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Abstract 

EM-Cube is a VLSI architecture for low-cost, high quality volume 
rendering at full video frame rates. Derived from the Cube4 ar- 
chitecture developed at SUNY at Stony Brook, EM-Cube computes 
sample points and gradients on-the-fly to project 3-dimensional vol- 
ume dnta onto 2-dimensional images with realistic lighting and 
shading. A modest rendering system based on EM-Cube consists 
of a PC1 card with four rendering chips (ASICs), four 64Mbit 
SDRAMs to hold the volume data, and four SRAMs to capture the 
rendered image. The performance target for this configuration is 
to render images from a 25G3 x 16 bit data set at 30 fmmes/sec. 
The EM-Cube architecture can be scaled to larger volume data-sets 
and/or higher frame rates by adding additional ASKS, SDRAMs, 
and SRAMs. 

This paper addresses three major challenges encountered devel- 
oping EM-Cube into a pm&al product: exploiting the bandwidth 
inherent in the SDRAMs containing the volume data, keeping the 
pin-count between adjacent ASICs at a tractable level, and reduc- 
ing the on-chip stomge required to hold the intermediate results of 
rendering. 

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism-Raytracing 1.3.1 [Computer Graphics]: 
Hardware Architecture-Gmphics Processors B.3.2 memory 
Structures]: Design Styles-Interleaved Memories 

1 Introduction 

Real-time volume rendering is an enabling technology for medical 
applications including diagnosis, surgical training, and surgicalsim- 
ulation [6]. The large computational and memory requirements of 
real-time volume rendering place it beyond the capabilities of single 
processor PCs and workstations without dedicated hardware. While 
high performance graphics systems can perform volume rendering 
in real-time (e.g. the SGI InfiniteReality Engine), such systems are 
very expensive. 

Our goal is to develop a family of products that provide real-time 
volume rendering at affordable prices - i.e., within reach of per- 
sonnl computer budgets, This family is intended to address medical 
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applications where volume rendering is an obvious requirement, but 
also to provide a foundation for the development of interactive vol- 
ume graphics - that is, the graphics of 3-D sampled images and 
their manipulation at interactive speeds. We expect that as systems 
for real-time volume rendering becomecheaper and more common- 
place, a broader class of applications - e.g. scientific visualization, 
industrial design and analysis, virtual sculpture, and games -will 
begin to use volume graphical methods. Eventually, we envision 
that the mechanisms of volume graphics and conventional polygon- 
basedgraphics will converge, so that both kinds of rendering will be 
supported by the same kind of hardware. 

This paper describes the architecture of the first member of this 
family, a volume rendering chip currently under development. The 
architecture is a scalable systolic array based on Cube-4, developed 
at SUNY at Stony Brook [16]. The performance target is a chipset 
that fits onto a single PC1 card and renders volume data sets of size 
2563 x 16 bit voxels, at 30 frames/set. The cost of such an accelera- 
tor will be on the order of a low-cost PC. In subsequent generations 
the cost will decrease as the underlying implementation technology 
improves. 

Cube4 though scalable to larger volumes by adding more ASICs 
and memory modules, is impractical for low-cost ASIC implemen- 
tation. The key challenges are delivering the required bandwidth 
with as few chips as possible, reducing the inter-chip communi- 
cation to keep the pin count reasonable, and reducing the on-chip 
storage required for intermediate results. Our EM-Cube (Enhanced 
Memory Cube-4) architecture meets the first hvo challenges by us- 
ing a block skewed memory, which exploits inherent SDRAM burst 
bandwidth, and meets the third challenge by subdividing the volume 
in a technique we call sectioning. 

The organization of this paper is as follows. Section 2 describes 
related work. Sections 3 and 4 describe Cube4 and introduce the 
three implementation challenges. Sections 5 and 6 introduce block 
skewed memory and show how it meets the first and second chal- 
lenges respectively. Section 7 discusses the on-chip storage prob- 
lem and our solution via sectioning. Section 8 presents the overall 
architecture. Finally, Sections 9 to 11 discuss features needed for a 
commercial product, such as support for multiple voxel formats. 

2 Related Work 

Several approaches have been taken to achieve interactive volume 
rendering rates. Software implementations use acceleration tech- 
niques which require pre-computation, additional data storage, or 
trade-off image quality for speed. Shear-warp rendering, the cur- 
rently fastest software algorithm, achieves one projection in a few 
seconds on a regular workstation [ 111. Many researchers have im- 
plemented volume rendering algorithms on large general-purpose 
multiprocessors [2,5, 14,151. However, this approach requires ex- 
pensive, typically nehvork-shared machines to achieve acceptable 
frame rates, and the lack of direct frame-buffer access prohibits 
real-time output rates. Another approach is to use existing polygon 
graphics hardware for volume rendering [ l&S, 131. Interactive ren- 
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Figure 1: Rendering pipeline 

dering rates have been achieved on the SGI ReaIity Engine using 3D 
texturing hardware [3, 11. However, current 3D texturing hardware 
is expensive and does not support estimation of gradients that is re- 
quired for high-quality shading and classification. Furthermore, the 
best volume rendering performance on large general-purpose super- 
computers or special-purpose texture mapping hardware is still be- 
low 15 frames/set for 2563 volumes. 

In view of these limitations, it is not surprising that a number 
of researchers have undertaken the development of special-purpose 
hardware for volume rendering. VOGUE, one of the most concrete 
proposals, is a compact my-casting unit which provides interactive 
rendering speeds at moderate hardware costs [IO]. A single board 
consisting of eight-way interleaved volume memory and four VLSI 
chips provides 2.5 frames/set for 2563 volumes. Near reaI-time 
rates of 20 frameslsec can be achieved by connecting several mod- 
ules over a ring-connected cubic network [9]. VIRIM, an object- 
order volume rendering engine, is one of the few research propos- 
als that has been built and tested [7]. The machine consists of four 
VME boards with special-purpose geometry processors for data re- 
sampling and programmable my-casting processors for the final im- 
age generation. VIRIM achieves 2.5 frames/set for 2563 datasets. 

3 Cube-4 Architecture 

Cube-4, developed at SUNY Stony Brook, is a scalable systolic ar- 
ray of rendering pipelines, each connected to its own memory mod- 
ule [16]. Figure 1 shows the major functions in each rendering 
pipeline. Cube-4 uses a modified my casting algorithm. Instead of 
processing along each my in depth-first fashion, Cube-4 processes 
rays in parallel in a breadth-first fashion. In particular, all the sample 
points contained in an entire plane of voxels are processed in paral- 
lel, thereby avoiding the need to re-read neighboring voxels from 
memory. Such a voxel plane, called a slice, is always perpendicular 
to one of the three axes of the volume data cube. Cube-4 chooses the 
direction for the slice such that the slice normal subtends the small- 
est angle with the actual viewing direction.’ 

Since a slice has too many voxels to be processed at once, Cube- 
4 scans each slice a beam (i.e. a row) at a time. Beams are further 
divided into partial beams ofp voxels. Each voxel of a partial beam 
is processed by a separate rendering pipeline capable of fetching a 

‘TheaIgorithmchoosesarbitmrily amongstview normals havingequally 
small subtended angles. 
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Figure 2: Skewed voxel tttetttoty 

new voxel from an associated memory module every clock cycle, 
Thus a Cube-4 system with p pipelines can process a benm in N/p 
cycles, a slice in N2/p cycles, and a volume in N3/p cycles, where 
N is the size of a cubic dataset in any dimension. 

A key feature of the Cube-4 architecture is that rcndcrlng 
pipelines communicate only locally with associated memories and 
neighboring pipelines up to three away. Thus the Cube-4 architec- 
ture is highly scalable. 

3.1 Cube-4 Skewed Memory 

A fundamental challenge in Cube-4 is arranging data nmongstmem- 
ory modules so that the processing chips can concurrently fetch all 
p voxels in a partial beam regardless of the viewing direction. To 
meet this challenge, Cube-4 uses 3D skewed memory. A voxcl nt 
position (2, 1~~ z) in unskewed voxel space is mapped to position 
(i, I-, s) in skewed voxel space where i = (z -l- r~ + z)mod N, 
r = y, and .s = z. Given C memory modules, where N is n multiple 
of C, a voxel (i, r, s) in skewed voxel space is mapped to module 
number i mod C and to an address within that memory module of 
li/CJ $ r * N/C $ s * N’/C. 

The layout of voxels in the volume memory is illustrated in Fig- 
ure 2 which shows a set of voxels near the origin in each of the three 
dimensions for C = 4. Voxels am represented by small cubes, with 
the shading illustrating their assignment to memory modules, The 
ordering of the assignments of colors to voxels is identicnl for cnch 
of the three visible faces. Throughout the volume, adjncent voxels 
within a beam are stored in adjacent memory modules, and thus rc- 
gardless of the view direction, a partial beam of p = C voxels can 
be fetched concurrently from the C separate memory modules, 

The 3D skewing introduces a lateral shifting in voxels between 
adjacent beams within a slice and also between adjacent beams in n 
row plane perpendicular to a slice. As discussed in Section 6, this 
shifting must beundonein order to process each voxel (c,g. SW Fig- 
ure 6), and it leads to significant communication between adjncent 
rendering pipelines. 

4 Implementation Issues 

To achievea low-cost system, the number of rendering chips nnd ns- 
sociated memory chips must be as small as possible The rendering 
chips must have a reasonable die size and must be compatible with 
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Figure 3: Mentory location assignments of YZface 

current packaging technology. The Cube-4 architecture described 
in Section 3 does not meet these goals. It requires too many mem- 
ory modules (about 20), too many pins per rendering chip (on the 
order of 512 signal pins), and too much on-chif storage, resulting 
in an excessively large die (in excess of 1OOmm for storage alone). 
Subsequent sections describe each of these points in more detail and 
describe our modifications to Cube-4 to attain a feasible design for 
VLSI implementation. 

5 Voxel Bandwidth 

To meet our performance targets, the voxel memory must have a 
cnpncity of 32Mbytes and must deliver a sustained bandwidth of 
I Gbytehec independent of view direction. 

5.1 Cube-4 memory access patterns 

The Cube-4 skewed memory organization has view-dependent 
memory access strides which exceed common DRAM page sizes 
for some view directions. This precludes the use of fast page (i.e. 
column) mode access in DRAMS in such view directions, reducing 
nchievnble memory performance to random (i.e. row) access levels. 
View dependence forces the entire memory system design to handle 
lhis worst case. 

In particulnr, for a N3 datasetwith G memory modules, themem- 
ory access stride is I, N/C, or N2/C if the view normal direction 
is pnmllel to the Z, X, or Y axes respectively. Figure 3 shows the as- 
signment of memory locations of voxels on the YZ face for a view 
direction pnmllel to the X axis. A stride of N/C is required to ac- 
cess successive voxels in successive partial beams parallel to the Y 
nxis, Moreover, there is an anomaly in this stride at the beginning 
of each beam. Therefore, except for small N and/or large C, only a 
few successiveaccesses will fall on the same DRAM page, making 
little benefitoffast pagemodeaccess. Likewise,ontbeZXface(not 
shown), a stride of N”/C is required to access successivevoxels of 
successive partinl beams, also with an anomaly at the beginning of 
cnch beam. For small C and reasonable values of N, this N2/C 
stride is lnger than typical DRAM pages, completely precluding the 
use of fast page mode, 

5.2 Memory Technology 

G4Mbit synchronous DRAMS (SDRAMs) will be the mainstream 
DRAM in the next 1-2 year period. Such SDRAMs meet our 
32Mbytecapacity requirement, and 4Mx16 versions at 125MHzde- 
liver lGbyte/sec with just 4 chips. 64Mbit Rambus will ramp 
up during the same period but its higher clock speed requires a more 
complicated interface. 

Figure 4: Blocked skewedmemov (b = 4) 

Unfortunately, Cube4’s large memory strides prevent getting 
anywhere near the maximum lGbyte/sec bandwidth with 4 mem- 
ory chips. For Mitsubishi Electric’s 64Mbit 125MHz SDRAM, the 
cycle time for a row access is tRC = SOnsec. In practical opera- 
tion, at most two banks can be overlapped in tRC, thus limiting the 
maximum performance to 2 accesses per SOnsec, or SOMbytes/sec 
per SDRAM (at 16bits/voxel). Thus 20 SDRAMs are needed to ob- 
tain lGbyte/sec. The situation is similar for Rambus since it is also 
block oriented. This number is unreasonable for a low cost design. 

To significantly reduce the row access time, the DRAM banks 
must be smaller, and as a side effect usually less dense. Exam- 
ples are 16Mbit Enhanced SDRAM (30nsec row access time) and 
MoSys’s 1 Mbyte multibank MDRAM (20nsec row access). How- 
ever, these devices are too slow (a 20nsec row access time im- 
plies 10 chips) or not dense enough. The performance of vari- 
ous cache+DRAM combinations, such as 16Mbit cached DRAM 
(CDRAM) and Enhanced SDRAM, degrades to the row access time 
for strides greater than a DRAM page. 

5.3 Block Skewed Memory 

To take advantage of the high bandwidth of SDRAM in fast page 
mode, we organize the volume memory into subcubes or blocks of 
b x b x b voxels in such a way that all of the voxels of a block 
are stored linearly in the same DRAM page. The memory is still 
skewed to support rendering independent of view direction, but it is 
now skewed at the block granularity rather than voxel granularity 
as in Cube-4. Each rendering chip processes a block and maintains 
a block-sized reordering buffer so that the voxels in a block can be 
read out in the order appropriate for the view direction. Figure 4 il- 
lustrates the block skewed memory for b = 4. 

In this new organization, a row of blocks comprises a block-beam 
and a two-dimensional array comprises a block-slice. At the block 
granularity the processing algorithm is the same as the Cube-4 algo- 
rithm, except that partial block-beams replace partial beams. Each 
block is processed internally on a voxel granularity using the Cube- 
4 algorithm. 

There are several design points for b. 
PageBlock: b can be as large as possible while still allowing the b3 
block to fit into a single DRAM page. Thus the burst transfer size 
can be as large as a page size, which easily permits sustaining full 
bandwidth from the SDRAMs. One disadvantage of this scheme 
is the block size depends on the voxel size. The 512 byte pages in 
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64Mbit SDRAMs support b = 8 for 8 bit voxels and b = 4 for 16 or 
32 bit voxels. Another disadvantageis that it requires a page-sized 
buffer on-chip. 
MiniBlock: Alternatively, b can be as small as possible. This 
eliminates the sensitivity to voxel size. Blocks with b = 2 are 
large enough to completely overlap the row access overhead of the 
SDRAM module with data transfer. Assuming 16 bit voxels and 
Mitsubishi Electric’s 4Mx16 SDRAM at 125MHz, the single burst 
accesstimefora2~2~2blockis 112nsec,i.e. 8accessesin 14clocks. 
%o of the four banks in the SDRAM can be interleaved to achieve 
8 accessesin 8 clocks, i.e. full bandwidth-s A disadvantageofb = 2 
is the large inter-chip communication. 
Hierarchical Blocks: A compromise yielding the advantages of 
both large and small block sizes can be achieved by tiling blocks 
of size b with miniblocks. The blocks themselves are skewed across 
memory modules, butthe miniblocks within them are not- This hier- 
archical blocking permits efficient implementation of larger blocks 
e.g. PageBlocks. Instead of fetching the entire block at once, which 
requires a b3 voxel buffer, miniblocks can be fetched on a row by 
row basis on demand. This capability ensures minimal overhead for 
the sectioning described in Section 7.1. 

The maximum block size is b 2 N/C since blocks must be 
skewed over C chips so that a block-beam can be fetched without 
conflict for any view direction. 

, 
I I 

# 
/ 
1 

A hierarchical blocking scheme is also described in [12]. The 
data volume is divided into subcubes and subcubes are divided into 
2x2x2 “supervoxels”. However, while the hierarchical division is 
the same as above, the actual memory blocking is different. In [12] 
the eight voxels in a supervoxel are distributed across eight memory 
modules, i.e. supervoxels are the unit of interleaved memory access. 
In our blocking, all the voxels comprising a block are located in the 
same memory and miniblocks are the unit of pipelined burst access. 
In addition, all the blocks are skewed. 

6 Inter-chip Communication 

I 

Figure 5 shows the EM-Cube architecture in a generic way indepen- 
dent of b. Voxel blocks are distributed across the set of SDRAM 
volume memories at the top. Each rendering chip connects to a 
SDRAM memory module, a pixel memory chip (SRAM or DRAM) 
for output, and neighboring rendering chips for transfer of interme- 
diate values.3 Such inter-chip communication is required for resam- 
pling (intermediate trilinear interpolation results and possibly vox- 
els), gradient estimation (intermediate results and trilin results), and 
compositing (partial pixels). 

Each voxel block is processed by a single rendering chip. Within 
a block, intermediate values are communicated on-chip. The only 
inter-chip communication results from processing voxels near the 
faces of each block. Since the area of a block face is b2, the inter- 
chip communication grows as b2. On the other hand, the number of 
voxels processed per block grows as b3. Therefore, on a per voxel 
basis, the interchip communication scales as l/b. Thus a design 
with b = 4 requires up to 4 times less inter-chip communication 
bandwidth4 than Cube-4. Table 1 summarizes the inter-chip com- 
munication requirements for several architectural variations. The 

2Provided that every row is accessed at least once within every 64msec, 
no additional overhead is necessary for refresh. Rendering the entire 2563 
dataset of 16 bit voxels accesses every row of four 64Mbit SDRAMs every 
32msec. For a smaller volume or smaller voxel size, rendering might not ac- 
cess every row every 32msec. However, we do not need full ZSOMbytes/sec 
bandwidth in such cases and thus we can slip in auto-refresh cycles without 
degrading the bandwidth. 

3Because of the one-to-onecorrespondenceof memory modules and ren- 
dering chips, we use C interchangeably for either. 

4Exactly 4 less except for cornpositing which is 37/64 less. See Table 1. 
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Table 1: Summary of inter-chip cotnmrnication bandlvidth (in “val- 
ues”/clock) 

compositing communication depends on the view direction, 
The inter-chip communication for resnmpling has an intcrest- 

ing geometric interpretation. The left side of Figure G shows, in 
unskewed voxel space, the eightvoxel neighborhood for trilincnr in- 
terpolation. Here we assume b = 1 to simplify the picture, nnd thus 
there is one memory module and one rendering chip for each col- 
umn i. It suffices to communicate the bilinenr interpolntion of the 
four side face voxels (e.g. 2,4,6, and 8) to the left neighbor. Skew- 
ing the volume transforms the eight voxel neighborhood cube Into 
the slanted parallelepiped in the right of Figure 6. The trnnsformn- 
tion is the same as pulling vertices 4 and 5 of the unskcwcd VOXC~ 
cube laterally to the right and left, respectively. Such pulling sprcnds 
the eight voxel cube over four columns. To perform the lrilinenr in- 
terpolation, we first undo the skewing by shifting voxels 5 nnd 6 to 
the right by 1 and likewise shifting voxels 3 and 4 to the left by 1, 
This lateral communication can be pipelined, with all front bottom 
voxels moving one to the right and all top rear voxels moving one 
to the left on each clock. The four side face voxels arc then bilin- 
early interpolated and the result sent laterally to the left neighbor 10 
compute the final trilinear interpolation result. The total communi- 
cation is thus 3 values per clock. For b > 1 each vertex bccomcs a 
b3 block of voxels and b2 face voxels move to the left and nnothcr 
b2 move to the right each time step. 

For compositing, the inter-chip communication is cqunl to the 
number of rays exiting a block. The best case shown in Table 1 OC- 
curs for a viewing direction parallel to an axis and the worst cnse 
occurs for a my direction 45 degrees from two axes. The worst cnsc 
communication scales as l/b in all three dimensions, Thus b must 
be fairly big, e.g. 8, before there is a significant reduction in total 
compositing communication from the b = 1 case. 

Comparing the entries in Table 1 for Cube-4 (skewed volume) 
and the unskewed volume reveals that skewing signiticnntly in- 
creases the inter-chip communication. However, the unskcwcd VOW- 
ume is not practical because either the view direction must be rc- 
stricted or there must be a copy of the entire datnset for ench nxis 
direction. 

The blocked architecture permits n tradeoff bctwccn signal frc- 
quency and the pin count for inter-chip communicntion. The intcr- 
chip bandwidth decreases by b allowing fewer pins nndlor lower frc- 
quency. For example, if the resampling stage uses 1Gbit VOXC~S, the 
inter-chip communication can be any combination of (lG/lu)bits 
wide every (b/w) * Snsec where w = 1,2,4,8, and 16 and w < b. 

For b = S we estimate a rendering chip will have267 signnl pins. 
This is feasible for today’s packaging technology. Only 20 of these 
pins need to run at 125MHz. the remainder at 62MHz or less. All 
the inter-chip signals use quarter-width paths, i.e. the pins arc mul- 
tiplexed over four 62MHz clocks, The unskewed volume varintion 
has 72 fewer pins. Thus skewing costs 72 pins for b = 8 (the cost 
increases for smaller b). 

7 On-chip Storage 

As depicted in Figure 5, each rendering chip needs buffer storngc for 
buffering blocks, voxels for interpolation, values on the slice ahcad 
and slice behind for gradient estimation, and partially compositcd 
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Figure 5: EM-Cube architecture (4 rendering chips shown) 
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Table 2: On-chip buffer storage for b = 8 (Kbi&hip where C is 
the number of chips) 

pixels. Each chip also needs lookup tables for opacity values, color 
values, and shading (not shown in Figure 5). 

The blocked architectures require a reordering buffer of b3 vox- 
els. For uninterrupted supply of voxels, the block buffer must be 
double buffered with 2b3 voxel storage per rendering chip. How- 
ever, for hierarchical blocking the storage drops to 3b2 voxels (b > 
2). 

Trilinear interpolation requires voxels in two adjacent slices. 
Thus voxels must be buffered from one slice to the next. This stor- 
age is independentof the architecture (e.g. Cube-4 or EM-Cube) and 
depends solely on the number of rendering chips, C. The slice stor- 
age required per rendering chip is N2/C voxels. However, interpo- 
lation also requires voxels in the previous row, thus the total inter- 
polation storage per rendering chip is (N2 t- N)/C voxels. 

To compute a central difference for gradient estimation requires 
samples from a slice ahead and a slice behind. This requires two 
slice buffers and thus the gradient estimate storage per rendering 
chip is 2N2/C samples. 

Shading produces partial pixels. As these partial pixels are gener- 
ated slice by slice, they are composited into a “running” pixel buffer. 
All the partial pixels along the same ray (i.e. sharing the same screen 
pixel location) are composited into the same location in the running 
pixel buffer. Final pixels corresponding to a ray emerging on an 
exit face are immediately written to pixel memory off-chip. Con- 
sequently, only the N2 running pixels of the slice cross-section of 
the volume need to be stored. Thus the compositing storage per ren- 
dering chip is N2/C running pixels. We allow 3 to 6 bytes per pixel 
to cover a number of possible pixel formats, e.g. containing an alpha 
value (for front-to-back cornpositing). 

For lookup tables, we assume a two-tiered table opacity lookup 
with two 512byte tables and one 512 entry table per color compo- 
nent (3x512 bytes total). Shading is not yet finalized. One possibil- 
ity is the lookup table method of [17J which uses a reflectance map 
(one 512 byte table per axis direction, for 3x512bytes total) and an 
arctangenttable (one 512 byte table).5 The total for all lookup tabIes 
is 9x512bytes. 

Table 2 lists the total on-chip storage required for N = 256, b = 
S with hierarchical blocks, and 16 bit voxels. With present em- 
bedded SRAM densities, the buffer storage per chip must be less 
than roughly 2OOKbits to ensure a cost-effective core area of about 
100mm2, reserving half the core for logic. Thus 32 chips are re- 
quired. This is far too many chips for a cost effective solution. 

5This produces grey level shading; full color shading requires one re- 
llectance map per color component. 
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Figure 7: Sectioning of volume tnetnory 

7.1 Sectioning-A Solution for the On-Chip Buffer 
Size Problem 

To reduce the on-chip buffer area to a feasible amount, WC USC the 
sameapproach as in [4]: we divide the volume into L horizontal sec- 
tions as shown in Figure 7. We process each section in turn using 
the EM-Cube algorithm and then combine the results. This scction- 
ing reduces the slice face area and hence the size of slice buffers: L 
sections reduce the size of on-chip slice buffers by l/L. For C = 4 
chips, L = S is a feasible design. 

Sectioning does not come for free. We are performing a spncc- 
time tradeoff: we re-read voxels from volume memory and move 
some intermediate results back and forth from external pixel mcm- 
w. 

7.1 .I Voxel bandwidth 

Interpolation requires the voxels in the previous row while gradi- 
ent interpolation requires the voxels in the two previous rows. Con- 
sequently, after the first section all subsequent sections require re- 
reading the bottom two rows of the previous voxel plane as dc- 
pitted in Figure 7. If there are L sections, this means re-reading 
2(L-l)N2 voxelsper frame, and thus the total bandwidth ovcrhcnd 
is2(L-1)N2/N3 = 2(L- 1)/N. This is less than 5% of the total 
bandwidth if L 5 8. For blocks with b > 2, tiling with miniblocks 
eliminates any excess overhead in re-reading the two voxcl plan& 

However, one consequence is that the SDRAM clock nnd ren- 
dering chip pipelines must run slightly faster to deliver the addi- 
tional bandwidth. For L = S, the SDRAM clock and rendering chip 
pipelines must run 5% faster, i.e. at 132MHz, or at 5% slower frame 
rate, i.e. 28fmmeslsec. 

7.1.2 Pixel memory r&read 

While processing a section, we only need on-chip storage for the 
compositing buffer proportional to the size N2/L of the slice fact 
area. All running pixels for rays emerging on a section face cnn bc 
written to off-chip pixel memory as “interim” pixels, 

However, interim pixels written to off-chip pixel memory for rays 
exiting a section face must be combined/composited with WI~UCS 
for rays continuing into the adjoining section. WC deal with this 
problem by reading interim pixels from off-chip pixel memory into 
the on-chip compositing buffer before processing the next section, 
There are up to N2 interim pixels to read per section (the number is 
as few as 0 for rays parallel to a voxel row). The worst case can be 
handled by reading one beam of interim pixels from off-chip pix01 
memory per slice. In fact, the latency for reading those interim pix- 
els can be hidden by the time to reload the additional two VOXC~S per 
slice from voxel memory. 
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Figure 8: Rendering chip pipelines 

8 Rendering Chip Structure 

Figure 5 shows the overall architecture. Each rendering chip has 
buffers and datapaths built-in for a nominal design such that 4 ren- 
dering chips, 4 SDRAMs, and 4 pixel memories achieve 28-30 
frameslsec with 25G3 x 16 bit voxels. To reduce inter-chip commu- 
nication cost, and hence the pin count, to manageablelevels, we plan 
to use a block size of b = S hierarchically tiled with miniblocks. 
Ench rendering chip processes 16bit voxels at 125MHz6 and has 
slice buffers of size 256 x 256 x 16bit132 (4Kbytes). Currently we 
plan to have four pipelines on-chip, as shown in Figure 8, each 16 
bits wide clocked at 32nsec. Larger voxels are treated as a sequence 
of 16 bit values with proportional reduction in frame rate. 

9 Voxel Formats 

Flexibility in voxel formats is important. Accordingly, the EM- 
Cube nrchitecture allows the user to fashion the voxel format appro- 
priately, Voxels are either 8 bits or a sequenceof one or more 16 bit 
tields. We distinguish the format of voxels in memory (“memory 
voxels”) nnd the format of voxels in EM-Cube pipelines (“pipeline 
voxels”). In the simplest case, pipeline voxels are the same as mem- 
ory voxels. In general, a pipeline voxelcan be a simple transforma- 
tion, e.g. a table lookup, on some or all fields of memory voxels. A 
memory voxel has the following corzcepfualcomponents: 

1, 

2, 

3. 

4. 

5. 

Intensity field: 8, 12, or 16 bits to indicate intensity or to index 
a RGB table. 

Index field: 4, 8, (maybe 12), or 16 bits for color lookup and 
material type indicator. 

Gradient coefficient: 8 bits (may increase later). 

Opacity field: S bit value or index to opacity table. 

Arbitrary user fields (size unrestricted as long as user pads 
oven11 voxel size out to a multiple of 16 bits). 

Not all fields need be present; some fields may not exist and some 
may overlap with other fields. Table 3 shows examples of some of 
the voxel formats. 

“Or slightly more due (0 sectioning overhead. 

---. ----. ~- .---.- I___~ .__._ __ ___x 

I intensity 8 bits 

intensity index 

intensity I index 

intensity 

intensity 
index 

intensity index 1 grad. 

intensity index 
gnd. coeff opacity 

rgb index grad. 1 opacity RGB table index 

R I G 
B opacity/intensity 

direct RGB 

Table 3: Example voxelformats 

10 Scaling 

It is important that EM-Cube scale to accommodate larger volumes 
and larger voxel sizes. Given C rendering chips each having the 
nominal design described in Section 8 and a volume dataset of N 
columns, di rows, S slices and 1621 bits/voxel (u = .5,1,2,4), we 
have the following constraints: 
Memory capacity: 2vNMSfG < Sm Mbytes where there are m 
64Mbit SDRAMs per rendering chip. 
Frame rate: 5 C/(ZuNMS) * 250M flsec, determined by the ren- 
dering chip processing rate? 
Slice buffer: 2uNh4/LC 5 4096 bytes 

10.1 Voxel Scaling 

The above constraints define the options if the voxel size u changes. 
For example, if u doubles and if Nh4S = 25S3 and NfiI = 
G4Kbytes, then we can half the volume size by halving N or M 
(halving S does not help because of the slice buffer constraint); or 
we can double the number of rendering chips C, SDRAMs, and 
pixel memories; or we can double the numberof sections L, double 
the amount of voxel memory per rendering chip, and half the frame 
rate. 

10.2 Volume Scaling 

To handle a data set of size Nh4S larger than the nominal design 
ofNxhfxS = 256 x 256 x 256 supported in the four chip 
nominal design, we extend sectioning to three dimensions to divide 
the volume into smaller volumes. Thus we virtualize the voxel and 
pixel memories by paging them to the host memory system. As in 
Section 7.1, volume sections must overlap by two voxel planes re- 
quiring re-reading part of a section. 

This 3D sectioning also allows us to handle reasonable volume 
sizes with just a single rendering chip, albeit with proportional re- 
duction in performance. 

‘Fnme nte degradation due to sectioning is ignored (typically only SC/a, 
dependingon L). 
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11 Other Issues 

Several important issues such as supersampling, subvolumes, and 
perspective projections are unaddressed in this paper. We are inves- 
tigating these issues as we refine our architecture. We anticipate that 
supersampling will be easy to work into the pipelines while subvol- 
umes will be moderately more difficult. 

12 Summary 

We presented the outline of a feasible architecture for a low-cost, 
real-time volume rendering system suitable for PC1 cards in PCs. 
Processing 2563 x 16 bit voxels at 30frames/sec requires four sets 
of rendering chips and associated voxel and pixel memories. 

A major innovation of the architecture is block-skewed memory. 
Blocking achieves maximum bandwidth from a small number of 
SDRAMs. While skewing eliminates memory access conflicts to 
provide view independence without duplicating voxel data, it in- 
creases inter-chip bandwidth. Blocking counteracts this problem, 
reducing the inter-chip bandwidth and thus the pin count. The block 
size b parameterizes the architecture. The larger b, the lower the 
communication overhead paid for skewing, and the more the data 
access pattern resembles that for an unskewed voxel memory. 

A second key aspect of the architecture is sectioning. This re- 
duces the on-chip storage requirements to achieve a feasible chip 
area for implementation. 

Other features of the architecture are flexible voxel formats and 
scalability. As in Cube-4, one can always add more chips and mem- 
ories for scalability. Alternatively, given a fixed amount of hard- 
ware, one can use sectioning in multiple dimensions to scale to 
larger volumes. We are investigating adding additional features 
such as supersampling, subvolumes, and perspective projection. 

Architectural simulations of EM-Cube are underway. We plan to 
freeze the architecture in early summer and expect chips and a PC1 
reference board in the second half of 1998. 
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