHz the preprocessing takes between 15 nnd 30
minutes. Future workpackages therefore include the implcmcntn-
tion of all preprocessing steps in hardware, mnking USC of the in-
system-programmability of the FPGA devices. In this wny, the
preprocessing time could potentially be brought into the rnnge of
seconds.

11 PERFORMANCE IMPROVEMENTS

The limiting factors are the FPGA-technology, the PCI-bus nnd
the CPU (in that order). Architectural improvements, however,
should also be made.

If we could use ASIC-technology, we could implement lnrgcr on-
chip caches and complete one raypoint every clock, possibly nt
66MHz or more. Also, the burst length of the PCI-trnnsfcrs could
be extended to 32 data elements by means of larger FIFOs. On the
architectural side, it is a clear performance bottleneck thnt two
coprocessors share one on-board (second level) cache A rcdcsign
should provide private second level caches for each my cnsting
engine (possibly also on-chip).

A higher transfer bandwidth towards the main memory will bc
provided by the upcoming Accelerated Graphics Port (AGP),
which will have a peak transfer rate of 52SMBytels.

Using a Pentium-II-class CPU should also yield a signiflcnnt pcr-
formance increase, since the geometric computations involve n
large number of floating-point calculations.

A performance increase by a factor of two for an ASIC-solution of
the coprocessor, a factor of two for the AGP over the PCI-bus nnd
a factor of 1.5 for a Pentium-II over its predecessor can be consid-
ered a pessimistic estimation. In this case, the system would run nt
twice the speed, giving frame rates of 1 SHz and 6Hz for imngcs n)
and b), respectively. However, one should keep in mind thnt using
VLSI-technology, this performance could be provided by a singlc-
chip coprocessor.

_ _ - - - _. _ -_. __.. _ _ _ ._______ -_-_ _ - .-_---I_ --- ------ - --.- --

- \
‘r --

----- -.-~. .J
1

_I I
.xF

*

b)

. $!!$a 2.
4 9 -

Figure 12: Examples from Medical imaging. Left Column: 128x100 Rays. Right Column: 256x200 Rays

145

/ _--- .- _ -_.-

,

I
I

I

i

.,
!
I

8
I

I

!
/

I
,

I --

12 CONCLUSIONS AND OUTLOOK

We have presented probably the world’s most compact volume
rendering accelerator existing today. Nevertheless, performance
and image quality are highly competitive, although the underlying
algorithm uses lossy data compression. We lay special emphasis
on the fact that this architecture does not need a specialized vol-
ume memory, as opposed to all other existing or academic designs.
The evolution of surface-oriented graphics accelerators tells us
that this will be the prerequisite for a broad market acceptance.
Using ASIC-technology, we could not only increase rendering
speed, but also implement this architecture into a single chip.

However, using lossy data compression is not acceptable in some
applications. Thus, our future research activities will be directed
towards lossless compression schemes, which still allow the
decompression units to be fast and compact.

13 ACKNOWLEDGMENTS

This work was done for the research project SFB 382, funded by
the German Science Foundation DFG. The SPH-simulations have
been done at the Theoretical Astrophysics Institute of the Univer-
sity of Tubingen. Thanks to R. Speith for his cooperation and to
my colleague Rene Rau for preparing the SPH-data sets. Special
thanks to Andreas Schilling for his never ending source of inspira-
tion.

14 REFERENCES

[l] Anonymous, “The Programmable Logic Data Book”, XIL-
INX Inc., San Jose, CA, 1994

[2] Anonymous, “PCI Local Bus Specification, Rev. 2.1 ‘I, PC1
Special Interest Group, PO Box 14070, Portland, OR 97214,
April 1993

[3] Anonjmous, ‘lntel43OHX PCISET 82439HX System Con-
troller (TXC)‘“, Intel Corporation, P.O. Box 58119, Santa
Clara, CA, 1996

146

[41

151

M

[71

PI

PI

[lOI

Cl11

WI

Anonymous, “82371FB (PIIX) and 82371SB (PIIX3) PCI
ISA IDE Xcelerator”, Intel Corporation, P-0. BOX 58119,
Santa Clara, CA, 1996

E. J. Delp and 0. R. Mitchell, “Zmage Cornpre.wion Usitrg
Block Truncation Coding”, IEEE Transactions on Commimi-
cations, Vol. COM-27, No. 9, Sept. 1979, pages 1335-1342

0. Flebbe, S. Miinzel,
2

./Herald, y, Riffert and 11. Ruder,
“Smoothed Particle’ ydrodynamics: Physical viscosity arid
the Simulation ofAccretion Disk”, Astrophys, Journal 43 1,
1994, pages 754-760

T. Giinther, C. Poliwoda, C. Reinhart, J. Hcsscr, R. Miin-
ner, H.-P. Meinzer, H.-J. Baur, “VIRIM: A Massively Par-
allel Processor for Real-xme Vohrnle Visrralizatiorl I/I
Medicine “, Proceedings of the 9. Eurographics Hardwnrc
Workshop, Oslo, September 12-13, 1994, pngcs 103-108

G. Knittel, “High-Speed Vohrme Rendering Usitlg Redrrrr-
dant Block Compression “, Proceedings of the 1995 IEEE Vi-
sualization Conference, Atlanta, GA, Oct. 30 -NOV. 3, 1995,
pages 176-183

G. Knittel, “A PC&based Volume Rendering Accelerator”,
Proceedings of the 10th Eurographics Workshop on Graphics
Hardware ‘95, Maastricht, NL, August 28-29, 1995, pngcs
73-82

A. Krikelis, “A Modular Massively Parallel Processor for
Vohunetric Visualisation Processing”, Proceedings of the
Workshop on High Performance Computing for Computer
Graphics and Visualisation, Swansen, UK, July 3-4, 1995,
Springer, pages 101-124

J. Lichtermann, “Design of a Fast Voxel Processorfor Par-
allel Vohtnie Yisualization “, Proceedings of the 10. Euro-
graphics Hardware Workshop, Maastricht, NL, August 28 -
29,1995, pages 83-92

H. Ptister and A. Kaufman, “Cube-l-A Scalable Architec-
ture for Real-Tune Vohone Rendering”, Proceedings of the
1996 Symposium on Volume Visualization, Snn Francisco,
CA, October 28 - 29, 1996, pages 47-54

