
Design Of A High Performance Volume Visualization System

Barthold Lichtenbelt*

Graphics Products Laboratory, Hewlett-Packard

Abstract

Visunlizing three dimensional discrete datasets has been a topic of
many research projects and papers in the past decade. We discuss
the issues that come up when designing a whole computer system
cnpable of visualizing these datasets in real time. We explain the
three way chicken and egg problem and discuss Hewlett-
Packard’s effort at breaking it with the Voxelator API extensions
to OpenGL. We enumerate what a good hardware design should
accomplish, We discuss what system issues are important and
show how to integrate volume visualization hardware in one of
Hewlett-Packard’s graphics accelerators, the VISUALIZE-48XP.
We show why the Voxelator is an efficient and well designed API
by explnining how various existing hardware engines will easily
tit into the Voxelator framework.

CR Categories and Subject Descriptors: C.5.3 [Computer
System Implementation] Microcomputers - Workstations; D.2.0
[Software Engineering] General - Standards; 1.3.1 [Computer
Gmphics] Hardware Architecture - Graphics Processors; 1.3.7
[Computer Graphics] Three-Dimensional Graphics and Realism -
Rnytracing.

Additional Keywords: volume rendering, visualization, volume
nccelemtor, OpenGL, system design.

I INTRODUCTION

Designing a hardware volume rendering engine is a non-trivial
task. Many designs have been proposed [2, 4, 7, 8, 9, 10, 11, 12,
15, 16, 171, and n few either simulated or actually built [l, 4, 9,
10, 151. Volume visualization is compute intensive and very
demanding on system resources like CPU compute power,

* Hewlett-Packard, 3404 East Harmony Road, Fort Collins,
CO 80525, USA. barthold@fc.hp.com

Pcnni~ioll to ,,l&e digitd/hrd copies of all or pnri Ofdk Il~~bXkd Ibr
pcmo,,n~ or cln~qqol,l~c is granted Allout i& provided lint 1111: coPi=
nrd llot Illndu or distrihWl for prolit or conmlercin~ ~dv~N% 11~ coPY-
rig,ll notice, tile title &IJC pubka:ntion and its date appmr. md mticc is
Bi\tca tllnl copvigllt ir by permissioll oftIle XL!. Illc. To coPY olknVisr~
to rq\~~>\i~\,. 1; ,-,og o,, se:~verj or to redistribtlto lo lists. rrWir= specilic

peni+Gm niill/or fc‘2
199 7 ,yIc;(.;lbl pI~/~uro~rnphics WorksIf 0p
copyrjg~l~ 1997 ACM 0.89791.961-O/9718-$3.50

memory bandwidth and bus bandwidth. Visualizing a reasonable
volume dataset of 64 Mbytes in real time is beyond today’s
desktop computers. Visualizing an ever bigger dataset of about
512 Mbytes in real time is beyond today’s supercomputers.
Therefore people have been designing, and building special
purpose hardware that will accelerate the rendering of volume
datasets, much beyond what a general CPU is capable of doing.
This makes perfect sense because we expect that a well designed
volume visualization system will outperform general CPU
solutions by several orders of magnitude.

One of the problems we are faced with in designing a volume
visualization system is system integration. Globally there are
three crucial areas that need to be addressed in order to be able to
produce a good volume visualization system. First, there should
be hardware that accelerates the volume visualization. There are
many problems associated with building this kind of hardware.
We will not discuss these issues in this paper. Second, the
hardware should interface to a computer. This includes the
hardware interface itself, like bus issues. The physical size, power
consumption, and heat dissipation of the hardware also falls in
this category. Third, applications that allow the user to visualize
their volume data need to talk to the hardware through some kind
of software interface, or API (Application Programming
Interface). An API hides hardware details from the application,
which allows software developers to design an application that is
portable across platforms.

These three problems need to be solved to design and build a high
performance volume visualization system. To also make this
system affordable makes it even harder. Hewlett-Packard’s goal is
to make volume visualization pervasive. With that we mean that
every professional, who today uses a 3D workstation, will be able
to afford to do volume visualization with that kind of a system.

In achieving this we see a three way chicken and egg problem that
needs to be solved. Fast volume visualization hardware does not
function without a good industry standard API, which does not
function without applications that use that API, and these
applications will not function without fast hardware. We wanted
to break this circle and started at the API level. The reasons for
starting there are:

l A good API outlives hardware. By hiding hardware details
from the application, hardware designers have the freedom to
change hardware from one generation to the next, without
impacting the application. This is crucial to the wide spread
acceptance of volume visualization. This means that the API
has to be general enough to allow for several hardware
generations, without limiting potential new developments
and improvements in hardware design.

111

t

The API has to deal with both hardware on one end and
applications on the other end. Both have specific constrains
that govern the design and definition of the API.
Without a standard API there is no incentive to develop
applications. Applications need to be portable across
platforms. A standard API provides the means for a high
degree of portability.
Without a standard API that is available on several different
platforms it is hard to justify developing special purpose
volume visualization hardware. A standard highly available
API will help making volume visualization pervasive, which
means that hardware development costs can be amortized
over a much broader base of systems.
The 3D texture mapping OpenGL extension is in widespread
use today [I, 5, 6, 13, 201, but it only solves parts of the
volume visualization problem. It only accelerates the
rasterization stage of the volume pipeline. This will be
explained in more detail in section 3.

The next section discusses requirements for a good volume
visualization API. Section 3 describes the Voxelator API, our
volume visualization extensions to OpenGL. Section 4 explains
the concept of blocking. Section 5 discusses important factors that
make for a good volume visualization system and discusses the
integration of volume visualization hardware into one of Hewlett-
Packard’s graphics accelerators. Section 6 validates the Voxelator
by discussing how existing hardware engines map to it. Section 7
and 8 discuss future directions and draw some conclusions.

2 API REQUIREMENTS

The API is the most essential part of a volume visualization
system, since it enables the hardware and the applications using
the hardware to work together as a volume visualization system.
Therefore careful thought has to be given to its design. We used
the following list of design goals in the design of the Voxelator
API extensions to OpenGL. A good volume visualization API:

is based on the industry standard API, OpenGL. We did not
want to design a proprietary API. OpenGL is a widely
adopted visualization API and is available on all major
platforms.
outlives a hardware design. Several generations of hardware
should fit under the API. Therefore the API should not
dictate one specific hardware implementation, as the 3D
texture mapping extensions to OpenGL do.
is extensible. That means that if new features need to make it
into the API, there is a mechanism to do so. OpenGL
provides a general extension mechanism to do just that. The
next section will list some explicit examples of possible
future extensions to the Voxelator.
has low overhead. This means that the API does not
neutralize the hardware performance by forcing significant
software preprocessing. The API is a thin layer on top of
hardware, just enough to hide hardware details from the
applications.
tits numerous hardware designs. It allows for some or all of
its stages to be accelerated by hardware. This choice should
be up to the hardware designer, not dictated by the API.

112

. optimally uses system resources. The critical resources in a
volume visualization system are memory, memory
bandwidth, bus bandwidth, accelemtion hardware and the
general purpose CPU. For example,. the API should not be
designed so that it has to make an extra copy of the dntaset in
memory.

l provides enough flexibility for applications.
. implements the full volume rendering pipeline. With this we

mean gradient computation, classification, lighting and
shading, interpolation and compositing. The full pipeline
will be discussed in detail in the next section.

. integrates well with the existing OpenGL geometry and
imaging pipelines.

. is unambiguous. All stages in the API are well defined as is
the order in which the stages are executed. The dcfnult
values are defined.

Some of these design constraints conflict with each other, like the
desired flexibility for applications and the defined order in which
stages of the pipeline are executed. Applications want maximum
flexibility, which means that they would like to m-define the
order in which stages are executed. However, this will make
hardware acceleration a great deal more complex, How WC dealt
with these issues is the topic of the next section.

3 THE VOXELATOR API

.OpenGL [19] is the standard visualization API at this moment,
and will be in the foreseeable future. Therefore we chose to use
OpenGL as the API of choice for our volume visualization
system. Since volume visualization is n new field, OpenGL did
not adequately address this topic yet. Figure 1 shows a high lcvcl
overview of the OpenGL pipeline. The pixel pipeline and the
geometry pipeline exist in OpenGL today. The images that arc

r----T ---tff&- ‘Y<> ,;

Figure 1. The standard OpenG~pipelineplus Ihe new voxel
pipeline.

input into the imaging pipeline either can be routed to texture
memory or to the frame buffer, through the fragment operations
stage. The geometry pipeline will process polygons, and
optionolly use the images in texture memory to texture map the
polygons, Both pipelines produce fragments. Fragments are little
data structures that contain information that is used in the
fragment operations stage to decide if and how to update the
fmme buffer. Fragments typically contain a RGBA and a depth,
or z-value. The fragment operations stage performs operations
like fog, stencil test, depth buffer test, alpha test, blending and
some others.
Since OpenGL does not address volume visualization other than
through 3D texture mapping, we decided to explore if there is a
need for a volume visualization system that does more than what
you cnn do with 3D texture mapping today.
To get an informed opinion on this we decided to ask university
nnd corporate laboratories, research institutes and customers
about what they thought a good volume visualization system
entails. We nlso solicited, and got, feedback by distributing the
Voxelator CD-ROM at the SIGGRAPH ‘96 and Visualization ‘96
conferences. The result of the queries is a very clear answer: Yes
there nre things we want to do we can not do with just 3D texture
mapping hardware. 3D texture mapping solves a good number of
problems, but not all. Therefore we decided to add a third pipeline
to OpenGL, the voxel pipeline. We refined this pipeline using the
feedback we got. We show this pipeline in Figure 1.

implementation of the Voxelator pipeline can be different from
the one shown in Figure 2. This is up to the API and hardware
designers, as long as the final rendered image is the same as the
image that results if the conceptual pipeline in Figure 2 is
followed.
After the application has set up the volume, rendering parameters
and data format it calls glDrawVolume0. The following stages
will then be performed on the data:

Visibirity Testing is the stage where voxels optionally can be
masked out by a bit mask supplied by the application. The opacity
of each voxel that is masked will be set to zero.

Compute Gradients is the stage where the local gradient for each
voxel is computed. The gradient is needed in the classification
and lighting stage.

Classijcation is the stage where an opacity and RGB value is
assigned to each voxel. The magnitude of the gradient, the voxel
intensity and the index field can all be combined in a user
specified way to form the input to the classification stage. The
resulting value is then used as an index into a lookup table, whose
output is a RGBA value. Each voxel can have an index field
containing a label assigned by the application. This allows an
application to do pre-segmentation on the dataset before it is
rendered. The Voxelator can use that label in the rendering stage.

Lighting is the stage where the standard OpenGL lighting model
is applied to the RGBA values of each voxel given the normal
defined by the gradient.

Projection translates, rotates and scales the dataset using the
OpenGL model, view and projection matrices as well as the
viewport transform.

Sampling is the stage that determines what the distance is behveen
hvo sample points, or fragments, on one ray. This allows for over
and under sampling of the dataset. The application has control
over this distance.

Figure 2. The voxelpipeline.

The voxel pipeline also produces fragments, of exactly the same
format as the pixel and geometry pipelines do. Pixel, geometric
and volumetric data merge at the fragment operations stage.
OpenGL takes care of the problem of mixing geometric, imaging
and volumetric data into one scene.
Figure 2 shows the voxel pipeline, which we call the Voxelator,
in detail. The pipeline in Figure 2 is a conceptual pipeline. That
means that this is the pipeline an application expects the
underlying API and hardware to follow. The actual

Interpolation uses an application defined interpolation method to
compute the RGBA values for a sample point on a ray using the
neighboring voxel values. Currently nearest neighbor and tri-
linear interpolation can be specified.

Ordering determines if the fragments are generated in front-to-
back or back-to-front order.

The resulting fragments are processed by the, already existing,
OpenGL fragment operations stage. There fragments can be
blended together, or their value tested against the previous
fragment value to do Maximum Intensity Projection rendering.
Finally the frame buffer will be updated after the fragment is
processed.
If it is desired to have additional functionality in the Voxelator
such as better interpolation filters or better gradient filters, anyone
implementing the Voxelator API can use the extension
mechanism of OpenGL to add that functionality to the Voxelator.
The Voxelator is not tied to one specific hardware
implementation, unlike the 3D texture mapping method. In fact,
the Voxelator will fit on many different hardware architectures,

113

including 3D texture mapping hardware. This is the topic of of the parameters to glDrawVolume() is a list of pointers to the
section 6. blocks.
The Voxelntor pipeline can be divided into two sections, see
Figure 2. The first five stages in the pipeline, up to the projection
stage, form the first section. Everything below that forms the
second section. Globally speaking the first section is responsible
for the setup, transformation, classification and lighting of a
dntaset. The next section is responsible for the rasterization of the
dntaset. This is analogous to the geometry pipeline, where a

Each block has a so called action assigned to it. An nction can be
any of the following three attributes: render compressed, render
uncompressed, or skip. A block can be stored in memory
compressed, or non compressed. The Voxelator will decompress n
compressed block right after the visibility test stage, Setting the
action to ‘skip’ means that the Voxelntor will not process that
block at all. This can be used to render only part of a dntaset.

I CPU
I

‘7’ CPUb; ,

.___-___-_---_--------
Polygonal accelerator

,___-____---__-_--____
Framebuffer 1

Figure 3 General volume visualization system diagram. Several
bottlenecks can be identified.

similar division can, and often is, made. In fact, the tirst section is
what the Voxelator adds over what you can do with the 3D
texture mapping extensions to OpenGL. The Voxelator adds and
allows for interactive lighting and classification, that are core
functionalities of any volume visualization system. To be able to
do this interactively will greatly enhance the usefulness of a
volume visualization system, and thus its pervasiveness. The
complete Voxelator specification can be found in [18].

4 BLOCKING

An application has to format the dntaset into blocks before it
hands the d&set to the Voxelntor with glDrawVohune0. Only
then is hardware acceleration guaranteed. It is still possible to
render a d&set without blocking it, but this will not result in
optimal rendering performance.
Blocks are sub volumes of the dntaset. The size of the block is
dictated by the volume visualization hardware, through the
Voxelntor API. The application calls glGet*O to find out what
this size is. Each block has to be stored linearly in memory. One

114

Having the dataset formatted into blocks has severnl advantngcs
to the overall performance of the visualization system. A block is
in the optimal size for a hardware volume visualization
accelerator, since the block size is dictated by the hardware, For
example a hardware accelerator might only have a smnll on-chip
cache in which to store a block, or it might have off-chip fast
memory which will hold blocks of n much bigger size.
Since a block is stored linearly in the system’s main memory,
transferring the block over the system bus to the hardware
accelerator will be processor cache efIIcient. If any pre-processing
has to be done by the Voxelntor API, which is the interface
between the application and the hardware, the data will be
transferred to the processor cache, processed by the CPU and
transferred to the hardware. A block stored linearly in memory
will prevent cache trashing.
In many computer systems data that is transferred over the system
bus to any device on that bus will be loaded into the processor
cache. Data can be sent by either programmed I/O or DMA to the
device. Each of these YO models has, depending on the computer
system hardware, an optima1 data size in terms of maximum bus
bandwidth. The block size can be tuned to optimize the bus
transfer rates. See also section 5 and Figure 3.
Blocks can be marked as being empty, not contributing to the
rendering because the opacities of all the voxels in the block arc
zero, or close to zero. The application can mark a block by setting
it’s action attribute to ‘skip’. The combination of Voxelator API
and underlying hardware however could also keep an internal list
of blocks that are empty and use that information for performance
enhancements.
Exposing the blocking issues to the application allows for a
Voxelntor API implementation that does not have to make a copy
of the dntaset ‘under the covers’ in main memory. Current
OpenGL 3D texture mapping implementations will make a copy
of the d&set. This copy is formatted into a format suitable for the
underlying 3D texture mapping hardware. The application will
have it’s own copy of the data stored in main memory and
OpenGL will have it’s own, specially formatted, copy of the same
data in main memory. This can be a problem for application
developers. Datasets can be very big. Having an extm copy
around in memory means the system could run out of memory
and start swapping, which results in a severe rendering
performance penalty.
Blocks will also benefit application performance. Applicntions
almost always want to pre-process a dataset, before it is rendered.
Segmentation of a dataset is one example. As indicated before,
blocks allow for efftcient cache behavior, which will improve an
application’s pre-processing performance.
The API software driving the visualization system should have
low overhead and has to be designed carefully to achieve just that,
This is why we chose to expose blocking to the hardware and to
the application.

- _.._ _ .._._ ---. ---;-- - --

We provide glu utilities to convert a dntaset into blocks and to
convert blocks from one size to another.

5 A COMPLETE SYSTEM

As we stated before, designing hardware that accelerates volume
visualization is only part of the problem. The acceleration
hardware genemtes fragments or maybe pixels, which need to be
processed and written to a frame buffer for display. If it is
desirable that the output of the volume accelerator can be
rendered and properly occluded into a scene with geometric
primitives, it will need to interface to the geometry hardware. It
needs to get its data out of main memory by some I/O mechanism.

Then there is the memory bus and the memory system itself. The
memory system should be able to supply the CPU and I/O devices
with data at a high enough rate to keep them continuously busy.
The I/O devices, like the graphics accelerator, use the AGP or PC1
bus. The PC1 bus, since it has a lower bandwidth and can serve
multiple UO devices, is used for the not so data hungry devices,
like a network card. The AGP-2X bus is specifically designed for
a high speed peer to peer connection. This means that only one
device can use the AGP bus. This typically will be a graphics
device, since these have the highest bandwidth requirements. A
well balanced volume visualization system is designed so that all
busses, memory system, graphics system, general CPU processing
power and processor cache are optimally tuned to each other.

We will now take a closer look at the graphics device in Figure 4,

Front end board

Bus: GSC -2X
40 MHz @ 32 bit
both clock edges
240 hfB/sec

Distributor

45 MHz

Lighting i-7 90 MHZ

2D
45 MHz

I I

Optional volume acceleration board 1 Optional texture mapping board

Frame buffer board

1 Framebuffer 7 Video Out
RamDac

Figure 4 Hewlett-Packard’s Visualize-48.-W geometry accelerator with proposed volume acceleration board

Seveml researchers have pointed out [3, 12, 161 that getting the
dntaset out of memory at rates needed for interactive volume
visunlizntion is one of the bottlenecks of their hardware system.
If we look at Figure 3 we identify several potential bottlenecks in
n volume visualization system. First of all, there is the CPU bus.
All data goes over this bus. Depending on the I/O model,
programmed I/O or DMA, data might be fetched from memory,
transferred over the CPU bus into the processor cache, written to
the I/O device by the CPU over the CPU bus, or transferred
directly from memory to the I/O device without CPU interference.

and more specifically at the integration issues of a volume
accelerator with conventional geometric acceleration hardware.
We envision a volume visualization chip that has the following
properties:

. Accelerates the full Voxelntor pipeline.
l Is scaleable. Adding more chips will mean that performance

scales linearly.
l Processes blocks, as defmed by the Voxelntor.
. Has an external 16 bit lookup table for the classification

stage. The classification lookup table is defined by the

115

I
I

1
I
1

I

(

!

i

/
1
,

, ,
I
i

j

I
i
I

I -

Voxelator as having at least 2”16 entries. A bigger table is
allowed and that choice is up to the hardware designer.

l Interfaces to some fast RAM which acts as a block cache.
Block misses will initiate a transfer out of main memory.

. Generates fragments as output, which then can be blended
into the frame buffer.

l Will be able to process at least 200 Million voxels per
second per chipset.

Internal studies at Hewlett-Packard have shown that these goals
are feasible. The block cache is extremely useful and will greatly
enhance the performance of the volume accelerator. In order to
process one block, the volume accelerator needs access to all 26
neighboring blocks for gradient computation and interpolation.
Thus it makes sense to transfer at least 27 blocks at once from
main memory to the graphics system and store them in the block
cache.
Having the volume accelerator chipset generate fragments allows
for correct mixing with opaque data already in the frame buffer.
In order to guarantee correct rendering with opaque geometry
data the application has to render its geometry data first, then
render the volume. Each sample point on the ray cast through the
volume is a fragment, which has a z-value. Doing a z-compare
with the geometry data in the frame buffer guarantees correct
blending and occlusion. Another design option would be to have
an accumulation buffer closely coupled to the volume accelerator.
The volume accelerator then composites the samples on a ray into
the accumulation buffer. This alleviates the problem of the high
bandwidth needed to and from the frame buffer in the former
solution. However, proper mixing with geometric data is no
longer possible, since the volume dataset is already blended into a
2D image in the accumulation buffer, before being transferred to
the frame buffer.

Figure 4 shows a block diagram of one of Hewlett-Packard’s
current geometry accelerator solutions, the VISUALJZE-48XP. It
also shows how to take that solution and add a volume accelerator
to it.
The VISUALIZE-48XP is a three board system. It physically
plugs into the GSC bus, which is Hewlett-Packard’s proprietary
bus. The GSC-2X is a 40 MHz bus with a 32 bits wide data path.
Data is transferred on both clock edges, resulting in a sustained
bandwidth of about 240 Mb/set.
The distributor chip is the gateway into the system. It decides
where data goes, to the 2D stage or the lighting stage. 2D data,
typically Xl 1 primitives, are accelerated by the 2D chip.
Geometric primitives are assigned to one of the four lighting
chips by the distributor chip. Each lighting chip accelerates the
floating point intensive operations like: Geometric
transformations, lighting, depth cueing and clipping calculations.
This chip heavily leverages the floating point units of the PA-
RISC processor line.
The concentrator chip combines the output streams from the
lighting chips as well as the output from the 2D chip. Floating
point values are converted to fixed point and sent on to the
rasterization and texture mapping chips.
The 10 rasterizer chips combine the functionality of a scan
converter and frame buffer controller. The VISUAJJZE-48XP
employs a unified frame buffer architecture, which means that the
same memory array stores image and overlay planes as well as z
values. Screen space parallelism is used in the rasterization stage.

116

The two texture mapping chips look up texture values from the
texture RAM which is managed as a cache. Interrupts are used to
fetch texture cache blocks from the system’s mnin memory, A
separate port on the texture mapping chip is used to load texture
RAM. This port bypasses the rest of the rendering pipeline, so
that texture cache misses can be serviced while the rendering pipe
is busy. This architecture allows the texture size to be limited only
by the system’s main memory size instead of the size of the local
texture memory. The total texture memory is 32 Mb. However the
VISUAJJZE-48XP stores textures twice, to increase performance.
Effectively this leaves 16 Mb of texture storage.
The total system is capable of rendering 3.9 Million triangles per
second. These are 50 pixel, Gouraud shaded and z-buffered
triangle strips. The VISUALJZE-48XP combined with the Cl80
workstation is a well balanced system with respect to the issues
discussed earlier and shown in Figure 3.

The best way to integrate a volume accelerator into this system is
also shown in Figure 4. The texture memory is re-used as local
block storage and acts as a block cache. An interrupt is generated
if a block miss occurs and the missing blocks are transferred out
of main memory into the texture memory. The volume accelerator
chips will generate fragments, which are passed on to the
rasterizer section to be blended into the frame buffer, Some
external memory is needed for the classification lookup table
Depending on the clock speed of the volume accelerator chips the
GSC-2X bus will be the first performance bottleneck in the
complete system, meaning that the performance for this system
would top out at 250 million voxels per second.

6 MAPPING THE VOXELATOR

We carefully designed the Voxelator API so that it would not
dictate how the hardware, that accelerates the Voxelator, should

e

Figure 5 30 texture mapping concept. Polygons are
parallel to the image plane. Data is texture mapped
onto one polygon, the texture mapped polygon is
blended into the frame buffer and the next polygon
processed.

- . r .-;~,-. - ^~-. - -. --.-~ -
,-+- .(_ ., . -_

s ;.-* _.
,. , -- -----.--_---:.-~” - .__._

,*m-.;J i* :.:.:, _ - ---- -.-.

: 3
;._

; -, . -,-
,- 7.- -,---,--, ” _

.- _ -.- ..- ..-. ~. :-.. ‘:t_. _. ,I,,,,

: 2., , , I 1“,

.~ _ - ._____ ___-___._- .___ -- ____ --___. -- .- -.-. -__ - -

be designed and build. This also means that an application does
not have to deal with hardware specific details, which in turn
might mean that the application will run on one platform, but not
on another because a certain hardware feature is not available..We
will discuss several hardware architectures and show how they
will be able to accelerate the Voxelator pipeline.

30 texture mapping hardware [I, 5, 6, 13, 201 can be used to
accelerate the second section of the Voxelator pipeline, as we
discussed in section 3. After the visibility testing, gradient
calculation, classification and lighting is done in software, the
Voxelator API can format the data into a texture map and pass
that texture map, which contains classified and shaded voxels, on
to the 3D texture mapping hardware. Next the Voxelator will
define polygons that slice. through the texture map perpendicular
to the viewing direction. The 3D texture mapping hardware will
then rasterize and texture map each polygon and perform the
OpenGL fragment operations, like blending the data into the
frame buffer. This is schematically shown in Figure 5. A potential
problem can arise when the texture map is bigger than the
available texture mapping memory in the system. Hewlett-
Packard solved this problem with the texture caching model we
discussed in section 5. If the system does not have a mechanism
like texture caching the Voxelator API has to manage the texture
mnp itself, by bricking it up into smaller chunks of data [13]. The
first section of the Voxelator pipeline has to be computed on the
host CPU, which is a significant part of the whole pipeline.
Having to do this will be the performance bottleneck for this
solution.

20 texture mapping hardware can be used if 3D texture mapping
hardware is not available. It is possible to implement the second
section of the Voxelator pipeline on 2D texture mapping
hardware, and still get significant performance improvements
over a software only solution. Instead of building a 3D texture
map we can only send one slice of data at a time to the texture
mapping hardware. This slice furthermore has to be parallel to the
face of the dataset that is most perpendicular to the viewing
direction. This is schematically shown in Figure 6. Next the
Voxelator will define a polygon the slice is texture mapped onto.
The fragments created will be processed by the hardware and
blended into the frame buffer. Each consecutive polygon has to be
sheared to correct for the offset created by having the polygons
parallel to the face of the dataset instead of parallel to the image
plane. The image that results will be warped and has to be un-
warped to get the final image. This is very similar to the
shear/warp algorithm [14].

Tile Cube-4 volume rendering accelerator [9, 16, 171 is a very
good fit for the Voxelator pipeline. It in essence implements both
sections of the pipeline, thus providing hardware acceleration for
the whole pipeline, not just the rasterization stage as texture
mapping hardware does. See Figure 7. This Figure gives a high
level overview of the Cube-4 architecture. The power of Cube-4
lies in it’s parallelism and modularity. Cube-4 works on one
whole beam of voxels at a time. A beam consists of n voxels,
where n is the size of the nxnxn dataset being rendered. The
design is highly pipelined, and after the pipeline is filled it
generates n outputs every clock cycle. Thus all units shown in
Figure 6 work on n voxels at the same time.

2-D image warp

u final image

sheared polygons

Figure 6 20 texture mapping. (a) Top, polygons are
parallel to the face of the dataset most perpendicular
to the viewing direction. (b) Bottom, shearing the
polygons will generate an intermediate image that
will need to be warped to get the final rendering.

We expect the miniial Cube-4 system to consist of a PC1 or AGP
style board, which contains the Cube-4 chips, memory for the
dataset and memory for the resulting final image. By adding more
memory and/or more Cube-4 chips the system will scale to the
user’s needs. The memory on the Cube-4 board can be viewed as
a block cache. If the dataset does not fit into the Cube-4 on-board
memory, parts of it can be paged in from main memory. Since
Cube-4 was originally designed to hold the whole dataset in on-
board memory it makes sense to define the Voxelator block size
as the size of that on-board memory. The Cube-4 hardware
architecture does not benefit from a smaller block size. See Figure
7. It is up to the Cube-4 hardware to define the block size, and up
to the application to query that block size.
The current Cube-4 architecture does not address integration with
the system’s fi-ame buffer and fragment operations stage. Cube-4
will generate the fmal image on-board, and will then blit that
image over to the frame buffer. This prevents proper z integration.
However, the Cube-4 designers are free to find a solution to this
problem however they see fit to solve it. The Voxelator API does
not force hardware designers into one particular solution. This is
what makes the Voxelator API so powerful and flexible.

117

__ -__ -- ---~

,
1

I
I %.

I

I

YIRIIU is a fully programmable hardware engine built out of information associated with a polygon and it’s vertices and
FPGAs and DSP signal processors [3, 4, 81. It consists of two process the data directly using the volume pipeline.
distinct parts, a rotator or resampler, and a ray-tracing unit. The The conventional geometric pipeline and the Voxelator pipeline
rotator will resample the dataset so it aligns with the viewing have many operations in common, like transformation, lighting
plane using a programmable filter. After the alignment the ray- and shading, interpolation and fragment operations. A more
tracing unit will cast rays through the dataset, calculates the integrated hardware design will re-use these blocks for both the
gradient, does the opacity mapping and the compositing. The volume pipeline and the geometry pipeline, saving dcvelopmcnt

Pipelined Ray-Casting Algorithm

Volume Da ta Interpolation ABC Buffers

w 4=
Base Plane Image Compositing
Figure 7. Cube-4 architecture overview

units communicate with each other and the host processor over a
VMJZ bus. Linear scaling can be achieved by adding more rotator
or ray-tracing units to the system. The system is operational and
renders about 30 million voxels per second. The designers of
VRIM also recognize the memory system as the first bottleneck
in their system. They propose [3] a memory system based on so
called sub-cubes, similar to the blocks we propose in the
Voxelator. Furthermore, just like the Cube-4 architecture, VlRIM
implements both sections of the Voxelator pipeline. Since VIRIM
is fully programmable it is possible to implement several different
volume rendering solutions. VIRIM is perfectly suited to fit under
the Voxelator API.

7 FUTURE DIRECTIONS

The Voxelator is the first step towards full integration of discrete
data with geometric data. In the past, workstation vendors have
always focused on polygonal acceleration. Geometric models are
becoming bigger and more detailed, which means that the average
polygon size goes down. The handling and processing of discrete
data and geometric primitives has to be done at equal speeds and
fully interchangeable with each other. Once a polygon reaches the
size of a voxel one is processing discrete data. When a polygon
becomes that small, it is better to eliminate the redundant

Shading

time, VLSI reaI estate, board real estate and thus ultimately cost
and reliability.
The current OpenGL model does not completely address the issue
of merging volume data and geometry data in 3D space. It cannot
handle both geometry and volume data at the same time, and as a
result the geometry data will be already collapsed into the frame
buffer before the volume data is rendered, or vice versa, This
limits the merging of both data types to opaque objects only. Both
geometry and volume data should be able to intersect each other
and the correct blending and rendering of the two should be
guaranteed, regardless if each of them is transparent, semi-
transparent or completely opaque.
The Voxelator pipeline currently addresses only regular griddcd
volume data. An obvious next step is to enhance the Voxclator
pipe so it will be capable to handle rectilinear, curvilinear and
maybe even completely irregular gridded volume datasets.

8 CONCLUSION

We have shown why an industry standard volume visualization
API is essential for a broad adoption of this technology. By
carefnlly considering complete system design it is possible to
build a well balanced, high performance visualization system that
accelerates both discrete data and geometric data.

. 118

9 ACKNOWLEDGEMENTS

I would like to thank the whole Voxelator design team who did a
great job: Ken Severson, Randi Rest, Shaz Naqvi, Ales Fiala, Jeff
Burreli, Russ Huonder and Dave Desormeaux. Furthermore
thanks to Hanspeter Pfister for proofreading and supplying the
cube-4 image in Figure 7.

References

[l] K. Akeley. RealityEngine Graphics. In Computer Graphics
Proceedings, ACM SIGGRAPH, pp. 109-I 16, August 1993.

[2] M. Bentum. Interactive Visualization of Volume Data. PhLl
Tlresls, University of Twente, 1995. ISBN 90-9008788-5.

[3] M. de Boer, A. Grapl, J. Hesser, R Manner. Latency- and
Hazard-Free Volume Memory Architecture for Direct
Volume Rendering. In 11th Eurogruphics Workshop on
Graphics Hardware, pp. 109-119, Poitiers, France, August
1996.

[4] M. de Boer, J. Hesser, A. Grapl, , T. Gtinther, C.
Poliwoda, C. Reinhart, R Mlnner. Evaluation of a Real-
Time Direct Volume Rendering System. In 11th
Eurographics Workshop on Graphics Hardware, pp. 121-
131, Poitiers, France, August 1996.

[S] B. Cabral, N. Cam, J. Foran. Accelerated Volume
Rendering and Tomographic Reconstruction Using Texture
Mapping Hardware. In Symposium on Volume Visuulizution.
pp. 91-98, Washington, 1994.

[6] T. J. Cullip, U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Hardware. In technical
report TR93-027, University of North Carolina, Chapell-
Hill, NC, 1993.

[7] M. Doggett. An Array Based Design for Real-Time Volume
Rendering. In 10th Eurogruphics Workshop on Graphics
Hardware, pp. 93- 10 1, Maastricht, The Netherlands, August
1995.

[8] T. Gunther, C. Poliwada, C. Reinhart, J. Hesser, R
Mllnner, H.-P. Meizner, H.-J. Baur. VIRIM: A Massively
Parallel Processor for Real-Time Volume Visualization in
Medicine. In 9th Eurogruphics Workshop on Graphics
Hardware, pp. 103-108, Oslo, Norway, September 1994.

[l l] G. Knittel. A Scalable Architecture for Volume Rendering.
In 9th Eurogruphics Workshop on Graphics Hardware, pp.
5869, Oslo, Norway, September 1994.

[12] G. Knitted, W. StraDer. A Compact Volume Rendering
Accelerator. In Symposium on Volume Visualization, pp. 67-
74, Washington, 1994.

[13] T. Kulick. Building an OpenGL Volume Renderer.
httpY/reality.sgi.com/kulick~engr/devnews!volren/article.ht
ml. Silicon Graphics Computer Systems, Mountain View,
CA.

[14] P. Lacroute, M. Levoy. Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation. In
Computer Graphics Proceedings, ACM SIGGRAPH, pp.
451-458, July 1994.

[15] J. Lichtermann. Design of a Fast Voxel Processor for
Parallel Volume Visualization. III 10th Eurogruphics
Workshop on Graphics Hardware, pp. 83-92, Maastricht,
The Netherlands, August 1995.

[16] H. Pfister, A. Kaufman. Cube-4 A Scalable Architecture for
Real-Time Volume Rendering. In 1996 Symposium on
Volume Visualiration, pp. 47-54, San Francisco, October
1996.

[17] H. Ptister, A. Kaufman, F. Wessels. Towards a Scalable
Architecture for Real-Time Volume Rendering. In 16th
Eurographics Workshop on Graphics Hardware, pp. 123-
130, Maastricht, The Netherlands, August 1995.

[18] R Rost. Volume Rendering Extensions for OpenGL.
http~lwww.hp.comliiolvoxelator. Hewlett-Packard
Company, Palo Alto, CA., 1997.

[I91 M. Segal, K Akeley. The OpenGL Graphics System: A
Specification (Version 1.1).
http://www.sgi.co~echnology~openGL~spec.htmI. Silicon
Graphics Computer Systems, Mountain View, CA., 1995.

[20] A. Van Gelder, K. Kim. Direct Vohune Rendering with
Shading via Three-Dimensional Textures. In 1996
Symposium on Volume Visualization, pp. 23-28, San
Francisco, October 1996.

[9] U. Kanus, M. Meiflner, W. StraDer, H. Pfister, A.
Kaufman, Cube-4 Implementations on the Teramac Custom
Computing Machine. In 11th Eurogruphics Workshop on
Graphics Hardware, pp. 133-143, Poitiers, France, August
1996.

[IO] G. Knittel. A PCI-based Volume Rendering Accelerator. In
10th Eurographics Workshop on Graphics Hardware, pp.
73-82, Maastricht, The Netherlands, August 1995.

119

