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Abstract 

This paper describes design tradeoffs in a very low cost raster&r 
circuit targeted for use in a video game console. The greatest 
single factor affecting such a design is the character of memory 
to which the image generator is connected. Low costs generally 
constrain the memory dedicated to image generation to be a 
single package with a single set of address and data lines. While 
overnll memory bandwidth determines the upper limit of 
performance in such a small image generator, memory latency 
has n fnr greater effect on the design. 

The use of Rambus memory provides more than enough 
aggregate bnndwidth for a frame buffer as long as blocks of 
pixels nre moved in each transfer, but its high latency can stall 
nny processor not matched to the memory. The design described 
here utilizes a long pixel pipeline to match its internal processing 
latency to the external fmme buffer memory latency. 

1. Small Scale Image Generator 

High performance graphics which was once limited to hugely 
expensive flight simulators, and which eventually made its way 
into small lnboratories has rapidly become a standard fixture on 
the desktop and in video game consoles. However, designs of 
graphics processors for the low end bear little resemblance to 
their larger predecessors. As with any mass-market product, the 
overriding constraint in a low-end graphics system is cost. Given 
even modest performance targets, the need to minimize costs, 
and the consequent need to interface to commodity memory 
parts, devising an appropriate architecture is something of a 
trick. 
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In this paper we start from a design decision to use high 
bandwidth, high latency, physically compact, commodity 
Rambus memory. Given that choice, we demonstrate that a long 
pixel pipeline makes most effective use of the available memory 
bandwidth, and we show the results of simulating a specific 
implementation of the architecture. That such a mechanism is 
effective is not surprising since several current designs use it. 
We make no claim of originality; we merely wish to examine the 
performance of this type of design. 

In the following sections, we review some of the more common 
raster&r design approaches, including two new low-cost ones, 
delve into a more detailed discussion of matching rasterizer 
processing latency to off-chip memory latency, pursue this design 
approach with an extremely low-cost rasterizer example, and 
finish with simulation results which illustrate the effectiveness of 
the technique. (To be clear, our definition of extremely low cost 
means a combination of graphics processor and memory costing 
in the low tens of dollars.) 

While the performance benefits of matched latencies for best 
case geometry may be obvious on paper, we have found it useful 
to simulate the example raster&r to see how badly performance 
degrades for less than optimal geometry. 

2. The Memory Interface Bottleneck 

DRAM access is a bottleneck in graphics system design. The 
effects of limited memory bandwidth and ways to overcome it 
have been discussed previously [IO]. However, the limitations 
imposed by memory latency have not been widely described. 

A fundamental limitation of current designs stems from choice of 
algorithm. Almost all polygon image generators support the z- 
buffer visibility algorithm. This requires that data representing a 
single pixel be read from memory, processed, and then 
conditionally written. Because of latency in memory accesses, 
data read from the z-buffer is not immediately available to the 
display processor. Contention for memory further aggravates the 
latency problem. 

While the alternative of back-to-front pre-sorting of polygons can 
avoid the overhead of memory read latency suffered by the z- 
buffer visibility test, pre-sorting has its own overhead. 
Furthermore, it is hard to resist employing translucency effects 
which are enabled by the drawing in back-to-front order. Like the 
z-buffer algorithm, translucency effects require a read before 
write and share the latency problem with the z-buffer. 

For a number of years, the trend in the design of image 
generators has been to gain greater performance through the use 
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parallel processors and interleaved memory. This has been 
especially true for that portion of the hardware which writes 
individual pixels. Here, the common practice has been to couple 
each of a large number of processors directly to an individual 
memory chip [5,3,1]. Both the high degree of parallelism and the 
autonomy of each pixel processor reduce the memory access 
problem even when using commodity DRAM. In an extreme case 
the processor is embedded directly in memory [7] but this is no 
longer an inexpensive memory part. 

A different approach to overcoming the memory access 
bottleneck is to cache the frame buffer within the pixel processor 
[6]. FBRAM also uses a pixel cache, but moves both the cache 
and portions of the pixel computation into the memory itself [4]. 
This is in keeping with a trend in memory design that either 
explicitly includes a cache inside the DRAM package or uses the 
latches on the sense amplifiers as a row buffer, which can be 
considered a cache. Rambus memory, as one example, achieves 
peak transfer rates out of its row buffers of nearly 500 megabytes 
per second over an S-bit wide data path by moving data out of a 
row buffer on both edges of a 250 MHz clock. Even so, latency in 
Rambus memory chips is still high, and its effects are made 
worse when spatial coherence exists only for small runs. 

, 

However, because cost is such an overwhelming concern in a 
consumer product, the use of such physically compact high- 
bandwidth commodity memory chips is attractive in spite of their 
high latency. This dictates that the low-cost designer must learn 
to live with memory latency. Physical compactness carries 

j 

another burden since the lack of parallel datapaths to multiple 
memory chips takes away some of the design flexibility that one 
would want in a rasterizer. With this constraint, the most popular 

> way to attack latency is to stretch the processor pipeline so that 
its processing latency matches the external memory latency. (The 
reasons why this provides better processing efficiency will 
become clearer in the following section.) 

Among the low cost systems which have been implemented with 
high latency memory are SGI’s graphics system for the Nintendo 
64 and Microsoft’s Talisman [8]. Like the workstation processors 
that preceded them, these designs must cope with memory 
contention caused by texture fetches as well as the frame buffer 
read-modify-write cycles mentioned above, albeit in very 
different ways. 

The Nintendo 64 reportedly employs a long pixel pipeline that 
matches processing latency with memory latency for frame buffer 
reads and writes. Texture is cached on-chip, and presumably 
moved to the cache in large enough blocks that raw bandwidth 
makes up for any re-use inefficiency. 

Microsoft’s Talisman raster&r chip avoids off-chip read-modify- 
write frame buffer operations altogether by caching both textures 
and the frame buffer [S]. Because entire tiles of the output image 
are generated in a single pass, the off-chip frame buffer becomes 
write only and latency is not an issue for frame buffer accesses. 
As an important side benefit, using an on-chip frame buffer 
cache makes the use of an A-buffer algorithm [2] practical. 
Latency for texture reads is an issue, and it is further aggravated 
by using compressed textures which must be de-compressed on- 
the-fly in circuitry which adds even more delay to texture 

fetches. A complex combination of predictive texture caching 
and two levels of cache alleviates this problem. One would 
assume that the Talisman circuitry would be more expensive 
than either the Ninetendo 64 or the simple raster&r used as the 
example in this paper. 

It is worth noting that the effectiveness of texture caching is a 
complex, poorly understood topic on its own and is beyond the 
scope of this paper. However, one should not extend assumptions 
about texture caching performance for flight simulators nnd 
workstations to game engines. The amount of content tuning to 
match the characteristics of the game platform has traditionally 
been extreme for games. To a certain extent, this means that a 
knowledgeable game designer can force texture cache 
effectiveness to be whatever is needed by tuning the content [9]. 

3. living With Latency 

As noted above, the nature of both z-buffering and transparency 
is that frame buffer data is first read, then modified, and finally 
written. In many rasterizers, including the one described in this 
paper, pixel data is accessed in consecutive memory locations 
which represent consecutive pixels along a horizontal row, WC 
refer to a row of pixels between the left and right edges of a 
polygon as a span. 

Because of its reasonable cost, small physical size, and low pin 
count, Rambus memory has been a popular choice for several 
low cost graphics systems. Internally, the memory uses 
conventional DRAM cells and caches each row, so out-of-page 
accesses are a significant performance hit. Furthermore, with the 
particular memory controller used in this project, even best case 
read latency is approximately 62 nanoseconds. 

One way to boost the performance of the rasterizcr is to heavily 
pipeline its operations. This introduces an internal processing 
latency. In the worst possible case the memory latency would be 
cascaded with the processing latency to reduce pixel throughput 
to a level even lower than from memory latency alone. The goal 
of our design is to achieve the best case in which the processing 
latency and the memory latency are concurrent, and match cnch 
other. 

In our circuit, pixels along a span are read and written in blocks 
which are a multiple of 8 bytes. As indicated Figure 1, the 
crucial delay is that between initiating a read request nnd dntn 
ready. Pipelining the per-pixel computation nlong a spnn 
introduces a series of intermediate processing steps which can be 
arranged to overlap the period between rend requests nnd actual 
data reads. As we show in the following sections, ordering the 
pixel calculations so that only a small calculation is required to 
compute final pixel color gives the quickest possible turn-around 
between data reads and pixel write requests. Data writes nlso 
incur latency which spills over into the following read request. 
For the sake of convenience, we lump all of these delays 
together. However, at low resolution, we have been nblc to 
optimize by arranging data in the frame buffer so that writes 
following a read are highly likely to fall into the same pngc ns 
the read. 
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Figure 1. Memory latency and pixel pipeline. 

4. Design 

As stated above, the architecture of this graphics system is 
derived from constraints. Over and above all other 
considerations, it is designed to be inexpensive. Its features 
include z-buffering, translucency, and perspective corrected 
texture mapping with bi-linear filtering. No attempt is made to 
support z-buffering and transparency simultaneously. Either 
textures or surface colors can be transparent, but not both 
simultaneously. Each of these feature compromises is made in 
the name of reduced chip complexity. 

At the front end, our target was to be competitive with the 
current generation of 32-bit game consoles at a peak geometric 
throughput of between 300,000 and 400,000 polygons per 
second. The fill rate of 25 million pixels per second is high 
enough to display simple 3D games at 64Ox4SO resolution and 
more than adequate to drive a single channel HMD at 320x200 
resolution. Aiming for a 0.5 micron fabrication process, timing 
estimates from placement and routing of portions of the ASICs 
designed for the game console showed us that a system clock of 
50 MHz would be the upper limit. Verilog simulations of just the 
rasterizer indicate that it will run at speeds as high as 80 MHz. 

The design process is not merely an exercise in balancing 
performance versus cost. Once the desired features are 
established, a top level design can be reached by varying the free 
design parameters. This top level design was refined in the 
following steps: 

1. A single data path was established for pixel calculations, 
i.e. only one pixel comes out of the pipe at a time. This then 
forces the pixel till rate to be a sub-multiple of the clock 
frequency. 

2, The designers felt that one pixel every clock period was 
overkill for the target application and that half that rate 
would save chip area while providing adequate 
performance. With a 50 MHz clock, the fill rate for this 

design is 25 million pixels per second. Since some operating 
modes require fewer operations it is quite practical to run 
faster for simple operations, e.g. Gouraud or flat shading, 
and slower for more complex modes, e.g. transparent bi- 
linearly interpolated textures. Because the schedule for this 
project was aggressive, we settled on fixed timing for all 
modes as a way to simplify debugging of the design. 

3. With these parameters fixed, most of the remaining design 
decisions follow from the timing. 

The high level block diagram of the raster&r is given in Figure 
2 below. In the simplest possible terms, the design attempts to 
match its throughput to the expected latency of the memory, and 
stalls when that latency is exceeded. 

Of all the paths in the circuit, texture calculation is the longest. 
After interpolating the homogeneous texture coordinates, U, v, 
and W, perspective corrected U, v pairs are fed into a FIFO. This 
is the narrowest data path in the circuit and therefor the least 
expensive to buffer. The overall length of the pixel pipeline can 
be effectively changed by growing or shrinking the U, v FIPO. 
Counting two stages of the II, v FIFO, the total number of 
pipeline stages is 18. 

While stretching out the texture mapping data path lowers its 
cost, it complicates the design elsewhere. Normally, color (r,g,b, 
and alpha) and depth (z) would be interpolated at the same time 
as the frame buffer address and the texture coordinates. One 
would naively expect to buffer the interpolated color and depth 
values in a PIP0 that matches the length of the texture pipeline. 
However we find it much less expensive to defer interpolation 
until just-in-time. In this way the circuit can buffer only the r, g, 
b. alpha, and z starting points and differences in a compact 
buffer. 

Pixels are not flushed between spans, but are flushed between 
polygons to insure that the texture map remains valid for pixels 
still progressing through the pipeline. We note, however, the a 
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Figure 2. Rasterizer block diagram. 

pixel is considered flushed when its write is queued, not when it 
is actually written into the frame buffer. 

5. Simulation 

While a stretched pipeline sounds good in principle, a simulator 
is the best verification of the design. There have been two 
simulators built for this project. One is a Verilog model of the 
actual circuit and the other is a functional simulator written in C. 
The simulations reported here come from the functional 
simulator. 

For the functional simulator, memory and rasterizer timing is 
limited to horizontal spans. The C program which serves as a 
wrapper for the simulator makes no attempt to mimic the timing 
of the edge interpolators. We find that this is sufficient because 
the design includes enough edge interpolators to insure that no 
part of the span processor will stall except on the shortest spans 
and this stall is explicitly mimicked. The memory model keeps 
track of its own state autonomously and propagates the 
appropriate time penalty for data reads and writes. 

In this particular design the least expensive memory 
configuration has more peak bandwidth than the rasterizer chip 
and its application require. While we are primarily concerned 
with insuring that the raster&r circuit does not stall, we also 
attempt to make the largest transfers possible to and from 
memory. 

Our efficiency figure is the ratio of actual pixel fill rate to peak 
fill rate. As the plots in Figures 3 and 4 show, stretching the 
pipeline to match memory latency allows the circuit to reach its 
peak rate. The top line in each plot, denoted by diamond shaped 
data points, indicates the efficiency when the maximum memory 
transfer size is 64 bytes. The bottom line, denoted by triangle 
shaped data points, demonstrates how badly performance can 
suffer if the z buffer and color fall into separate memory pages. 
The plot in the middle, denoted by square shapes, shows how 
performance is degraded when transfer lengths are limited to 8 
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bytes. Not surprisingly, this limitation is less of n problem for the 
short spans of small polygons than the longer spans of Inrgc 
polygons. 

The scenes in Figures 3 and 4 are obviously contrived with the 
first containing 4 triangles which cover approximately 12,000 
pixels each. Figure 4 contains 2016 triangles, each of which 
covers approximately 18 pixels. Real game applications contain n 
mix of large and small polygons, but these examples arc intended 
to show the extremes. 

These plots are not entirely accurate since the periodic 

interruption of video refresh is disabled to make the result more 
understandable. Furthermore, the examples reuse n single texture 
map for all polygons, so the overhead of paging texture into 
SRAM is not accounted for. Nevertheless WC can see sevcrnl 
trends. As expected, stretching the pixel pipeline to mntch 
latency yields a dramatic improvement in efficiency in nil 
circumstances. Arranging data in memory so that page misses arc 
reduced is also a major performance win. Lastly, incrcnsing the 
size of each transfer yields a marginal improvement, at lcnst 
when rendering large polygons. 

Given the technology and timing used in the example circuit, a 
pressing question is how well does this design principle fare for 
faster clock rates. Running the same tests used in tigurcs 3 nnd 4 
through a simulator set for 100 MHz, with a pipeline stretched 
out twice as long, yields 94% and 72% utilization of the 
rasterizer circuit for the large polygon case and smnll polygon 
case respectively. The argument against excessive extension for 
this design is that the pipeline is flushed at the end of ench 
polygon. Small polygon performance will suffer, ns the 
simulation indicates. 

The goal and, hopefully, the result of this simulntion is to gnin 
some guidance for future designs which make use of high lntcncy 
memory. Whether effective systems can be made depend on 
factors beyond just the circuitry of the rasterizcr. e.g. memory 
contention, content tuning, etc., but we feel safe in concluding 
that high memory latency is not an insurmountable impediment 
to the design of fast, low-cost rasterizers. 
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Figure 3. Rastetizer efficiency as a function of pipeline length for random large polygons. 
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Figure 4. Rasterizer efficiency as a function of pipeline length for meshes of small triangles. 
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