
-_

Accommodating Memory Latency In A Low-cost Rasterizer

Bruce Anderson,
David Samoff Research Center’

Andy Stewart
Phoenix VLSI Design3

Abstract

This paper describes design tradeoffs in a very low cost raster&r
circuit targeted for use in a video game console. The greatest
single factor affecting such a design is the character of memory
to which the image generator is connected. Low costs generally
constrain the memory dedicated to image generation to be a
single package with a single set of address and data lines. While
overnll memory bandwidth determines the upper limit of
performance in such a small image generator, memory latency
has n fnr greater effect on the design.

The use of Rambus memory provides more than enough
aggregate bnndwidth for a frame buffer as long as blocks of
pixels nre moved in each transfer, but its high latency can stall
nny processor not matched to the memory. The design described
here utilizes a long pixel pipeline to match its internal processing
latency to the external fmme buffer memory latency.

1. Small Scale Image Generator

High performance graphics which was once limited to hugely
expensive flight simulators, and which eventually made its way
into small lnboratories has rapidly become a standard fixture on
the desktop and in video game consoles. However, designs of
graphics processors for the low end bear little resemblance to
their larger predecessors. As with any mass-market product, the
overriding constraint in a low-end graphics system is cost. Given
even modest performance targets, the need to minimize costs,
and the consequent need to interface to commodity memory
parts, devising an appropriate architecture is something of a
trick.

‘Princeton, New Jersey, USA banderson@samoff.com
‘Royston, Cambridgeshire, UK rob@benchees.demon.co.uk
%‘owcester, Northamptonshire, UK andys@phoenixvlsi.co.uk
4Chnprl Hill, North Carolina, USA jtw@cs.unc.edu

I’r’nllis\ioll~~, 11~1l;r: digitnl~lmrd copies ofnll or pa11 oftlk mntwi~l for
pcnollal or r’lan\room ~1: ic grmtcd wilhout I& providsd Ihnt the copis
are 1101 lllndc or dislrihtcd Ibr pralil or commtrcinl advantage. (111: cop)‘-

riglit &cc:. I!T [ilIe ofthe puhlicntion nnd its dnlc appear, alld 110tice is
givw tllnl copyright k by ptmkioll OI’IIIZ ACM. 111~ TO copy ohwisr,
10 rcpublisll, IO posl OII smwx or IO redistribute lo lisls. requires specilic
peniiiwioii nndlor It2

I99 7 ,SIGGl?wl PWEwogrnphics ~Sorkshop
Copyrigllt 1997 AChI O-S379l-C)~I-0~97/S..SB.S0

Rob MacAulay
Ben Cheese Electronic Design*

Turner Whitted
The University of North Carolina4

In this paper we start from a design decision to use high
bandwidth, high latency, physically compact, commodity
Rambus memory. Given that choice, we demonstrate that a long
pixel pipeline makes most effective use of the available memory
bandwidth, and we show the results of simulating a specific
implementation of the architecture. That such a mechanism is
effective is not surprising since several current designs use it.
We make no claim of originality; we merely wish to examine the
performance of this type of design.

In the following sections, we review some of the more common
raster&r design approaches, including two new low-cost ones,
delve into a more detailed discussion of matching rasterizer
processing latency to off-chip memory latency, pursue this design
approach with an extremely low-cost rasterizer example, and
finish with simulation results which illustrate the effectiveness of
the technique. (To be clear, our definition of extremely low cost
means a combination of graphics processor and memory costing
in the low tens of dollars.)

While the performance benefits of matched latencies for best
case geometry may be obvious on paper, we have found it useful
to simulate the example raster&r to see how badly performance
degrades for less than optimal geometry.

2. The Memory Interface Bottleneck

DRAM access is a bottleneck in graphics system design. The
effects of limited memory bandwidth and ways to overcome it
have been discussed previously [IO]. However, the limitations
imposed by memory latency have not been widely described.

A fundamental limitation of current designs stems from choice of
algorithm. Almost all polygon image generators support the z-
buffer visibility algorithm. This requires that data representing a
single pixel be read from memory, processed, and then
conditionally written. Because of latency in memory accesses,
data read from the z-buffer is not immediately available to the
display processor. Contention for memory further aggravates the
latency problem.

While the alternative of back-to-front pre-sorting of polygons can
avoid the overhead of memory read latency suffered by the z-
buffer visibility test, pre-sorting has its own overhead.
Furthermore, it is hard to resist employing translucency effects
which are enabled by the drawing in back-to-front order. Like the
z-buffer algorithm, translucency effects require a read before
write and share the latency problem with the z-buffer.

For a number of years, the trend in the design of image
generators has been to gain greater performance through the use

97

parallel processors and interleaved memory. This has been
especially true for that portion of the hardware which writes
individual pixels. Here, the common practice has been to couple
each of a large number of processors directly to an individual
memory chip [5,3,1]. Both the high degree of parallelism and the
autonomy of each pixel processor reduce the memory access
problem even when using commodity DRAM. In an extreme case
the processor is embedded directly in memory [7] but this is no
longer an inexpensive memory part.

A different approach to overcoming the memory access
bottleneck is to cache the frame buffer within the pixel processor
[6]. FBRAM also uses a pixel cache, but moves both the cache
and portions of the pixel computation into the memory itself [4].
This is in keeping with a trend in memory design that either
explicitly includes a cache inside the DRAM package or uses the
latches on the sense amplifiers as a row buffer, which can be
considered a cache. Rambus memory, as one example, achieves
peak transfer rates out of its row buffers of nearly 500 megabytes
per second over an S-bit wide data path by moving data out of a
row buffer on both edges of a 250 MHz clock. Even so, latency in
Rambus memory chips is still high, and its effects are made
worse when spatial coherence exists only for small runs.

,

However, because cost is such an overwhelming concern in a
consumer product, the use of such physically compact high-
bandwidth commodity memory chips is attractive in spite of their
high latency. This dictates that the low-cost designer must learn
to live with memory latency. Physical compactness carries

j

another burden since the lack of parallel datapaths to multiple
memory chips takes away some of the design flexibility that one
would want in a rasterizer. With this constraint, the most popular

> way to attack latency is to stretch the processor pipeline so that
its processing latency matches the external memory latency. (The
reasons why this provides better processing efficiency will
become clearer in the following section.)

Among the low cost systems which have been implemented with
high latency memory are SGI’s graphics system for the Nintendo
64 and Microsoft’s Talisman [8]. Like the workstation processors
that preceded them, these designs must cope with memory
contention caused by texture fetches as well as the frame buffer
read-modify-write cycles mentioned above, albeit in very
different ways.

The Nintendo 64 reportedly employs a long pixel pipeline that
matches processing latency with memory latency for frame buffer
reads and writes. Texture is cached on-chip, and presumably
moved to the cache in large enough blocks that raw bandwidth
makes up for any re-use inefficiency.

Microsoft’s Talisman raster&r chip avoids off-chip read-modify-
write frame buffer operations altogether by caching both textures
and the frame buffer [S]. Because entire tiles of the output image
are generated in a single pass, the off-chip frame buffer becomes
write only and latency is not an issue for frame buffer accesses.
As an important side benefit, using an on-chip frame buffer
cache makes the use of an A-buffer algorithm [2] practical.
Latency for texture reads is an issue, and it is further aggravated
by using compressed textures which must be de-compressed on-
the-fly in circuitry which adds even more delay to texture

fetches. A complex combination of predictive texture caching
and two levels of cache alleviates this problem. One would
assume that the Talisman circuitry would be more expensive
than either the Ninetendo 64 or the simple raster&r used as the
example in this paper.

It is worth noting that the effectiveness of texture caching is a
complex, poorly understood topic on its own and is beyond the
scope of this paper. However, one should not extend assumptions
about texture caching performance for flight simulators nnd
workstations to game engines. The amount of content tuning to
match the characteristics of the game platform has traditionally
been extreme for games. To a certain extent, this means that a
knowledgeable game designer can force texture cache
effectiveness to be whatever is needed by tuning the content [9].

3. living With Latency

As noted above, the nature of both z-buffering and transparency
is that frame buffer data is first read, then modified, and finally
written. In many rasterizers, including the one described in this
paper, pixel data is accessed in consecutive memory locations
which represent consecutive pixels along a horizontal row, WC
refer to a row of pixels between the left and right edges of a
polygon as a span.

Because of its reasonable cost, small physical size, and low pin
count, Rambus memory has been a popular choice for several
low cost graphics systems. Internally, the memory uses
conventional DRAM cells and caches each row, so out-of-page
accesses are a significant performance hit. Furthermore, with the
particular memory controller used in this project, even best case
read latency is approximately 62 nanoseconds.

One way to boost the performance of the rasterizcr is to heavily
pipeline its operations. This introduces an internal processing
latency. In the worst possible case the memory latency would be
cascaded with the processing latency to reduce pixel throughput
to a level even lower than from memory latency alone. The goal
of our design is to achieve the best case in which the processing
latency and the memory latency are concurrent, and match cnch
other.

In our circuit, pixels along a span are read and written in blocks
which are a multiple of 8 bytes. As indicated Figure 1, the
crucial delay is that between initiating a read request nnd dntn
ready. Pipelining the per-pixel computation nlong a spnn
introduces a series of intermediate processing steps which can be
arranged to overlap the period between rend requests nnd actual
data reads. As we show in the following sections, ordering the
pixel calculations so that only a small calculation is required to
compute final pixel color gives the quickest possible turn-around
between data reads and pixel write requests. Data writes nlso
incur latency which spills over into the following read request.
For the sake of convenience, we lump all of these delays
together. However, at low resolution, we have been nblc to
optimize by arranging data in the frame buffer so that writes
following a read are highly likely to fall into the same pngc ns
the read.

98

Nt24

W#

Pixel Memorv

Figure 1. Memory latency and pixel pipeline.

4. Design

As stated above, the architecture of this graphics system is
derived from constraints. Over and above all other
considerations, it is designed to be inexpensive. Its features
include z-buffering, translucency, and perspective corrected
texture mapping with bi-linear filtering. No attempt is made to
support z-buffering and transparency simultaneously. Either
textures or surface colors can be transparent, but not both
simultaneously. Each of these feature compromises is made in
the name of reduced chip complexity.

At the front end, our target was to be competitive with the
current generation of 32-bit game consoles at a peak geometric
throughput of between 300,000 and 400,000 polygons per
second. The fill rate of 25 million pixels per second is high
enough to display simple 3D games at 64Ox4SO resolution and
more than adequate to drive a single channel HMD at 320x200
resolution. Aiming for a 0.5 micron fabrication process, timing
estimates from placement and routing of portions of the ASICs
designed for the game console showed us that a system clock of
50 MHz would be the upper limit. Verilog simulations of just the
rasterizer indicate that it will run at speeds as high as 80 MHz.

The design process is not merely an exercise in balancing
performance versus cost. Once the desired features are
established, a top level design can be reached by varying the free
design parameters. This top level design was refined in the
following steps:

1. A single data path was established for pixel calculations,
i.e. only one pixel comes out of the pipe at a time. This then
forces the pixel till rate to be a sub-multiple of the clock
frequency.

2, The designers felt that one pixel every clock period was
overkill for the target application and that half that rate
would save chip area while providing adequate
performance. With a 50 MHz clock, the fill rate for this

design is 25 million pixels per second. Since some operating
modes require fewer operations it is quite practical to run
faster for simple operations, e.g. Gouraud or flat shading,
and slower for more complex modes, e.g. transparent bi-
linearly interpolated textures. Because the schedule for this
project was aggressive, we settled on fixed timing for all
modes as a way to simplify debugging of the design.

3. With these parameters fixed, most of the remaining design
decisions follow from the timing.

The high level block diagram of the raster&r is given in Figure
2 below. In the simplest possible terms, the design attempts to
match its throughput to the expected latency of the memory, and
stalls when that latency is exceeded.

Of all the paths in the circuit, texture calculation is the longest.
After interpolating the homogeneous texture coordinates, U, v,
and W, perspective corrected U, v pairs are fed into a FIFO. This
is the narrowest data path in the circuit and therefor the least
expensive to buffer. The overall length of the pixel pipeline can
be effectively changed by growing or shrinking the U, v FIPO.
Counting two stages of the II, v FIFO, the total number of
pipeline stages is 18.

While stretching out the texture mapping data path lowers its
cost, it complicates the design elsewhere. Normally, color (r,g,b,
and alpha) and depth (z) would be interpolated at the same time
as the frame buffer address and the texture coordinates. One
would naively expect to buffer the interpolated color and depth
values in a PIP0 that matches the length of the texture pipeline.
However we find it much less expensive to defer interpolation
until just-in-time. In this way the circuit can buffer only the r, g,
b. alpha, and z starting points and differences in a compact
buffer.

Pixels are not flushed between spans, but are flushed between
polygons to insure that the texture map remains valid for pixels
still progressing through the pipeline. We note, however, the a

99

I

* j

,

I
/
I

1 r

I

i

I

I

I

1

I
,

I
1
I

I

I
/

1

t

I
(

1

1

I

Figure 2. Rasterizer block diagram.

pixel is considered flushed when its write is queued, not when it
is actually written into the frame buffer.

5. Simulation

While a stretched pipeline sounds good in principle, a simulator
is the best verification of the design. There have been two
simulators built for this project. One is a Verilog model of the
actual circuit and the other is a functional simulator written in C.
The simulations reported here come from the functional
simulator.

For the functional simulator, memory and rasterizer timing is
limited to horizontal spans. The C program which serves as a
wrapper for the simulator makes no attempt to mimic the timing
of the edge interpolators. We find that this is sufficient because
the design includes enough edge interpolators to insure that no
part of the span processor will stall except on the shortest spans
and this stall is explicitly mimicked. The memory model keeps
track of its own state autonomously and propagates the
appropriate time penalty for data reads and writes.

In this particular design the least expensive memory
configuration has more peak bandwidth than the rasterizer chip
and its application require. While we are primarily concerned
with insuring that the raster&r circuit does not stall, we also
attempt to make the largest transfers possible to and from
memory.

Our efficiency figure is the ratio of actual pixel fill rate to peak
fill rate. As the plots in Figures 3 and 4 show, stretching the
pipeline to match memory latency allows the circuit to reach its
peak rate. The top line in each plot, denoted by diamond shaped
data points, indicates the efficiency when the maximum memory
transfer size is 64 bytes. The bottom line, denoted by triangle
shaped data points, demonstrates how badly performance can
suffer if the z buffer and color fall into separate memory pages.
The plot in the middle, denoted by square shapes, shows how
performance is degraded when transfer lengths are limited to 8

100

bytes. Not surprisingly, this limitation is less of n problem for the
short spans of small polygons than the longer spans of Inrgc
polygons.

The scenes in Figures 3 and 4 are obviously contrived with the
first containing 4 triangles which cover approximately 12,000
pixels each. Figure 4 contains 2016 triangles, each of which
covers approximately 18 pixels. Real game applications contain n
mix of large and small polygons, but these examples arc intended
to show the extremes.

These plots are not entirely accurate since the periodic

interruption of video refresh is disabled to make the result more
understandable. Furthermore, the examples reuse n single texture
map for all polygons, so the overhead of paging texture into
SRAM is not accounted for. Nevertheless WC can see sevcrnl
trends. As expected, stretching the pixel pipeline to mntch
latency yields a dramatic improvement in efficiency in nil
circumstances. Arranging data in memory so that page misses arc
reduced is also a major performance win. Lastly, incrcnsing the
size of each transfer yields a marginal improvement, at lcnst
when rendering large polygons.

Given the technology and timing used in the example circuit, a
pressing question is how well does this design principle fare for
faster clock rates. Running the same tests used in tigurcs 3 nnd 4
through a simulator set for 100 MHz, with a pipeline stretched
out twice as long, yields 94% and 72% utilization of the
rasterizer circuit for the large polygon case and smnll polygon
case respectively. The argument against excessive extension for
this design is that the pipeline is flushed at the end of ench
polygon. Small polygon performance will suffer, ns the
simulation indicates.

The goal and, hopefully, the result of this simulntion is to gnin
some guidance for future designs which make use of high lntcncy
memory. Whether effective systems can be made depend on
factors beyond just the circuitry of the rasterizcr. e.g. memory
contention, content tuning, etc., but we feel safe in concluding
that high memory latency is not an insurmountable impediment
to the design of fast, low-cost rasterizers.

0.00%-r : : : : : : : : : : :
0 NI*COaDON d- (D c3 0 N

Y-F-7 cucufx

Pipeline length (in clock periods)

Figure 3. Rastetizer efficiency as a function of pipeline length for random large polygons.

6 E (3300% . -. “. . - _ _ _ _ _
II t

Ill 1-
20.00% y+-- ___..“--___--.--_____

I I
0.00%-l ; ; : : : : : : : : : I

0 N~acoocuw(oco V-F-T-Y- Eiz 8

Pipeline length (in clock periods)

Figure 4. Rasterizer efficiency as a function of pipeline length for meshes of small triangles.

6. References

[l] Akeley, K., and T. Jermoluk. “High-Performance Polygon
Rendering,” Computer Graphics, 22 4. August 1988, pp. 239-
246.

[2] Carpenter, Loren C., et al, “The A-buffer, an Antialiased
Hidden Surface Method,” in Proceedings of SIGGRAPH 84, pp.
103-108.

[3] Clark, J. H., and M. Hannah. “Distributed Processing in a
High-Performance Smart Image Memory, Lambda 1,3, 4’
Quarter 1980, pp. 40-45.

[4] Deering, M. F., S. A. Schlapp, and M. G. Lavelle, “FBRAM:
A new Form of Memory Optimized for 3D Graphics,” Computer
Gruphics Proceedings, Annual Conference Series, 1994, ACM
Siggraph, pp. 167-174.

[S] Fuchs, H., and B. Johnson. “An Expandable Multiprocessor
Architecture for Video Graphics,” Proceedings of the 6* ACM-
IEEE Symposium on Computer Architecture, April 1979, pp. 58-
67.

[6] Goris, A, B. Fredrickson, and H. Baeverstad, “‘A
Configurable Pixel Cache for Fast Image Generation,” IEEE
CG&4 7,3 (March 1987), pp. 24-32.

n] Molnar, S., J. Eyles, and J. Poulton, “PixelFlow: High-Speed
Rendering Using Image Composition,” Computer Graphics, 26,
2 (July 1992), ACM Siggraph, pp. 231-240.

[S] Torborg, Jay, and James T. Kajiya, “Talisman: Commodity
Realtime 3D Graphics for the PC,” in Proceedings of
SIGGRAPH 96, pp. 353-363.

[9] Red Planet, FASANirtual Worlds Entertainment.

[lo] Whitton, M., “Memory Design for Raster Graphics
Displays,” IEEE CGdiA 4,3 (March 1984). pp. 48-65.

101

