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Abstract 

Visunlizing three dimensional discrete datasets has been a topic of 
many research projects and papers in the past decade. We discuss 
the issues that come up when designing a whole computer system 
cnpable of visualizing these datasets in real time. We explain the 
three way chicken and egg problem and discuss Hewlett- 
Packard’s effort at breaking it with the Voxelator API extensions 
to OpenGL. We enumerate what a good hardware design should 
accomplish, We discuss what system issues are important and 
show how to integrate volume visualization hardware in one of 
Hewlett-Packard’s graphics accelerators, the VISUALIZE-48XP. 
We show why the Voxelator is an efficient and well designed API 
by explnining how various existing hardware engines will easily 
tit into the Voxelator framework. 

CR Categories and Subject Descriptors: C.5.3 [Computer 
System Implementation] Microcomputers - Workstations; D.2.0 
[Software Engineering] General - Standards; 1.3.1 [Computer 
Gmphics] Hardware Architecture - Graphics Processors; 1.3.7 
[Computer Graphics] Three-Dimensional Graphics and Realism - 
Rnytracing. 

Additional Keywords: volume rendering, visualization, volume 
nccelemtor, OpenGL, system design. 

I INTRODUCTION 

Designing a hardware volume rendering engine is a non-trivial 
task. Many designs have been proposed [2, 4, 7, 8, 9, 10, 11, 12, 
15, 16, 171, and n few either simulated or actually built [l, 4, 9, 
10, 151. Volume visualization is compute intensive and very 
demanding on system resources like CPU compute power, 
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memory bandwidth and bus bandwidth. Visualizing a reasonable 
volume dataset of 64 Mbytes in real time is beyond today’s 
desktop computers. Visualizing an ever bigger dataset of about 
512 Mbytes in real time is beyond today’s supercomputers. 
Therefore people have been designing, and building special 
purpose hardware that will accelerate the rendering of volume 
datasets, much beyond what a general CPU is capable of doing. 
This makes perfect sense because we expect that a well designed 
volume visualization system will outperform general CPU 
solutions by several orders of magnitude. 

One of the problems we are faced with in designing a volume 
visualization system is system integration. Globally there are 
three crucial areas that need to be addressed in order to be able to 
produce a good volume visualization system. First, there should 
be hardware that accelerates the volume visualization. There are 
many problems associated with building this kind of hardware. 
We will not discuss these issues in this paper. Second, the 
hardware should interface to a computer. This includes the 
hardware interface itself, like bus issues. The physical size, power 
consumption, and heat dissipation of the hardware also falls in 
this category. Third, applications that allow the user to visualize 
their volume data need to talk to the hardware through some kind 
of software interface, or API (Application Programming 
Interface). An API hides hardware details from the application, 
which allows software developers to design an application that is 
portable across platforms. 

These three problems need to be solved to design and build a high 
performance volume visualization system. To also make this 
system affordable makes it even harder. Hewlett-Packard’s goal is 
to make volume visualization pervasive. With that we mean that 
every professional, who today uses a 3D workstation, will be able 
to afford to do volume visualization with that kind of a system. 

In achieving this we see a three way chicken and egg problem that 
needs to be solved. Fast volume visualization hardware does not 
function without a good industry standard API, which does not 
function without applications that use that API, and these 
applications will not function without fast hardware. We wanted 
to break this circle and started at the API level. The reasons for 
starting there are: 

l A good API outlives hardware. By hiding hardware details 
from the application, hardware designers have the freedom to 
change hardware from one generation to the next, without 
impacting the application. This is crucial to the wide spread 
acceptance of volume visualization. This means that the API 
has to be general enough to allow for several hardware 
generations, without limiting potential new developments 
and improvements in hardware design. 
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The API has to deal with both hardware on one end and 
applications on the other end. Both have specific constrains 
that govern the design and definition of the API. 
Without a standard API there is no incentive to develop 
applications. Applications need to be portable across 
platforms. A standard API provides the means for a high 
degree of portability. 
Without a standard API that is available on several different 
platforms it is hard to justify developing special purpose 
volume visualization hardware. A standard highly available 
API will help making volume visualization pervasive, which 
means that hardware development costs can be amortized 
over a much broader base of systems. 
The 3D texture mapping OpenGL extension is in widespread 
use today [I, 5, 6, 13, 201, but it only solves parts of the 
volume visualization problem. It only accelerates the 
rasterization stage of the volume pipeline. This will be 
explained in more detail in section 3. 

The next section discusses requirements for a good volume 
visualization API. Section 3 describes the Voxelator API, our 
volume visualization extensions to OpenGL. Section 4 explains 
the concept of blocking. Section 5 discusses important factors that 
make for a good volume visualization system and discusses the 
integration of volume visualization hardware into one of Hewlett- 
Packard’s graphics accelerators. Section 6 validates the Voxelator 
by discussing how existing hardware engines map to it. Section 7 
and 8 discuss future directions and draw some conclusions. 

2 API REQUIREMENTS 

The API is the most essential part of a volume visualization 
system, since it enables the hardware and the applications using 
the hardware to work together as a volume visualization system. 
Therefore careful thought has to be given to its design. We used 
the following list of design goals in the design of the Voxelator 
API extensions to OpenGL. A good volume visualization API: 

is based on the industry standard API, OpenGL. We did not 
want to design a proprietary API. OpenGL is a widely 
adopted visualization API and is available on all major 
platforms. 
outlives a hardware design. Several generations of hardware 
should fit under the API. Therefore the API should not 
dictate one specific hardware implementation, as the 3D 
texture mapping extensions to OpenGL do. 
is extensible. That means that if new features need to make it 
into the API, there is a mechanism to do so. OpenGL 
provides a general extension mechanism to do just that. The 
next section will list some explicit examples of possible 
future extensions to the Voxelator. 
has low overhead. This means that the API does not 
neutralize the hardware performance by forcing significant 
software preprocessing. The API is a thin layer on top of 
hardware, just enough to hide hardware details from the 
applications. 
tits numerous hardware designs. It allows for some or all of 
its stages to be accelerated by hardware. This choice should 
be up to the hardware designer, not dictated by the API. 
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. optimally uses system resources. The critical resources in a 
volume visualization system are memory, memory 
bandwidth, bus bandwidth, accelemtion hardware and the 
general purpose CPU. For example,. the API should not be 
designed so that it has to make an extra copy of the dntaset in 
memory. 

l provides enough flexibility for applications. 
. implements the full volume rendering pipeline. With this we 

mean gradient computation, classification, lighting and 
shading, interpolation and compositing. The full pipeline 
will be discussed in detail in the next section. 

. integrates well with the existing OpenGL geometry and 
imaging pipelines. 

. is unambiguous. All stages in the API are well defined as is 
the order in which the stages are executed. The dcfnult 
values are defined. 

Some of these design constraints conflict with each other, like the 
desired flexibility for applications and the defined order in which 
stages of the pipeline are executed. Applications want maximum 
flexibility, which means that they would like to m-define the 
order in which stages are executed. However, this will make 
hardware acceleration a great deal more complex, How WC dealt 
with these issues is the topic of the next section. 

3 THE VOXELATOR API 

.OpenGL [19] is the standard visualization API at this moment, 
and will be in the foreseeable future. Therefore we chose to use 
OpenGL as the API of choice for our volume visualization 
system. Since volume visualization is n new field, OpenGL did 
not adequately address this topic yet. Figure 1 shows a high lcvcl 
overview of the OpenGL pipeline. The pixel pipeline and the 
geometry pipeline exist in OpenGL today. The images that arc 

r----T ---tff&- ‘Y<> ,; 

Figure 1. The standard OpenG~pipelineplus Ihe new voxel 
pipeline. 



input into the imaging pipeline either can be routed to texture 
memory or to the frame buffer, through the fragment operations 
stage. The geometry pipeline will process polygons, and 
optionolly use the images in texture memory to texture map the 
polygons, Both pipelines produce fragments. Fragments are little 
data structures that contain information that is used in the 
fragment operations stage to decide if and how to update the 
fmme buffer. Fragments typically contain a RGBA and a depth, 
or z-value. The fragment operations stage performs operations 
like fog, stencil test, depth buffer test, alpha test, blending and 
some others. 
Since OpenGL does not address volume visualization other than 
through 3D texture mapping, we decided to explore if there is a 
need for a volume visualization system that does more than what 
you cnn do with 3D texture mapping today. 
To get an informed opinion on this we decided to ask university 
nnd corporate laboratories, research institutes and customers 
about what they thought a good volume visualization system 
entails. We nlso solicited, and got, feedback by distributing the 
Voxelator CD-ROM at the SIGGRAPH ‘96 and Visualization ‘96 
conferences. The result of the queries is a very clear answer: Yes 
there nre things we want to do we can not do with just 3D texture 
mapping hardware. 3D texture mapping solves a good number of 
problems, but not all. Therefore we decided to add a third pipeline 
to OpenGL, the voxel pipeline. We refined this pipeline using the 
feedback we got. We show this pipeline in Figure 1. 

implementation of the Voxelator pipeline can be different from 
the one shown in Figure 2. This is up to the API and hardware 
designers, as long as the final rendered image is the same as the 
image that results if the conceptual pipeline in Figure 2 is 
followed. 
After the application has set up the volume, rendering parameters 
and data format it calls glDrawVolume0. The following stages 
will then be performed on the data: 

Visibirity Testing is the stage where voxels optionally can be 
masked out by a bit mask supplied by the application. The opacity 
of each voxel that is masked will be set to zero. 

Compute Gradients is the stage where the local gradient for each 
voxel is computed. The gradient is needed in the classification 
and lighting stage. 

Classijcation is the stage where an opacity and RGB value is 
assigned to each voxel. The magnitude of the gradient, the voxel 
intensity and the index field can all be combined in a user 
specified way to form the input to the classification stage. The 
resulting value is then used as an index into a lookup table, whose 
output is a RGBA value. Each voxel can have an index field 
containing a label assigned by the application. This allows an 
application to do pre-segmentation on the dataset before it is 
rendered. The Voxelator can use that label in the rendering stage. 

Lighting is the stage where the standard OpenGL lighting model 
is applied to the RGBA values of each voxel given the normal 
defined by the gradient. 

Projection translates, rotates and scales the dataset using the 
OpenGL model, view and projection matrices as well as the 
viewport transform. 

Sampling is the stage that determines what the distance is behveen 
hvo sample points, or fragments, on one ray. This allows for over 
and under sampling of the dataset. The application has control 
over this distance. 

Figure 2. The voxelpipeline. 

The voxel pipeline also produces fragments, of exactly the same 
format as the pixel and geometry pipelines do. Pixel, geometric 
and volumetric data merge at the fragment operations stage. 
OpenGL takes care of the problem of mixing geometric, imaging 
and volumetric data into one scene. 
Figure 2 shows the voxel pipeline, which we call the Voxelator, 
in detail. The pipeline in Figure 2 is a conceptual pipeline. That 
means that this is the pipeline an application expects the 
underlying API and hardware to follow. The actual 

Interpolation uses an application defined interpolation method to 
compute the RGBA values for a sample point on a ray using the 
neighboring voxel values. Currently nearest neighbor and tri- 
linear interpolation can be specified. 

Ordering determines if the fragments are generated in front-to- 
back or back-to-front order. 

The resulting fragments are processed by the, already existing, 
OpenGL fragment operations stage. There fragments can be 
blended together, or their value tested against the previous 
fragment value to do Maximum Intensity Projection rendering. 
Finally the frame buffer will be updated after the fragment is 
processed. 
If it is desired to have additional functionality in the Voxelator 
such as better interpolation filters or better gradient filters, anyone 
implementing the Voxelator API can use the extension 
mechanism of OpenGL to add that functionality to the Voxelator. 
The Voxelator is not tied to one specific hardware 
implementation, unlike the 3D texture mapping method. In fact, 
the Voxelator will fit on many different hardware architectures, 

113 



including 3D texture mapping hardware. This is the topic of of the parameters to glDrawVolume() is a list of pointers to the 
section 6. blocks. 
The Voxelntor pipeline can be divided into two sections, see 
Figure 2. The first five stages in the pipeline, up to the projection 
stage, form the first section. Everything below that forms the 
second section. Globally speaking the first section is responsible 
for the setup, transformation, classification and lighting of a 
dntaset. The next section is responsible for the rasterization of the 
dntaset. This is analogous to the geometry pipeline, where a 

Each block has a so called action assigned to it. An nction can be 
any of the following three attributes: render compressed, render 
uncompressed, or skip. A block can be stored in memory 
compressed, or non compressed. The Voxelator will decompress n 
compressed block right after the visibility test stage, Setting the 
action to ‘skip’ means that the Voxelntor will not process that 
block at all. This can be used to render only part of a dntaset. 

I CPU 
I 

‘7’ CPUb; , 

.___-___-_---_-------- 
Polygonal accelerator 

,___-____---__-_--____ 
Framebuffer 1 

Figure 3 General volume visualization system diagram. Several 
bottlenecks can be identified. 

similar division can, and often is, made. In fact, the tirst section is 
what the Voxelator adds over what you can do with the 3D 
texture mapping extensions to OpenGL. The Voxelator adds and 
allows for interactive lighting and classification, that are core 
functionalities of any volume visualization system. To be able to 
do this interactively will greatly enhance the usefulness of a 
volume visualization system, and thus its pervasiveness. The 
complete Voxelator specification can be found in [18]. 

4 BLOCKING 

An application has to format the dntaset into blocks before it 
hands the d&set to the Voxelntor with glDrawVohune0. Only 
then is hardware acceleration guaranteed. It is still possible to 
render a d&set without blocking it, but this will not result in 
optimal rendering performance. 
Blocks are sub volumes of the dntaset. The size of the block is 
dictated by the volume visualization hardware, through the 
Voxelntor API. The application calls glGet*O to find out what 
this size is. Each block has to be stored linearly in memory. One 
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Having the dataset formatted into blocks has severnl advantngcs 
to the overall performance of the visualization system. A block is 
in the optimal size for a hardware volume visualization 
accelerator, since the block size is dictated by the hardware, For 
example a hardware accelerator might only have a smnll on-chip 
cache in which to store a block, or it might have off-chip fast 
memory which will hold blocks of n much bigger size. 
Since a block is stored linearly in the system’s main memory, 
transferring the block over the system bus to the hardware 
accelerator will be processor cache efIIcient. If any pre-processing 
has to be done by the Voxelntor API, which is the interface 
between the application and the hardware, the data will be 
transferred to the processor cache, processed by the CPU and 
transferred to the hardware. A block stored linearly in memory 
will prevent cache trashing. 
In many computer systems data that is transferred over the system 
bus to any device on that bus will be loaded into the processor 
cache. Data can be sent by either programmed I/O or DMA to the 
device. Each of these YO models has, depending on the computer 
system hardware, an optima1 data size in terms of maximum bus 
bandwidth. The block size can be tuned to optimize the bus 
transfer rates. See also section 5 and Figure 3. 
Blocks can be marked as being empty, not contributing to the 
rendering because the opacities of all the voxels in the block arc 
zero, or close to zero. The application can mark a block by setting 
it’s action attribute to ‘skip’. The combination of Voxelator API 
and underlying hardware however could also keep an internal list 
of blocks that are empty and use that information for performance 
enhancements. 
Exposing the blocking issues to the application allows for a 
Voxelntor API implementation that does not have to make a copy 
of the dntaset ‘under the covers’ in main memory. Current 
OpenGL 3D texture mapping implementations will make a copy 
of the d&set. This copy is formatted into a format suitable for the 
underlying 3D texture mapping hardware. The application will 
have it’s own copy of the data stored in main memory and 
OpenGL will have it’s own, specially formatted, copy of the same 
data in main memory. This can be a problem for application 
developers. Datasets can be very big. Having an extm copy 
around in memory means the system could run out of memory 
and start swapping, which results in a severe rendering 
performance penalty. 
Blocks will also benefit application performance. Applicntions 
almost always want to pre-process a dataset, before it is rendered. 
Segmentation of a dataset is one example. As indicated before, 
blocks allow for efftcient cache behavior, which will improve an 
application’s pre-processing performance. 
The API software driving the visualization system should have 
low overhead and has to be designed carefully to achieve just that, 
This is why we chose to expose blocking to the hardware and to 
the application. 
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We provide glu utilities to convert a dntaset into blocks and to 
convert blocks from one size to another. 

5 A COMPLETE SYSTEM 

As we stated before, designing hardware that accelerates volume 
visualization is only part of the problem. The acceleration 
hardware genemtes fragments or maybe pixels, which need to be 
processed and written to a frame buffer for display. If it is 
desirable that the output of the volume accelerator can be 
rendered and properly occluded into a scene with geometric 
primitives, it will need to interface to the geometry hardware. It 
needs to get its data out of main memory by some I/O mechanism. 

Then there is the memory bus and the memory system itself. The 
memory system should be able to supply the CPU and I/O devices 
with data at a high enough rate to keep them continuously busy. 
The I/O devices, like the graphics accelerator, use the AGP or PC1 
bus. The PC1 bus, since it has a lower bandwidth and can serve 
multiple UO devices, is used for the not so data hungry devices, 
like a network card. The AGP-2X bus is specifically designed for 
a high speed peer to peer connection. This means that only one 
device can use the AGP bus. This typically will be a graphics 
device, since these have the highest bandwidth requirements. A 
well balanced volume visualization system is designed so that all 
busses, memory system, graphics system, general CPU processing 
power and processor cache are optimally tuned to each other. 

We will now take a closer look at the graphics device in Figure 4, 

Front end board 

Bus: GSC -2X 
40 MHz @ 32 bit 
both clock edges 
240 hfB/sec 

Distributor 

45 MHz 

Lighting i-7 90 MHZ 

2D 
45 MHz 

I I 

Optional volume acceleration board 1 Optional texture mapping board 

Frame buffer board 

1 Framebuffer 7 Video Out 
RamDac 

Figure 4 Hewlett-Packard’s Visualize-48.-W geometry accelerator with proposed volume acceleration board 

Seveml researchers have pointed out [3, 12, 161 that getting the 
dntaset out of memory at rates needed for interactive volume 
visunlizntion is one of the bottlenecks of their hardware system. 
If we look at Figure 3 we identify several potential bottlenecks in 
n volume visualization system. First of all, there is the CPU bus. 
All data goes over this bus. Depending on the I/O model, 
programmed I/O or DMA, data might be fetched from memory, 
transferred over the CPU bus into the processor cache, written to 
the I/O device by the CPU over the CPU bus, or transferred 
directly from memory to the I/O device without CPU interference. 

and more specifically at the integration issues of a volume 
accelerator with conventional geometric acceleration hardware. 
We envision a volume visualization chip that has the following 
properties: 

. Accelerates the full Voxelntor pipeline. 
l Is scaleable. Adding more chips will mean that performance 

scales linearly. 
l Processes blocks, as defmed by the Voxelntor. 
. Has an external 16 bit lookup table for the classification 

stage. The classification lookup table is defined by the 
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Voxelator as having at least 2”16 entries. A bigger table is 
allowed and that choice is up to the hardware designer. 

l Interfaces to some fast RAM which acts as a block cache. 
Block misses will initiate a transfer out of main memory. 

. Generates fragments as output, which then can be blended 
into the frame buffer. 

l Will be able to process at least 200 Million voxels per 
second per chipset. 

Internal studies at Hewlett-Packard have shown that these goals 
are feasible. The block cache is extremely useful and will greatly 
enhance the performance of the volume accelerator. In order to 
process one block, the volume accelerator needs access to all 26 
neighboring blocks for gradient computation and interpolation. 
Thus it makes sense to transfer at least 27 blocks at once from 
main memory to the graphics system and store them in the block 
cache. 
Having the volume accelerator chipset generate fragments allows 
for correct mixing with opaque data already in the frame buffer. 
In order to guarantee correct rendering with opaque geometry 
data the application has to render its geometry data first, then 
render the volume. Each sample point on the ray cast through the 
volume is a fragment, which has a z-value. Doing a z-compare 
with the geometry data in the frame buffer guarantees correct 
blending and occlusion. Another design option would be to have 
an accumulation buffer closely coupled to the volume accelerator. 
The volume accelerator then composites the samples on a ray into 
the accumulation buffer. This alleviates the problem of the high 
bandwidth needed to and from the frame buffer in the former 
solution. However, proper mixing with geometric data is no 
longer possible, since the volume dataset is already blended into a 
2D image in the accumulation buffer, before being transferred to 
the frame buffer. 

Figure 4 shows a block diagram of one of Hewlett-Packard’s 
current geometry accelerator solutions, the VISUALJZE-48XP. It 
also shows how to take that solution and add a volume accelerator 
to it. 
The VISUALIZE-48XP is a three board system. It physically 
plugs into the GSC bus, which is Hewlett-Packard’s proprietary 
bus. The GSC-2X is a 40 MHz bus with a 32 bits wide data path. 
Data is transferred on both clock edges, resulting in a sustained 
bandwidth of about 240 Mb/set. 
The distributor chip is the gateway into the system. It decides 
where data goes, to the 2D stage or the lighting stage. 2D data, 
typically Xl 1 primitives, are accelerated by the 2D chip. 
Geometric primitives are assigned to one of the four lighting 
chips by the distributor chip. Each lighting chip accelerates the 
floating point intensive operations like: Geometric 
transformations, lighting, depth cueing and clipping calculations. 
This chip heavily leverages the floating point units of the PA- 
RISC processor line. 
The concentrator chip combines the output streams from the 
lighting chips as well as the output from the 2D chip. Floating 
point values are converted to fixed point and sent on to the 
rasterization and texture mapping chips. 
The 10 rasterizer chips combine the functionality of a scan 
converter and frame buffer controller. The VISUAJJZE-48XP 
employs a unified frame buffer architecture, which means that the 
same memory array stores image and overlay planes as well as z 
values. Screen space parallelism is used in the rasterization stage. 

116 

The two texture mapping chips look up texture values from the 
texture RAM which is managed as a cache. Interrupts are used to 
fetch texture cache blocks from the system’s mnin memory, A 
separate port on the texture mapping chip is used to load texture 
RAM. This port bypasses the rest of the rendering pipeline, so 
that texture cache misses can be serviced while the rendering pipe 
is busy. This architecture allows the texture size to be limited only 
by the system’s main memory size instead of the size of the local 
texture memory. The total texture memory is 32 Mb. However the 
VISUAJJZE-48XP stores textures twice, to increase performance. 
Effectively this leaves 16 Mb of texture storage. 
The total system is capable of rendering 3.9 Million triangles per 
second. These are 50 pixel, Gouraud shaded and z-buffered 
triangle strips. The VISUALJZE-48XP combined with the Cl80 
workstation is a well balanced system with respect to the issues 
discussed earlier and shown in Figure 3. 

The best way to integrate a volume accelerator into this system is 
also shown in Figure 4. The texture memory is re-used as local 
block storage and acts as a block cache. An interrupt is generated 
if a block miss occurs and the missing blocks are transferred out 
of main memory into the texture memory. The volume accelerator 
chips will generate fragments, which are passed on to the 
rasterizer section to be blended into the frame buffer, Some 
external memory is needed for the classification lookup table 
Depending on the clock speed of the volume accelerator chips the 
GSC-2X bus will be the first performance bottleneck in the 
complete system, meaning that the performance for this system 
would top out at 250 million voxels per second. 

6 MAPPING THE VOXELATOR 

We carefully designed the Voxelator API so that it would not 
dictate how the hardware, that accelerates the Voxelator, should 
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Figure 5 30 texture mapping concept. Polygons are 
parallel to the image plane. Data is texture mapped 
onto one polygon, the texture mapped polygon is 
blended into the frame buffer and the next polygon 
processed. 
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be designed and build. This also means that an application does 
not have to deal with hardware specific details, which in turn 
might mean that the application will run on one platform, but not 
on another because a certain hardware feature is not available..We 
will discuss several hardware architectures and show how they 
will be able to accelerate the Voxelator pipeline. 

30 texture mapping hardware [I, 5, 6, 13, 201 can be used to 
accelerate the second section of the Voxelator pipeline, as we 
discussed in section 3. After the visibility testing, gradient 
calculation, classification and lighting is done in software, the 
Voxelator API can format the data into a texture map and pass 
that texture map, which contains classified and shaded voxels, on 
to the 3D texture mapping hardware. Next the Voxelator will 
define polygons that slice. through the texture map perpendicular 
to the viewing direction. The 3D texture mapping hardware will 
then rasterize and texture map each polygon and perform the 
OpenGL fragment operations, like blending the data into the 
frame buffer. This is schematically shown in Figure 5. A potential 
problem can arise when the texture map is bigger than the 
available texture mapping memory in the system. Hewlett- 
Packard solved this problem with the texture caching model we 
discussed in section 5. If the system does not have a mechanism 
like texture caching the Voxelator API has to manage the texture 
mnp itself, by bricking it up into smaller chunks of data [13]. The 
first section of the Voxelator pipeline has to be computed on the 
host CPU, which is a significant part of the whole pipeline. 
Having to do this will be the performance bottleneck for this 
solution. 

20 texture mapping hardware can be used if 3D texture mapping 
hardware is not available. It is possible to implement the second 
section of the Voxelator pipeline on 2D texture mapping 
hardware, and still get significant performance improvements 
over a software only solution. Instead of building a 3D texture 
map we can only send one slice of data at a time to the texture 
mapping hardware. This slice furthermore has to be parallel to the 
face of the dataset that is most perpendicular to the viewing 
direction. This is schematically shown in Figure 6. Next the 
Voxelator will define a polygon the slice is texture mapped onto. 
The fragments created will be processed by the hardware and 
blended into the frame buffer. Each consecutive polygon has to be 
sheared to correct for the offset created by having the polygons 
parallel to the face of the dataset instead of parallel to the image 
plane. The image that results will be warped and has to be un- 
warped to get the final image. This is very similar to the 
shear/warp algorithm [14]. 

Tile Cube-4 volume rendering accelerator [9, 16, 171 is a very 
good fit for the Voxelator pipeline. It in essence implements both 
sections of the pipeline, thus providing hardware acceleration for 
the whole pipeline, not just the rasterization stage as texture 
mapping hardware does. See Figure 7. This Figure gives a high 
level overview of the Cube-4 architecture. The power of Cube-4 
lies in it’s parallelism and modularity. Cube-4 works on one 
whole beam of voxels at a time. A beam consists of n voxels, 
where n is the size of the nxnxn dataset being rendered. The 
design is highly pipelined, and after the pipeline is filled it 
generates n outputs every clock cycle. Thus all units shown in 
Figure 6 work on n voxels at the same time. 

2-D image warp 

u final image 

sheared polygons 

Figure 6 20 texture mapping. (a) Top, polygons are 
parallel to the face of the dataset most perpendicular 
to the viewing direction. (b) Bottom, shearing the 
polygons will generate an intermediate image that 
will need to be warped to get the final rendering. 

We expect the miniial Cube-4 system to consist of a PC1 or AGP 
style board, which contains the Cube-4 chips, memory for the 
dataset and memory for the resulting final image. By adding more 
memory and/or more Cube-4 chips the system will scale to the 
user’s needs. The memory on the Cube-4 board can be viewed as 
a block cache. If the dataset does not fit into the Cube-4 on-board 
memory, parts of it can be paged in from main memory. Since 
Cube-4 was originally designed to hold the whole dataset in on- 
board memory it makes sense to define the Voxelator block size 
as the size of that on-board memory. The Cube-4 hardware 
architecture does not benefit from a smaller block size. See Figure 
7. It is up to the Cube-4 hardware to define the block size, and up 
to the application to query that block size. 
The current Cube-4 architecture does not address integration with 
the system’s fi-ame buffer and fragment operations stage. Cube-4 
will generate the fmal image on-board, and will then blit that 
image over to the frame buffer. This prevents proper z integration. 
However, the Cube-4 designers are free to find a solution to this 
problem however they see fit to solve it. The Voxelator API does 
not force hardware designers into one particular solution. This is 
what makes the Voxelator API so powerful and flexible. 
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YIRIIU is a fully programmable hardware engine built out of information associated with a polygon and it’s vertices and 
FPGAs and DSP signal processors [3, 4, 81. It consists of two process the data directly using the volume pipeline. 
distinct parts, a rotator or resampler, and a ray-tracing unit. The The conventional geometric pipeline and the Voxelator pipeline 
rotator will resample the dataset so it aligns with the viewing have many operations in common, like transformation, lighting 
plane using a programmable filter. After the alignment the ray- and shading, interpolation and fragment operations. A more 
tracing unit will cast rays through the dataset, calculates the integrated hardware design will re-use these blocks for both the 
gradient, does the opacity mapping and the compositing. The volume pipeline and the geometry pipeline, saving dcvelopmcnt 

Pipelined Ray-Casting Algorithm 

Volume Da ta Interpolation ABC Buffers 

w 4= 
Base Plane Image Compositing 
Figure 7. Cube-4 architecture overview 

units communicate with each other and the host processor over a 
VMJZ bus. Linear scaling can be achieved by adding more rotator 
or ray-tracing units to the system. The system is operational and 
renders about 30 million voxels per second. The designers of 
VRIM also recognize the memory system as the first bottleneck 
in their system. They propose [3] a memory system based on so 
called sub-cubes, similar to the blocks we propose in the 
Voxelator. Furthermore, just like the Cube-4 architecture, VlRIM 
implements both sections of the Voxelator pipeline. Since VIRIM 
is fully programmable it is possible to implement several different 
volume rendering solutions. VIRIM is perfectly suited to fit under 
the Voxelator API. 

7 FUTURE DIRECTIONS 

The Voxelator is the first step towards full integration of discrete 
data with geometric data. In the past, workstation vendors have 
always focused on polygonal acceleration. Geometric models are 
becoming bigger and more detailed, which means that the average 
polygon size goes down. The handling and processing of discrete 
data and geometric primitives has to be done at equal speeds and 
fully interchangeable with each other. Once a polygon reaches the 
size of a voxel one is processing discrete data. When a polygon 
becomes that small, it is better to eliminate the redundant 

Shading 

time, VLSI reaI estate, board real estate and thus ultimately cost 
and reliability. 
The current OpenGL model does not completely address the issue 
of merging volume data and geometry data in 3D space. It cannot 
handle both geometry and volume data at the same time, and as a 
result the geometry data will be already collapsed into the frame 
buffer before the volume data is rendered, or vice versa, This 
limits the merging of both data types to opaque objects only. Both 
geometry and volume data should be able to intersect each other 
and the correct blending and rendering of the two should be 
guaranteed, regardless if each of them is transparent, semi- 
transparent or completely opaque. 
The Voxelator pipeline currently addresses only regular griddcd 
volume data. An obvious next step is to enhance the Voxclator 
pipe so it will be capable to handle rectilinear, curvilinear and 
maybe even completely irregular gridded volume datasets. 

8 CONCLUSION 

We have shown why an industry standard volume visualization 
API is essential for a broad adoption of this technology. By 
carefnlly considering complete system design it is possible to 
build a well balanced, high performance visualization system that 
accelerates both discrete data and geometric data. 
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